In time series analysis, latent factors are often introduced to model the heterogeneous time evolution of the observed processes. The presence of unobserved components makes the maximum likelihood estimation method more difficult to apply. A Bayesian approach can sometimes be preferable since it permits to treat general state space models and makes easier the simulation based approach to parameters estimation and latent factors filtering. The paper examines economic time series models in a Bayesian perspective focusing, through some examples, on the extraction of the business cycle components. We briefly review some general univariate Bayesian dynamic models and discuss the simulation based techniques, such as Gibbs sampling, adaptive importance sampling and finally suggest the use of the particle filter, for parameter estimation and latent factor extraction.

Bayesian Inference on Dynamic Models with Latent Factors

BILLIO, Monica;CASARIN, Roberto;SARTORE, Domenico
2007

Abstract

In time series analysis, latent factors are often introduced to model the heterogeneous time evolution of the observed processes. The presence of unobserved components makes the maximum likelihood estimation method more difficult to apply. A Bayesian approach can sometimes be preferable since it permits to treat general state space models and makes easier the simulation based approach to parameters estimation and latent factors filtering. The paper examines economic time series models in a Bayesian perspective focusing, through some examples, on the extraction of the business cycle components. We briefly review some general univariate Bayesian dynamic models and discuss the simulation based techniques, such as Gibbs sampling, adaptive importance sampling and finally suggest the use of the particle filter, for parameter estimation and latent factor extraction.
Growth and Cycle in the Euro-zone
File in questo prodotto:
File Dimensione Formato  
BillioCasarinSartore.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 3.15 MB
Formato Adobe PDF
3.15 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/28401
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact