The paper proposes a methodological approach to design complex experiments for multi-objective optimization. The strategy is based on evolutionary statistical inference to search for the optimal values in high-dimensional experimental spaces. We developed this approach to study a particular molecular system and discover the best molecules to be proposed as candidate drugs.

Multi-objective Optimization in High-Dimensional Molecular Systems

Slanzi, Debora;Mameli, Valentina;Khoroshiltseva, Marina;Poli, Irene
2018

Abstract

The paper proposes a methodological approach to design complex experiments for multi-objective optimization. The strategy is based on evolutionary statistical inference to search for the optimal values in high-dimensional experimental spaces. We developed this approach to study a particular molecular system and discover the best molecules to be proposed as candidate drugs.
Artificial Life and Evolutionary Computation. WIVACE 2017.
File in questo prodotto:
File Dimensione Formato  
2018_CCIS_b.pdf

non disponibili

Licenza: Accesso chiuso-personale
Dimensione 792.2 kB
Formato Adobe PDF
792.2 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/3699716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact