Due to their superior electrical and thermal properties compared to Si, wide bandgap (WBG) semiconductors such as SiC and GaN represent key candidates for developing more efficient power devices. To achieve maximum performance from WBG semiconductors, it is essential to create new packaging technologies and thermo-electric designs that ensure efficient and swift device switching while minimizing losses. This dissertation investigates and optimizes the electromagnetic, thermo-electrical, and thermo-mechanical behavior of WBG semiconductor power modules intended for the traction inverter of electric vehicles using finite element simulation. The research includes an optimization case study on an actual prototype device obtained from Marelli Europe and the modeling/optimization of insulated prepackaged modular power modules. The thermal performance of the prototype was greatly improved by using silver sinter instead of solder, from 188 °C to 171 °C, and the equivalent stray inductance was reduced to 5.12 nH by redesigning the geometrical layout. In the second case, a prepackaged power device was modeled, consisting of a semiconductor device sintered onto a metal plate and encapsulated with epoxy-like compounds. A Pareto thermo-mechanical optimization of 10 commercial substrates (DP0 to DP9) was conducted. The results indicate that the optimal choice in terms of performance is an AlN substrate (DP3), which reduces plastic/creep strain by a factor of 4 compared to IMS (DP7).
I semiconduttori a banda larga (WBG), come il SiC e il GaN, hanno proprietà elettriche e termiche superiori rispetto al Si, che possono rendere i dispositivi di potenza più efficienti. Per ottimizzare le prestazioni dei semiconduttori WBG, è fondamentale sviluppare nuove tecnologie di packaging e progettazioni termoelettriche che garantiscano una commutazione rapida ed efficiente, minimizzando le perdite. Questa tesi analizza e ottimizza il comportamento elettromagnetico, termoelettrico e termomeccanico dei moduli di potenza WBG destinati agli inverter di trazione dei veicoli elettrici, utilizzando simulazioni agli elementi finiti. La tesi include uno studio su un prototipo fornito da Marelli Europe e la modellazione di moduli di potenza. Le prestazioni termiche del prototipo sono state migliorate mediante l’utilizzo della pasta d'argento invece del soldering, riducendo la temperatura operativa da 188 °C a 171 °C, mentre l'induttanza parassita equivalente è stata ridotta a 5,12 nH grazie a una progettazione del layout geometrico. Inoltre, è stato modellato un dispositivo di potenza (prepackaged), composto da un semiconduttore sinterizzato su una piastra metallica e incapsulato con materiali simili a resine epossidiche. È stata condotta un'ottimizzazione termomeccanica alla Pareto su dieci substrati commerciali (da DP0 a DP9), rivelando che il substrato AlN (DP3) riduce la deformazione plastica e il creep con un fattore di quattro rispetto all'IMS (DP7).
Multiphysics simulation for energy efficient Wide Bandgap semiconductors traction inverter for full electric vehicles / Frroku, Saimir. - (2025 Jul 23).
Multiphysics simulation for energy efficient Wide Bandgap semiconductors traction inverter for full electric vehicles
FRROKU, SAIMIR
2025-07-23
Abstract
Due to their superior electrical and thermal properties compared to Si, wide bandgap (WBG) semiconductors such as SiC and GaN represent key candidates for developing more efficient power devices. To achieve maximum performance from WBG semiconductors, it is essential to create new packaging technologies and thermo-electric designs that ensure efficient and swift device switching while minimizing losses. This dissertation investigates and optimizes the electromagnetic, thermo-electrical, and thermo-mechanical behavior of WBG semiconductor power modules intended for the traction inverter of electric vehicles using finite element simulation. The research includes an optimization case study on an actual prototype device obtained from Marelli Europe and the modeling/optimization of insulated prepackaged modular power modules. The thermal performance of the prototype was greatly improved by using silver sinter instead of solder, from 188 °C to 171 °C, and the equivalent stray inductance was reduced to 5.12 nH by redesigning the geometrical layout. In the second case, a prepackaged power device was modeled, consisting of a semiconductor device sintered onto a metal plate and encapsulated with epoxy-like compounds. A Pareto thermo-mechanical optimization of 10 commercial substrates (DP0 to DP9) was conducted. The results indicate that the optimal choice in terms of performance is an AlN substrate (DP3), which reduces plastic/creep strain by a factor of 4 compared to IMS (DP7).| File | Dimensione | Formato | |
|---|---|---|---|
|
FRROKU FS_PhD_Thesis_FV-1.pdf
embargo fino al 23/07/2026
Descrizione: Tesi PON
Tipologia:
Tesi di dottorato
Dimensione
18.98 MB
Formato
Adobe PDF
|
18.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



