The generation of food waste at both the supplier and the consumer levels stems from a complex set of interacting behaviours. Computational and mathematical models provide various methods to simulate, diagnose and predict different aspects within the complex system of food waste generation and prevention. This chapter outlines four different modelling approaches that have been used previously to investigate food waste: discrete event simulation, which has been used to examine how the shelf life of milk and many actions taken around shopping and use of milk within a household influence food waste; machine learning and Bayesian networks, which have been used to provide insight into the determinants of household food waste; agent-based modelling, which has been used to provide insight into how innovation can reduce retail food waste; and mass balance estimation, which has been used to model and estimate food waste from data related to human metabolism and calories consumed.

Modelling approaches to food waste: Discrete event simulation; machine learning; bayesian networks; agent based simulation; and mass balance estimation

Simone RIGHI;

Routledge Handbook of Food Waste
File in questo prodotto:
File Dimensione Formato  
20 Part Four - Cansu Kandemier, et al. - Modelling Approaches to Food Waste.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Accesso gratuito (solo visione)
Dimensione 631.18 kB
Formato Adobe PDF
631.18 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento:
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact