Seemingly unrelated regression (SUR) models are useful in studying the interactions among economic variables. In a high dimensional setting, these models require a large number of parameters to be estimated and suffer of inferential problems. To avoid overparametrization issues, we propose a hierarchical Dirichlet process prior (DPP) for SUR models, which allows shrinkage of coefficients toward multiple locations. We propose a two-stage hierarchical prior distribution, where the first stage of the hierarchy consists in a lasso conditionally independent prior of the Normal-Gamma family for the coefficients. The second stage is given by a random mixture distribution, which allows for parameter parsimony through two components: the first is a random Dirac point-mass distribution, which induces sparsity in the coefficients; the second is a DPP, which allows for clustering of the coefficients.

Bayesian Nonparametric Sparse Vector Autoregressive Models

Monica Billio;Roberto Casarin;
2018-01-01

Abstract

Seemingly unrelated regression (SUR) models are useful in studying the interactions among economic variables. In a high dimensional setting, these models require a large number of parameters to be estimated and suffer of inferential problems. To avoid overparametrization issues, we propose a hierarchical Dirichlet process prior (DPP) for SUR models, which allows shrinkage of coefficients toward multiple locations. We propose a two-stage hierarchical prior distribution, where the first stage of the hierarchy consists in a lasso conditionally independent prior of the Normal-Gamma family for the coefficients. The second stage is given by a random mixture distribution, which allows for parameter parsimony through two components: the first is a random Dirac point-mass distribution, which induces sparsity in the coefficients; the second is a DPP, which allows for clustering of the coefficients.
2018
Mathematical and Statistical Methods for Actuarial Sciences and Finance
File in questo prodotto:
File Dimensione Formato  
sVAR1.pdf

non disponibili

Descrizione: svar
Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 798.85 kB
Formato Adobe PDF
798.85 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3704088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact