We develop a method to validate the use of Markov Switching models in modelling time series subject to structural changes. Particularly, we consider multivariate autoregressive models subject to Markov Switching and derive close-form formulae for the spectral density of such models, based on their autocovariance functions and stable representations. Within this framework, we check the capability of the model to capture the relative importance of high- and low-frequency variability of the series. Applications to U.S. macroeconomic and financial data illustrate the behaviour at different frequencies.
Autori: | |
Data di pubblicazione: | 2016 |
Titolo: | Validating markov switching VAR through spectral representations |
Titolo del libro: | Causal Inference in Econometrics |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/978-3-319-27284-9_1 |
Appare nelle tipologie: | 3.1 Articolo su libro |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
billio_cavicchioli.pdf | Documento in Pre-print | Accesso chiuso-personale | Open Access dal 05/08/2021 |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.