The shell middens of Las Bela coast and the Indus delta (Arabian Sea, Pakistan)

The surveys carried out along the coast of Las Bela (Balochistan) and the Indus delta (Sindh), have shown that these two regions were inhabited since the end of the eighth millennium BP. The discovery of shell middens along the shores of Daun Bay and Lake Siranda (Las Bela), have radically changed our view of the prehistory of this territory. The surveys conducted in the Indus delta have revealed that all the rocky outcrops rising from the alluvium are covered with chipped stone artefacts and marine and mangrove shells, which were radiocarbon dated between the seventh and fourth millennium BP, showing that all the outcrops above were islands at least until Hellenistic times. The radiocarbon results obtained from a few shell samples indicate that some of these islands had already been settled at the beginning of the seventh millennium BP, suggesting that seafaring was already practised along the northern Arabian Sea coast at least since the beginning of the Neolithic.

Keywords: Balochistan, Las Bela, Indus delta, shell middens, radiocarbon chronology, seafaring

Introduction
The purpose of this paper is to present the preliminary results of the discoveries made by the Italian Archaeological Mission along the coast of Las Bela (Balochistan), and the Indus delta (Lower Sindh) in 2000–2012. Earlier researches conducted in the 1970s in the same regions by Professor A.R. Khan, led to the recovery of an impressive number of prehistoric sites, many of which were attributed to the Mesolithic (Khan 1979a; Biagi 2003–2004). In one of his papers A.R. Khan reports the presence of shell scatters along the southernmost fringes of the Kirthar range, although never associated with archaeological materials (Khan 1979a: 18).

The surveys
A visit paid to the bay of Daun, some 13 km south of Gadani promontory, in January 2000 led to the discovery of the first shell midden of Las Bela coast. More middens were found in 2004 and 2008 during systematic surveys carried out along the shores of the same bay, and the marine terrace just south of it (Biagi 2004, 2011; Biagi & Franco 2008) (Figs 1, 3/1).

Until then very little was known of the prehistory of Las Bela coast (Khan 1979b), given that most of the researches had been conducted in the territories of the inte-
rior (Stein 1943; Raikes & Dyson 1961; Khan 1964; Raikes 1968; de Cardi 1983; Franke-Voigt 1999). A.R. Khan (1979a: 5) had already reported the presence of prehistoric finds near Kunari Nallah, between Gadani and Phuari headlands, both rich in good-quality flint sources, which were exploited at least since the beginning of the Holocene (Khan 1979a: 12; Naseem, Sheikh & Qadeeruddin 1996–1997: fig. 1; Biagi 2003–2004).

Much worse was our knowledge of the prehistory of Lake Siranda (Las Bela), with the exception of a report written by Aurel Stein regarding his expedition aimed at the definition of the route followed by Alexander the Great across the country of the Oreitai, an ethnic group culturally similar to the Ichthyophagi (Longo 1987: 12). In his paper he describes the place where the Macedonian army probably camped, close to ‘a water not large’, possibly the eastern shore of Lake Siranda (Stein 1943: 214).

Balakot is a large mound settled during the Chalcolithic and Bronze Age (Dales 1974, 1979, 1981), radiocarbon dated, from charcoal, between 3890 ± 100 (HAR-1993) and 5200 ± 135 uncal BP (UCLA-1923A) (Possehl 1988: 171–172; Shaffer 1986: 74). The study of the faunal remains recovered from this settlement showed the presence of many fragments of Terebralia palustris gastropods, suggesting the exploitation of a mangrove environment located close to the site (Meadow 1979: 296).

Scatters of T. palustris shells are reported also by R.E. Snead (1966: 60) from the central-eastern shore of Lake Siranda, at present a seasonal basin surrounded by sand dunes on its western side (Snead 1967; 1969: 33–35; Snead & Frishman 1968). The lake, alimented mainly by summer monsoon rains, also receives water from the Watto and Windar (?) rivers. Many authors consider it a playa remnant of Miani Hor that ‘functioned as a tidal lagoon in the not-too-distant past’ (Snead 1966: 60).

The surveys in the Indus delta started in 2008, following the discovery of an oyster-shell scatter along the southern edge of the Tharro Hills near Gujo (Piggott 1950), radiocarbon dated to 6910 ± 60 uncal BP (GrN-32119) (Biagi & Franco 2008; Biagi 2011: pl. 6) (Fig. 3/3).

The study of the Indus delta is of basic importance for understanding the changes that took place along the northern coast of the Arabian Sea in prehistoric (Flam 1984, 1987) and historic times (Eggermont 1975), and the depositional processes that led to the formation of the present-day Indus alluvial plain (Tremenheere 1867; Haigh 1894; Wilhelmy 1968; Harvey & Schumm 1999; Prins et al. 2000; Giosan et al. 2006).

In his seminal volume on the geology of western Sindh, W.T. Blandford (1880: 154) reports the presence of several rocky outcrops rising from the Indus alluvium, which were all surveyed between 2008 and 2011. Surveys were also carried out on the Makli Hills, where scatters of mangrove shells, sometimes associated with flint artefacts, were recovered and radiocarbon dated (Figs 2, 3/4). The absolute results from the above sites point to the importance of the above-mentioned outcrops for the earliest peopling of the northern Arabian Sea coastal zone (Biagi 2009; 2011: table 1).

Fig. 2.
Makli Hills: site KKT 2 near Kalan Kot (in background) (photograph P. Biagi).

Fig. 3.
Discussion
The discovery of the above-mentioned prehistoric sites raises a number of questions:

1. The presence of shell middens radiocarbon dated to the eighth and seventh millennia BP (Fig. 3 & Table 1). It is well known that the coasts of the Arabian Peninsula and the Persian/Arabian Gulf were first settled between the end of the eighth and the early seventh millennium uncal BP, when the sea level stabilised slightly after the beginning of the Atlantic climatic period (Lambeck 1996; Biagi 2008a; Boivin & Fuller 2009). The above situation can be compared to that evidenced by the discovery of prehistoric sites along the coasts of Lower Sindh and Las Bela. In Lower Sindh the seventh-millennium uncal BP sites located on the rocky outcrops rising from the Indus plain, show that seafaring was already practised along the northern coastline of the Arabian Sea around the beginning of the Neolithic, as the finds from site H3 in Kuwait have also shown for the Persian/Arabian Gulf (Carter 2008). The shell mid-
dens discovered along the shores of Lake Siranda (Figs 3/2, 4 & 5) demonstrate that, at least from the end of the eighth and throughout the seventh and sixth millennium BP, Siranda was a lagoon of the Arabian Sea partly surrounded by mangroves (Biagi, Girod & Nisbet, in press). Together with those recorded around the Bay of Daun, these middens contribute to the understanding of the environmental changes that took place in the region, and the effect of the human impact on the landscape between the Neolithic and the Bronze Age. This pattern can be compared to that already known along the eastern coasts of the Arabian Peninsula, in Oman for instance, and the Persian/Arabian Gulf (Lézine et al. 2002; Berger et al. 2005; Sanlaville & Dalongeville 2005; Charpentier 2008).

2. The scarcity of Neolithic sites all over Pakistan has been discussed recently by Petrie et al. (2010). The discovery of the above-mentioned shell middens shows that Neolithic settlements undoubtedly exist in the area, most probably within one day’s walk from the Arabian Sea coasts of Lower Sindh and Las Bela, and that the present-day picture is mainly due to the absence of accurate surveys aimed at their recovery.

3. The presence of trapezoidal geometrics and lunates from the Daun and Siranda shell middens, obtained from micro-bladelets of Gadani and Balochistan flint (Malkani 2011: 275) (Fig. 6). As regards the trapezes, these tools are typologically different from those already known from the Mesolithic sites of both the Mulri Hills (Karachi) and the Thar Desert of Upper Sindh (Biagi 2003–2004; Biagi 2008b), and also the aceramic Neolithic layers of Mehrgarh (Lechevallier 2003; Costantini 2007–2008; Jarrige 2007–2008), which closely resemble Central Asian horned types (Brunet 2012: 320).

These are just a few of the problems raised by the recent discoveries made along the northern coast of the Arabian Sea, a territory of fundamental importance for the understanding of the prehistoric peopling of this part of the Indian Subcontinent and its neighbouring regions.

Acknowledgements

The author is very grateful to Professors M.K. Badini and A.H. Bouk (Department of Computer Science, Quetta University), Mr Atta M. Talpur and Mr Ahmed F. Talpur (Mirpur Khas), Dr M. Spataro (British Museum, London), Professor R. Nisbet and Dr C. Franco (Ca’ Foscari University, Venice), Mr A. Girod (Italian Malacological Society) who took part in the Pakistan coastal surveys and Mr T. Fantuzzi (Ca’ Foscari University, Venice) for the calibration of the radiocarbon dates. Thanks are also due to the Italian Ministry of Foreign Affairs (Rome), the CeVeSCO (Ca’ Foscari University, Venice), the Ca’ Foscari University Archaeology Research Fund (Venice) and the EURAL Gnutti (Rovato, Brescia) for sponsoring the Las Bela research project currently underway.
References

