We develop efficient simulation techniques for Bayesian inference on switching GARCH models. Our contribution to existing literature is manifold. First, we discuss different multi-move sampling techniques for Markov Switching (MS) state space models with particular attention to MSGARCH models. Our multi-move sampling strategy is based on the Forward Filtering Backward Sampling (FFBS) applied to an approximation of MS-GARCH. Another important contribution is the use of multi-point samplers, such as the Multiple-Try Metropolis (MTM) and the Multiple trial Metropolize Independent Sampler, in combination with FFBS for the MS-GARCH process. In this sense we ex- tend to the MS state space models the work of So [2006] on efficient MTM sampler for continuous state space models. Finally, we suggest to further improve the sampler efficiency by introducing the antithetic sampling of Craiu and Meng [2005] and Craiu and Lemieux [2007] within the FFBS. Our simulation experiments on MS-GARCH model show that our multi-point and multimove strategies allow the sampler to gain efficiency when compared with single-move Gibbs sampling.

Efficient Gibbs Sampling for Markov Switching GARCH Models

BILLIO, Monica;CASARIN, Roberto;Osuntuyi A.
2012

Abstract

We develop efficient simulation techniques for Bayesian inference on switching GARCH models. Our contribution to existing literature is manifold. First, we discuss different multi-move sampling techniques for Markov Switching (MS) state space models with particular attention to MSGARCH models. Our multi-move sampling strategy is based on the Forward Filtering Backward Sampling (FFBS) applied to an approximation of MS-GARCH. Another important contribution is the use of multi-point samplers, such as the Multiple-Try Metropolis (MTM) and the Multiple trial Metropolize Independent Sampler, in combination with FFBS for the MS-GARCH process. In this sense we ex- tend to the MS state space models the work of So [2006] on efficient MTM sampler for continuous state space models. Finally, we suggest to further improve the sampler efficiency by introducing the antithetic sampling of Craiu and Meng [2005] and Craiu and Lemieux [2007] within the FFBS. Our simulation experiments on MS-GARCH model show that our multi-point and multimove strategies allow the sampler to gain efficiency when compared with single-move Gibbs sampling.
Efficient Gibbs Sampling for Markov Switching GARCH Models
File in questo prodotto:
File Dimensione Formato  
WP_DSE_billio_casarin_osuntuyi_35_12.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 877.33 kB
Formato Adobe PDF
877.33 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/38410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact