In this work we present an efficient method to tackle the problem of parameter inference for stochastic biological models. We develop a variant of the Particle Swarm Optimization algorithm by including Probabilistic Dependency statistical models to detect the parameter dependencies. This results in a more efficient parameter inference of the biological model.We test the Probabilistic Dependency- PSO on a well-known benchmark problem: the thermal isomerization of α-pinene © 2012 Springer-Verlag GmbH.
Combining Probabilistic Dependency Models and Particle Swarm Optimization for Parameter Inference in Stochastic Biological Systems
SLANZI, Debora;POLI, Irene
2012-01-01
Abstract
In this work we present an efficient method to tackle the problem of parameter inference for stochastic biological models. We develop a variant of the Particle Swarm Optimization algorithm by including Probabilistic Dependency statistical models to detect the parameter dependencies. This results in a more efficient parameter inference of the biological model.We test the Probabilistic Dependency- PSO on a well-known benchmark problem: the thermal isomerization of α-pinene © 2012 Springer-Verlag GmbH.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CCACS2012.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
725.25 kB
Formato
Adobe PDF
|
725.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.