The anaerobic digestion process is a well-known technology for organic waste treatment, and it met the necessity to treat wastes and recover energy from renewable sources. Recently, the urgent necessity of new energy vectors drove the scientific research to biological hydrogen production technology, through photosynthetic and fermentative processes. This PhD thesis deals with the optimization of a two-phase thermophilic anaerobic digestion process treating organic waste for hydrogen and methane production. Nor physical neither chemical pretreatment were used to treat the inoculum or the substrates in order to optimize the process for a sustainable scale-up. It was further verified the biologic stability of the digested material by means of aerobic tests, based on the dynamic respirometric index (DRI), where the oxygen uptake rate by the substrate was continuously monitored, and anaerobic tests that were based on the biochemical methane potential (BMP), where the biogas produced by digestate in long-term batch tests, was measured. These values can be used to define the stability of the reactors effluent to verify the possibility to reduce the treatment time

Optimization of two phase thermophilic anaerobic digestion of biowaste for bio-hythane production / Cavinato, Cristina. - (2011 Mar 11).

Optimization of two phase thermophilic anaerobic digestion of biowaste for bio-hythane production

Cavinato, Cristina
2011-03-11

Abstract

The anaerobic digestion process is a well-known technology for organic waste treatment, and it met the necessity to treat wastes and recover energy from renewable sources. Recently, the urgent necessity of new energy vectors drove the scientific research to biological hydrogen production technology, through photosynthetic and fermentative processes. This PhD thesis deals with the optimization of a two-phase thermophilic anaerobic digestion process treating organic waste for hydrogen and methane production. Nor physical neither chemical pretreatment were used to treat the inoculum or the substrates in order to optimize the process for a sustainable scale-up. It was further verified the biologic stability of the digested material by means of aerobic tests, based on the dynamic respirometric index (DRI), where the oxygen uptake rate by the substrate was continuously monitored, and anaerobic tests that were based on the biochemical methane potential (BMP), where the biogas produced by digestate in long-term batch tests, was measured. These values can be used to define the stability of the reactors effluent to verify the possibility to reduce the treatment time
11-mar-2011
23
Scienze ambientali
Pavan, Paolo
File in questo prodotto:
File Dimensione Formato  
cavinato_955526_tesi.pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato
Dimensione 9.66 MB
Formato Adobe PDF
9.66 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10579/1091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact