In the present work, we explored the possibility of obtaining nanocrystalline powders of lanthanide-doped Y3Al5O12 (YAG, yttrium aluminum garnet) using solution propellant synthesis, a novel technique that has been proven to be capable of producing nanopowders of numerous oxides at relatively low temperatures and in a rapid way. A series of YAG samples containing a number of different trivalent lanthanide ions (Eu, Er, Ho, Tm) was produced. Samples were characterized by X-ray diffraction for phase identification and line broadening analysis, and by electron microscopy (SEM and HRTEM) for morphological and nanostructural investigation. The samples have a polycrystalline porous structure made up of particles in the nanometer range. Crystallites have a high degree of disorder; the ones doped with Eu3+ are characterized by an intense and well-resolved luminescence spectrum in the visible region.

Characterization of nanoporous Lanthanide-doped YAG powders obtained by propellant synthesis

CANTON, Patrizia;POLIZZI, Stefano
2004-01-01

Abstract

In the present work, we explored the possibility of obtaining nanocrystalline powders of lanthanide-doped Y3Al5O12 (YAG, yttrium aluminum garnet) using solution propellant synthesis, a novel technique that has been proven to be capable of producing nanopowders of numerous oxides at relatively low temperatures and in a rapid way. A series of YAG samples containing a number of different trivalent lanthanide ions (Eu, Er, Ho, Tm) was produced. Samples were characterized by X-ray diffraction for phase identification and line broadening analysis, and by electron microscopy (SEM and HRTEM) for morphological and nanostructural investigation. The samples have a polycrystalline porous structure made up of particles in the nanometer range. Crystallites have a high degree of disorder; the ones doped with Eu3+ are characterized by an intense and well-resolved luminescence spectrum in the visible region.
2004
PROGRESS IN ADVANCED MATERIALS AND PROCESSES
File in questo prodotto:
File Dimensione Formato  
YAG.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/12755
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact