In this paper, we deal with matrix-free preconditioners for Nonlinear Conjugate Gradient (NCG) methods. In particular, we review proposals based on quasi-Newton updates, and either satisfying the secant equation or a secant-like equation at some of the previous iterates. Conditions are given proving that, in some sense, the proposed preconditioners also approximate the inverse of the Hessian matrix. In particular, the structure of the preconditioners depends both on low-rank updates along with some specific parameters. The low-rank updates are obtained as by-product of NCG iterations. Moreover, we consider the possibility to embed damped techniques within a class of preconditioners based on quasi-Newton updates. Damped methods have proved to be effective to enhance the performance of quasi-Newton updates, in those cases where the Wolfe linesearch conditions are hardly fulfilled. The purpose is to extend the idea behind damped methods also to improve NCG schemes, following a novel line of research in the literature. The results, which summarize an extended numerical experience using large-scale CUTEst problems, is reported, showing that these approaches can considerably improve the performance of NCG methods.

Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes for Nonlinear Conjugate Gradient Methods

Giovanni Fasano;
2018-01-01

Abstract

In this paper, we deal with matrix-free preconditioners for Nonlinear Conjugate Gradient (NCG) methods. In particular, we review proposals based on quasi-Newton updates, and either satisfying the secant equation or a secant-like equation at some of the previous iterates. Conditions are given proving that, in some sense, the proposed preconditioners also approximate the inverse of the Hessian matrix. In particular, the structure of the preconditioners depends both on low-rank updates along with some specific parameters. The low-rank updates are obtained as by-product of NCG iterations. Moreover, we consider the possibility to embed damped techniques within a class of preconditioners based on quasi-Newton updates. Damped methods have proved to be effective to enhance the performance of quasi-Newton updates, in those cases where the Wolfe linesearch conditions are hardly fulfilled. The purpose is to extend the idea behind damped methods also to improve NCG schemes, following a novel line of research in the literature. The results, which summarize an extended numerical experience using large-scale CUTEst problems, is reported, showing that these approaches can considerably improve the performance of NCG methods.
2018
Numerical Analysis and Optimization
File in questo prodotto:
File Dimensione Formato  
449842_1_En_1_Chapter_Author_CORRECTED.pdf

accesso aperto

Descrizione: paper
Tipologia: Documento in Pre-print
Licenza: Accesso gratuito (solo visione)
Dimensione 944.12 kB
Formato Adobe PDF
944.12 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3700923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact