In this paper we present a new procedure for nonparametric regression in case of spatially dependent data. In particular, we modify the two-step local linear regression of Martins-Filho and Yao (2009) by introducing information on spatial dependence via a nonparametric estimate of the error covariance matrix. The finite sample performance of our proposed procedure is then shown via Monte Carlo simulations for various data generating processes and its practical usage is illustrated through an application to the familiar crime data set for 49 Columbus neighbourhoods.

Nonparametric Regression with Spatially Dependent Data

GEROLIMETTO, Margherita;MAGRINI, Stefano
2009-01-01

Abstract

In this paper we present a new procedure for nonparametric regression in case of spatially dependent data. In particular, we modify the two-step local linear regression of Martins-Filho and Yao (2009) by introducing information on spatial dependence via a nonparametric estimate of the error covariance matrix. The finite sample performance of our proposed procedure is then shown via Monte Carlo simulations for various data generating processes and its practical usage is illustrated through an application to the familiar crime data set for 49 Columbus neighbourhoods.
2009
Nonparametric Regression with Spatially Dependent Data
File in questo prodotto:
File Dimensione Formato  
WP_DSE_gerolimetto_magrini_20_09.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 310.52 kB
Formato Adobe PDF
310.52 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/22357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact