In this paper we present a new procedure for nonparametric regression in case of spatially dependent data. In particular, we modify the two-step local linear regression of Martins-Filho and Yao (2009) by introducing information on spatial dependence via a nonparametric estimate of the error covariance matrix. The finite sample performance of our proposed procedure is then shown via Monte Carlo simulations for various data generating processes and its practical usage is illustrated through an application to the familiar crime data set for 49 Columbus neighbourhoods.
Nonparametric Regression with Spatially Dependent Data
GEROLIMETTO, Margherita;MAGRINI, Stefano
2009-01-01
Abstract
In this paper we present a new procedure for nonparametric regression in case of spatially dependent data. In particular, we modify the two-step local linear regression of Martins-Filho and Yao (2009) by introducing information on spatial dependence via a nonparametric estimate of the error covariance matrix. The finite sample performance of our proposed procedure is then shown via Monte Carlo simulations for various data generating processes and its practical usage is illustrated through an application to the familiar crime data set for 49 Columbus neighbourhoods.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
WP_DSE_gerolimetto_magrini_20_09.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
310.52 kB
Formato
Adobe PDF
|
310.52 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.