In this work, we address the problem of calibrating dynamic factor models for macroeconomic forecasting. The variables upon which the forecasts are computed are the logarithm of the Industrial Production (IP) and the yearly change of the logarithm of the Consumer Price Index (CPI). Our purpose is to provide a contribution to the model identification by proposing a new kind of calibration of static and dynamic factor models. The innovative part of our work consists of building a genetic algorithm for calibrating three dynamic factor models. We first analyse a dataset of 176 EU macroeconomic and financial time series and then we conduct the same study on a dataset of 115 US macroeconomic and financial time series. In both studies, the employment of genetic algorithm in the calibration procedure produces very good results and more significant than those achieved in similar studies, such as [1,2].

Calibrating Dynamic Factor Models with Genetic Algorithms

Fabio Della Marra
2018-01-01

Abstract

In this work, we address the problem of calibrating dynamic factor models for macroeconomic forecasting. The variables upon which the forecasts are computed are the logarithm of the Industrial Production (IP) and the yearly change of the logarithm of the Consumer Price Index (CPI). Our purpose is to provide a contribution to the model identification by proposing a new kind of calibration of static and dynamic factor models. The innovative part of our work consists of building a genetic algorithm for calibrating three dynamic factor models. We first analyse a dataset of 176 EU macroeconomic and financial time series and then we conduct the same study on a dataset of 115 US macroeconomic and financial time series. In both studies, the employment of genetic algorithm in the calibration procedure produces very good results and more significant than those achieved in similar studies, such as [1,2].
2018
Artificial Life and Evolutionary Computation
File in questo prodotto:
File Dimensione Formato  
466361_1_En_15_Chapter_Author.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 854.04 kB
Formato Adobe PDF
854.04 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3699576
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact