The construction of automated financial trading systems (FTSs) is a subject of high interest for both the academic environment and the financial one due to the potential promises by self-learning methodologies. In this paper we consider Reinforcement Learning (RL) type algorithms, that is algorithms that real-time optimize their behavior in relation to the responses they get from the environment in which they operate, without the need for a supervisor. In particular, first we introduce the essential aspects of RL which are of interest for our purposes, second we present some original automatic FTSs based on differently configured RL-based algorithms, then we apply such FTSs to artificial and real time series of daily stock prices. Finally, we compare our FTSs with a classical one based on Technical Analysis indicators. All the results we achieve are generally quite satisfactory.

The construction of automated financial trading systems (FTSs) is a subject of high interest for both the academic environment and the financial one due to the potential promises by self-learning methodologies. In this paper we consider Reinforcement Learning (RL) type algorithms, that is algorithms that real-time optimize their behavior in relation to the responses they get from the environment in which they operate, without the need for a supervisor. In particular, first we introduce the essential aspects of RL which are of interest for our purposes, second we present some original automatic FTSs based on differently configured RL-based algorithms, then we apply such FTSs to artificial and real time series of daily stock prices. Finally, we compare our FTSs with a classical one based on Technical Analysis indicators. All the results we achieve are generally quite satisfactory. © Springer International Publishing Switzerland 2014.

Reinforcement Learning for automated financial trading: Basics and applications

BERTOLUZZO, FRANCESCO;CORAZZA, Marco
2014-01-01

Abstract

The construction of automated financial trading systems (FTSs) is a subject of high interest for both the academic environment and the financial one due to the potential promises by self-learning methodologies. In this paper we consider Reinforcement Learning (RL) type algorithms, that is algorithms that real-time optimize their behavior in relation to the responses they get from the environment in which they operate, without the need for a supervisor. In particular, first we introduce the essential aspects of RL which are of interest for our purposes, second we present some original automatic FTSs based on differently configured RL-based algorithms, then we apply such FTSs to artificial and real time series of daily stock prices. Finally, we compare our FTSs with a classical one based on Technical Analysis indicators. All the results we achieve are generally quite satisfactory. © Springer International Publishing Switzerland 2014.
2014
Recent Advances of Neural Networks Models and Applications
File in questo prodotto:
File Dimensione Formato  
2014-Bertoluzzo_Corazza-Reinforcement_Learning_for_automated_financial_trading_basics_and_applications-BOOK.pdf

non disponibili

Descrizione: Articolo nella versione dell'editore.
Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/40776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact