In this work we present an efficient method to tackle the problem of parameter inference for stochastic biological models. We develop a variant of the Particle Swarm Optimization algorithm by including Probabilistic Dependency statistical models to detect the parameter dependencies. This results in a more efficient parameter inference of the biological model.We test the Probabilistic Dependency- PSO on a well-known benchmark problem: the thermal isomerization of α-pinene © 2012 Springer-Verlag GmbH.

Combining Probabilistic Dependency Models and Particle Swarm Optimization for Parameter Inference in Stochastic Biological Systems

SLANZI, Debora;POLI, Irene
2012-01-01

Abstract

In this work we present an efficient method to tackle the problem of parameter inference for stochastic biological models. We develop a variant of the Particle Swarm Optimization algorithm by including Probabilistic Dependency statistical models to detect the parameter dependencies. This results in a more efficient parameter inference of the biological model.We test the Probabilistic Dependency- PSO on a well-known benchmark problem: the thermal isomerization of α-pinene © 2012 Springer-Verlag GmbH.
2012
Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science
File in questo prodotto:
File Dimensione Formato  
CCACS2012.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 725.25 kB
Formato Adobe PDF
725.25 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/30949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact