Particle Swarm Optimization (PSO) is a stochastic optimization method, based on the social behavior of bird flocks. The method, known for its high performance in optimization, has been mainly developed for problems involving just quantitative variables. In this paper we propose a new approach called Qualitative Particle Swarm Optimization (Q-PSO) where the variables in the optimization can be both qualitative and quantitative and the updating rule is derived adopting probabilistic measures. We apply this procedure to a complex engineering optimization problem concerning building fa¸cade design. More specifically, we address the problem of deriving an energy-efficient building design, i.e. a design that minimizes the energy consumption (and the emission of carbon dioxide) for heating, cooling and lighting. We develop a simulation study to evaluate Q-PSO procedure and we derive comparisons with most conventional approaches. The study shows a very good performance of our approach in achieving the assigned target.

Qualitative Particle Swarm Optimization (Q-PSO) for Enery-Efficient Building Designs

SLANZI, Debora;DE MARCH, Davide;GIOVE, Silvio;POLI, Irene
2014-01-01

Abstract

Particle Swarm Optimization (PSO) is a stochastic optimization method, based on the social behavior of bird flocks. The method, known for its high performance in optimization, has been mainly developed for problems involving just quantitative variables. In this paper we propose a new approach called Qualitative Particle Swarm Optimization (Q-PSO) where the variables in the optimization can be both qualitative and quantitative and the updating rule is derived adopting probabilistic measures. We apply this procedure to a complex engineering optimization problem concerning building fa¸cade design. More specifically, we address the problem of deriving an energy-efficient building design, i.e. a design that minimizes the energy consumption (and the emission of carbon dioxide) for heating, cooling and lighting. We develop a simulation study to evaluate Q-PSO procedure and we derive comparisons with most conventional approaches. The study shows a very good performance of our approach in achieving the assigned target.
2014
Advances in Artificial Life and Evolutionary Computation
File in questo prodotto:
File Dimensione Formato  
Wivace2014.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 417.74 kB
Formato Adobe PDF
417.74 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/41992
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact