In this paper we introduce the literature on regression models with tensor variables and present a Bayesian linear model for inference, under the assumption of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC (CP) representation for the tensor of coefficients in order to reduce the number of parameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity. We propose a MCMC procedure via Gibbs sampler for carrying out the estimation, discussing the issues related to the initialisation of the vectors of parameters involved in the CP representation.

Bayesian Tensor Regression Models

Monica Billio;Roberto Casarin;Matteo Iacopini
2018-01-01

Abstract

In this paper we introduce the literature on regression models with tensor variables and present a Bayesian linear model for inference, under the assumption of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC (CP) representation for the tensor of coefficients in order to reduce the number of parameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity. We propose a MCMC procedure via Gibbs sampler for carrying out the estimation, discussing the issues related to the initialisation of the vectors of parameters involved in the CP representation.
Mathematical and Statistical Methods for Actuarial Sciences and Finance
File in questo prodotto:
File Dimensione Formato  
Proceedings MAF2018 - Chapter 29.pdf

non disponibili

Licenza: Accesso chiuso-personale
Dimensione 402.88 kB
Formato Adobe PDF
402.88 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3700829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact