In this paper, we deal with matrix-free preconditioners for Nonlinear Conjugate Gradient (NCG) methods. In particular, we review proposals based on quasi-Newton updates, and either satisfying the secant equation or a secant-like equation at some of the previous iterates. Conditions are given proving that, in some sense, the proposed preconditioners also approximate the inverse of the Hessian matrix. In particular, the structure of the preconditioners depends both on low-rank updates along with some specific parameters. The low-rank updates are obtained as by-product of NCG iterations. Moreover, we consider the possibility to embed damped techniques within a class of preconditioners based on quasi-Newton updates. Damped methods have proved to be effective to enhance the performance of quasi-Newton updates, in those cases where the Wolfe linesearch conditions are hardly fulfilled. The purpose is to extend the idea behind damped methods also to improve NCG schemes, following a novel line of research in the literature. The results, which summarize an extended numerical experience using large-scale CUTEst problems, is reported, showing that these approaches can considerably improve the performance of NCG methods.
Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes for Nonlinear Conjugate Gradient Methods
Giovanni Fasano;
2018-01-01
Abstract
In this paper, we deal with matrix-free preconditioners for Nonlinear Conjugate Gradient (NCG) methods. In particular, we review proposals based on quasi-Newton updates, and either satisfying the secant equation or a secant-like equation at some of the previous iterates. Conditions are given proving that, in some sense, the proposed preconditioners also approximate the inverse of the Hessian matrix. In particular, the structure of the preconditioners depends both on low-rank updates along with some specific parameters. The low-rank updates are obtained as by-product of NCG iterations. Moreover, we consider the possibility to embed damped techniques within a class of preconditioners based on quasi-Newton updates. Damped methods have proved to be effective to enhance the performance of quasi-Newton updates, in those cases where the Wolfe linesearch conditions are hardly fulfilled. The purpose is to extend the idea behind damped methods also to improve NCG schemes, following a novel line of research in the literature. The results, which summarize an extended numerical experience using large-scale CUTEst problems, is reported, showing that these approaches can considerably improve the performance of NCG methods.File | Dimensione | Formato | |
---|---|---|---|
449842_1_En_1_Chapter_Author_CORRECTED.pdf
accesso aperto
Descrizione: paper
Tipologia:
Documento in Pre-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
944.12 kB
Formato
Adobe PDF
|
944.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.