We consider a quasi-linear heat transmission problem for a composite material which fills the $n$-dimensional Euclidean space. The composite has a periodic structure and consists of two materials. In each periodicity cell one material occupies a cavity of size $epsilon$, and the second material fills the remaining part of the cell. We assume that the thermal conductivities of the materials depend nonlinearly upon the temperature. For $epsilon$ small enough the problem is known to have a solution, extiti.e., a pair of functions which determine the temperature distribution in the two materials. Then we prove a limiting property and a local uniqueness result for families of solutions which converge as $epsilon$ tends to $0$.

A Local Uniqueness Result for a Quasi-linear Heat Transmission Problem in a Periodic Two-phase Dilute Composite

MUSOLINO, PAOLO
2017

Abstract

We consider a quasi-linear heat transmission problem for a composite material which fills the $n$-dimensional Euclidean space. The composite has a periodic structure and consists of two materials. In each periodicity cell one material occupies a cavity of size $epsilon$, and the second material fills the remaining part of the cell. We assume that the thermal conductivities of the materials depend nonlinearly upon the temperature. For $epsilon$ small enough the problem is known to have a solution, extiti.e., a pair of functions which determine the temperature distribution in the two materials. Then we prove a limiting property and a local uniqueness result for families of solutions which converge as $epsilon$ tends to $0$.
Recent Trends in Operator Theory and Partial Differential Equations The Roland Duduchava Anniversary Volume
File in questo prodotto:
File Dimensione Formato  
DallaRivaLanzadeCristoforisMusolino17jan16.pdf

non disponibili

Dimensione 392.48 kB
Formato Adobe PDF
392.48 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/3723522
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact