In this paper we study new preconditioners for the Nonlinear Conjugate Gradient (NCG) method in large scale unconstrained optimization. Our preconditioners are based on quasi--Newton updates, which approximate the inverse of the Hessian matrix. In particular, we consider a couple of new low-rank quasi-Newton symmetric updating formulae. Some preliminary numerical experiences are carried on, showing a comparison between one of our proposals and the use of L-BFGS update as preconditioner.

Quasi–Newton updates for Preconditioned Nonlinear Conjugate Gradient methods

FASANO, Giovanni;
2012-01-01

Abstract

In this paper we study new preconditioners for the Nonlinear Conjugate Gradient (NCG) method in large scale unconstrained optimization. Our preconditioners are based on quasi--Newton updates, which approximate the inverse of the Hessian matrix. In particular, we consider a couple of new low-rank quasi-Newton symmetric updating formulae. Some preliminary numerical experiences are carried on, showing a comparison between one of our proposals and the use of L-BFGS update as preconditioner.
2012
Quaderni di Matematica
File in questo prodotto:
File Dimensione Formato  
FaRo_NCG.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Accesso libero (no vincoli)
Dimensione 189.11 kB
Formato Adobe PDF
189.11 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/37393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact