2
3

MySQL extension automatic porting to PDO
for PHP migration and security improvement
Fabio Mondin and Agostino Cortesi
DAIS - Università Ca’ Foscari, Venezia, Italy
fabiomondin08@gmail.com, cortesi@unive.it
Abstract. In software management, the upgrade of programming languages may introduce critical issues. This is the case of PHP, the fifth version of which is going towards the end of the support. The new release improves on different aspects, but removes the old deprecated MySQL extensions, and supports only the newer library of functions for the connection to the databases. The software systems already in place need to be renewed to be compliant with respect to the new language version. The conversion of the source code, to be safe against injection attacks, should involve also the transformation of the query code. The purpose of this work is the design of specific tool that automatically applies the required transformation yielding to a precise and efficient conversion procedure. The tool has been applied to different projects to provide evidence of its effectiveness.

Keywords: Static Analysis, Code conversion, PHP, deprecated MySQL.
1 Introduction
1.1 Aim of the work
Every framework, library or language for application development is constantly updated in order to take full advantage of new features but also to fix some vulnerabilities. A software system, in order to satisfy the basic protection rules and keep safe, has to be always updated to the latest version of the components from which it depends. However sometimes the old version of a component is not directly adaptable to the new one, and it requires the modification of the instructions of the source code or even of its structure.

This paper focuses on the PHP language. The old stable PHP release is the 5.6 that is going towards the end of the support, while the current supported version is version 7. The new version introduces many new features and improvements, but on the other side it brings some incompatibilities with the old source code. In particular, it removes many functionalities that were just deprecated in the previous version. Among these, one of most significant change is the removal of the MySQL extensions. This set of functions allows to access the functionality provided by MySQL that are fundamental for the interaction with the database [16,17,18].
It is important to notice that many software systems written in PHP, while interacting with the MySQL database component, make use heavily of this set of instructions.
This work focuses on the transformation of the MySQL extension to the more recent PHP Data Objects (PDO), avoiding to treat all the other changes related with the new PHP version. PDO are chosen against MySQLi because they are an abstraction layer for accessing different databases providing a lightweight and consistent common interface. We address only this specific aspect because it is the more relevant from a security perspective. In fact, differently from the old MySQL functions, the PDO class supports the prepared statement, that is the method considered more secure against the possibility of injection attacks. This technique to be effective requires that the code of the query executed for the access to the database is corrected accordingly [1,4,7,11]. Consequently, the project to achieve reliable results has to take into account this aspect too.
The system developed for the transformation has to take as input many files simultaneously and apply the conversion to each of them. It has to be sufficiently general to solve all the conversion problems, and at the same time to modify only the proper functions, without the alteration of the ones that don’t need to be modified. It has to be capable to treat all the possible directives that have to be altered, according to the distinct models and styles of source code taken as input.
1.2
Methodology
First of all, to convert the input source code it is essential to follow a source to source type of transformation technique. This kind of translation takes as input a source code written in a given programming language that is analysed and then modified to obtain a new source code written in a language with the same level of abstraction, in this case exactly with the same PHP language. In particular, the changes made should not alter the external behavior of the software: the results obtained from the execution of the old and the new scripts should be exactly the same [8].
To perform a precise conversion, a preliminary analysis phase is needed that scans the entire code to look for the parts that have to be treated. All the old MySQL functions, which must be replaced, have as parameter the variable for the connection to the database. All of them, in order to interact with the database, have to know its specification and then must get it as parameter. As a result, the first analysis search for this variable initialization to obtain the source of this information. Then, in order to find all the MySQL functions to be converted, a data flow analysis is performed [4]. This can be compared to the taint analysis methods [2] to mark all the variable that derive from a source one. This way, the search gets exactly the only interesting instructions that have to be modified, by removing any possibilities of mistakes. In the case this approach does not discover any variable, a normal scan of the entire source code is executed to search among all the instructions the only ones that have to be changed.

We design proper rules for each single transformation. So, it is possible to handle program written in different styles and to obtain the more advantageous substitution to integrate with the other settings.
1.3
Results

The resulting tool comprises a set of algorithms that analyze, find and transform all the instructions belonging to the old MySQL library to the currently supported PDO. Moreover, the MySQL query code is translated to be suitable to be executed with the prepared statement of the PDO methods. So, the code once processed will treat all the user inputs as parameters avoiding every injection hazards.

The transformation structure is based on an algorithm that reads a set of rules taken as input, process and then executes them. These rules contain the pattern of the old function to be searched inside the code and the corresponding replacement instruction. Each rule is related to a single type of conversion, that is an individual pattern to be found. The conversion algorithm looks for the pattern of the rules in correspondence of the lines of code found by the previous phase of data flow analysis.
After the first conversion phase dedicated to the MySQL functions, a second automatic conversion is performed, specific this time for the MySQL code. This starts from a particular MySQL instruction, the “mysql_query”, it gets the variable containing the query string, and then it searches all the line of code that deal with this string, with a backwards data flow analysis technique. Each input is replaced by a place-holder within the query code, while its value is saved in a ad-hoc array for the parameters. Finally, the array is passed to the new proper function for the binding of all the values.

The tool interface allows users to select one or more files in input and possibly to modify the list of selected files. It presents a basic list of rules for the most common case of functions to be changed that can be further improved, by adding new rules, or by modifying them.
1.4
Structure of the paper

The paper is structured as follows. Section 2 discusses related work. Section 3 introduces the conversion of deprecated MySQL statements. In Section 4 and Section 5 the conversion rules and the transformation methods are presented, respectively. The experimental results on the application of the conversion procedure are discussed in Section 6. Section 7 concludes.

2 Related Work
Many automatic source code transformers have been developed, focusing on performance improvement, on the automatic migration of deprecated or no more supported code to the corresponding newer version. From trivial scripts to improve small aspects of a particular source code to complete converter tool from a particular language to a completely different one, or even to expert systems that are able to generically manipulate different computer languages.
Among the other, we may refer to PIPS [19,20], an open and extensible source-to-source compilation framework that automatically analyze and transform programs written in C and Fortran programming languages; the C2CUDATransaltor [14], a source-to-source compiler with the purpose of transforming an application in C language to an equivalent one in CUDA C, a toolkit that is integrated in the C language and that is needed to use the NVIDIA GPU; the error fixing tool proposed by Khmelevsky et al [6], a source-to-source transformation tool developed for C and C++ for the mistake detection and the subsequent fixing; Spoon [9], a meta-analysis tool to analyze, rewrite and transform any program written in Java; Rose [22], an open source software for developing tool with the task of automatically analyse, debug and optimize the source code in C, C++, Fortran, Java, Python and PHP; Grumpy [15], a source code transcompiler for translating code from Python to Go.
Focussing on the PHP language, the main reference is the MySQLConverterTool [13]. The intent of this small tool is to convert the old deprecated MySQL extension to the corresponding MySQLi functions, that is the current supported extensions. It is written in PHP, so it is usable as a web server. It can transform any PHP file although it has some limitation such as the problem of finding an equivalent to mysql_result that does not exist in MySQLi. This tool has limited applications because it supports only MySQLi extension and it does not have any functionality for the transformation to the PDO class neither it has any method for the translation of the MySQL code called in order to be really protected against injection.

A similar application with the same aim is YAK Pro – mysql to mysqli converter [24]. This is another free and open source tool to transform the PHP scripts from the abandoned MySQL functions to the similar procedural version of the current MySQLi extension. It is written in PHP too, and it is based upon the PHP-Parser to parse the PHP files given in input for the initial static analysis. However, like MySQLConverterTool, this tool has many limitations on the supported.
Finally, the PHP 5.4 Short Array Syntax Converter [19] is designed only for a specific and limited type of code manipulation. It builds a PHP command line script that is able to convert or revert the input PHP scripts from the old array syntax to the current short array syntax. It transforms the array objects instantiated with the syntax “array()” to the new short syntax presented from the PHP version 5.4 that let an array to be instantiated simply with the characters “[]”. Hence this translation can help to simplify and make more clear the source code of the PHP scripts.
The projects above that try to achieve the transformation in question, or an analogous one like MySQL Converter Tool and YAK Pro, are able to convert in a basic way the MySQL functions, but they do not even take into account the adjustment of the MySQL code. So, even if the new code will be executed throw the secure PDO technique, or the MySQLi for the mentioned application, the input will not be prevented from the injection, because they do not entrust on the prepared statement.
3 Deprecated MySQL Conversion
The conversion method is defined in different components. The first one that treat only the replacement of the MySQL functions and a second one that is suited exclusively for the MySQL code that executes an operation inside the database. It is chosen to keep them separate because they imply two completely different procedures of dealing with the code, even if one relies on the other. The two are strictly related and cannot be accomplished separately. So the first, that treats the MySQL functions, once concluded, directly calls the second, so that it is not possible the completion of only one of the two. The two approaches are dissimilar because they have to achieve a different purpose. The first has to be more universal possible to fit to the different situations, because the different inputs can employ the MySQL functions in different way. While the MySQL code is more standard and has a precise predefined form that implies a rigorous structure. In addition, its processing has only to identify the user input and mechanically substitute them. Consequently, the two procedures have been designed in different ways. The first that takes in input the subject of its job in the form of rules for each element to be altered, while the second that is simply codified to search and replace a defined class of instructions. In any case they are implemented in different components to make the system more structured and ordered.
[image: image1.jpg]g
ConversionRule ¥
Class
- L
ListViewFilesElement ¥
i N
il ConversionRulesManager
Q Class
~ \
MainWindow v
F N cl
CodeAnalyzer v =
Class

PhpSourceCode ¥
Class

@ p
FromDbConnCodeConverter ¥ StandardCodeConverter
Class Class
 CodeConverter + CodeConverter

QueryVariableElement
Class

QueryCodeConverter
Class

Fig.1: Tool Architecture
The diagram depicted in Fig.1 represents the different components of the conversion tool. The structure is based on the Model-View-ViewModel pattern to provide a clear separation between the user interface with its controls and the remaining logic of the software. The class MainWindow contains all the methods that handle the events occurred inside the user interface and then shows the results of the computation on it. The view component, that is the graphic interface, is symbolized throw the small white spot linked to the MainWindow class. The CodeAnalyzer is the first object instantiated to execute the basic analysis of the code for obtaining the instruction for the connection to the database. As other components, it employs the methods of the PhpSourceCode object to realize its functionalities. This is an entity to implement all the common utilities to deal with the PHP source code that are used as basic action by the other operations. The conversion phase is stated by distinct classes. The basic services are gathered in the CodeConverter abstract class, while the complete task is achieved by one of two concrete class that realizes it in the two different ways. FromBdConnCodeConverter is the normal and more accurate option, that performs the process starting from the value obtained by the analysis phase. The StandardCodeConverter is executed only if the database connection field is empty. Both cases receive the rules declared by the user and elaborated through the ConversionRuleManager object. The latter has the role of computing the pattern and the regular expression used to identify the code to be replaced for each rule. In this way, the effort is done only once at first improving also the efficiency. After the substitution of the MySQL functions, the converter performs the replacement of the inputs within the MySQL code through the execution of a specific module. The QueryCodeConverter class implements this process separately from the rest of the procedure because it is achieved in a distinct manner. Finally, the class QueryVariableElement, ConversionRule and ListViewElement are the objects for the relative concrete items, without any specific method, used for representing the corresponding basic elements.

4 Conversion Rules
The analysis of various PHP source code that resolve different problems allowed to gather the main relevant instructions that have to be replaced. They have been partitioned and organized to obtain clear distinct transformation rules.
Rule 1: database connection

Source function: mysql_connect

PDO equivalent: new PDO (PDO object constructor)

Wrapper function: new DatabasePDOConnection

The function that opens a connection to a MySQL server database, with the corresponding parameters passed, is replaced by the creation of an instance of the object PDO. The corresponding custom directive created is an object that handles the creation of the connection to the database and the error reporting.
Rule 2: query execution

Source function: mysql_query

PDO equivalent: prepare, bindParam, execute

Wrapper function: execQuery
The function that send a MySQL query to the connected database through the link identifier is replaced by the three PDO methods that prepare the query to be executed, add the parameters to the query, according to the prepared statement technique, and finally execute the request set. The wrapper function executes all the three methods, automatically binding the input of the query passed as parameter, including a proper error handling.

Rule 3: results fetch as associative array

Source function: mysql_fetch_assoc

PDO equivalent: fetch(PDO::FETCH_ASSOC)

Wrapper function: fetchAssocQuery
The instruction that fetches the next row of results in the form of an associative array is replaced by the method that fetches the next row from a result set in the same way. The custom function is a wrapper that executes one of the two instructions based on the type of the query result parameter passed.

Rule 4: results fetch as associative and numeric array

Source function: mysql_fetch_array

PDO equivalent: fetch(PDO::FETCH_BOTH)

Wrapper function: fetchArrayQuery

The deprecated function that returns the next row of results as both an associative and a numeric array is substituted by the equivalent PDO method or wrapper function that returns the same results in the same manner.

Rule 5: results fetch as enumerated array

Source function: mysql_fetch_row

PDO equivalent: fetch(PDO::FETCH_NUM)

Wrapper function: fetchRowQuery
As the previous rule, the old MySQL instruction is replaced by the corresponding method or wrapper all, which returns the results of a query as an array indexed only by numbers.
Rule 6: number of row changed

Source function: mysql_affected_rows

PDO equivalent: rowCount

Wrapper function: affectedRowsQuery

The function that counts the number of rows affected by a previous MySQL operation is replaced by the method that obtains the same result for the last statement executed by the object from which it is called, or by the custom function with the same instructions.

Rule 7: id of the last row generated

Source function: mysql_insert_id

PDO equivalent: lastInsertId

Wrapper function: lastInsertIdQuery

The source function retrieves the identifier automatically generated, in a field with the properties of auto-increment, by the previous query of insert type. The equivalent PDO returns either the ID of the last row inserted or the last value from a sequence object according to the driver on which it is based. So, they can be considered interchangeable for the same underlying database. The wrapper function executes one of the two solutions depending on the type of database link which is passed.

Rule 8: special characters escape

Source function: mysql_real_escape_string

PDO equivalent: quote

Wrapper function: -

This source function makes the escape of the special characters in a query string. The quote method quotes around the input string but also it escapes special characters. No wrapper function is developed to replace the original instruction because with the prepared statements the escapes of special characters is unnecessary or even useless. So, this function is simply removed without any substitution.

Rule 9: error reporting

Source function: mysql_error / mysql_errno

PDO equivalent: errorInfo

Wrapper function: -

The functions that return the text or the numerical value of the error message from the preceding operation can be replaced by the PDO method that performs the similar task. It is completely removed by the custom function because the error reporting is already accomplished by the other wrapper functions.
5 Transformation Methods
The transformation of the MySQL query code is quite standard and it does not need to be taken as input. Its adjustment is in fact independent on the different applications because its syntax is not altered and only the input components are substituted. So, in this case it is not necessary to formulate the conversion as a set of rules: it is enough to state which method has to be applied. These procedures are then directly implemented throw the tool code, without the need to create a parametrized structure with the rules as input..
Method 1: base case, standard input

Pseudocode pattern:

$queryString .= "AND fieldName operator ' " . $input . " ' ";

Replacement:

$queryString .= "AND fieldName operator :" . ++$placeholder. " ";

$bindParamsArray[":$placeholder"] = $input;
The basic case of input by the user is the direct concatenation of the variable containing the input to the query code. Originally this input is escaped throw the function "mysql_real_escape_string" or even it is simply copied. The transformation inserts the value of a placeholder in place of the old input inside the query and it saves the real input value in the specific array at the position indexed by the placeholder. The function that executes the query binds this value to its position before the actual execution.

Method 2: fixed operator

Pseudocode pattern:

$queryString .= "AND fieldName >= ' " . $input . " ' ";

Replacement:

$queryString .= "AND fieldName >= :" . ++$placeholder. " ";

$bindParamsArray[":$placeholder"] = $input;

If the query contains a settled operator, such as a mathematical operator, the transformation is applied exactly as in the previous method. The input is replaced by a placeholder and saved in the common array.

Method 3: query without input

Pseudocode pattern:

$queryString .= "AND fieldName IS NULL / NOT NULL";

Replacement:

$queryString .= "AND fieldName IS NULL / NOT NULL";

For some MySQL operator it is not expected any parameter as input. For these cases it is not necessary any input substitution, so the transformation does not alter the original code that remains unchanged.
Method 4: IN keyword

Pseudocode pattern:

$queryString .= "AND fieldName IN (". $input .") ";

Replacement:

$InValues = explode(",", $input);

 $INElem = '';

 for($i=0; $i<count($InValues); $i++){

 $INElem.=":".++$placeholder.",";

 $bindParamsArray [":$placeholder"] = $InValues[$i];

 }

 $queryString .= "AND fieldName IN (". substr($INElem, 0, -1) .")";

The input relative to the MySQL keyword IN is completely rewritten always to substitute the inputs with placeholders. In this case the different input values are separated by a comma, so firstly they are divided in single input values. Then each one is replaced by the placeholder while its value is saved on the parameters array. Finally, the original string is corrected with the string of the placeholders.

Method 5: BETWEEN keyword

Pseudocode pattern:

$queryString .= "AND fieldName BETWEEN '". $inputFrom ."' AND '". $inputTo ."' ";

Replacement:

$queryString .= "AND fieldName BETWEEN :".++$placeholder." AND :".++$placeholder." ";

$bindParamsArray[":$placeholder-1"] = $inputFrom;

$bindParamsArray[":$placeholder"] = $inputTo;

The BETWEEN keyword expects two different inputs, the first for the start and the second for the end of the range that it selected. They are consequently substituted by two placeholders that are used as index for the array of inputs to bind. In particular, the first placeholder value is corrected to index the first of the two inputs.

The placeholder of the various methods is simply an integer variable that is incremented for each input. In this way every input has a different placeholder value, that is also the index of the array where the actual values of the inputs are saved.
6 Experimental Evaluation
We applied the conversion tool (whose interface is depicted in Fig.2) on a complex management system. This is made of many PHP scripts that manage the entire production process of a medium-size company. It allows to generate different kind of documents like invoices and reports. Its structure is based on different modules, that represent the activities executed by the corresponding production phases. Each one is mainly structured in three different files. The first one contains the graphical interface, the second one contains all the operations on data, and the last implements the basic functionalities.
The GUI files are about 150 different scripts. The number of the operation files is the same, as each of them is related to the corresponding interface module. The class files are about 200. The management system is made of more than 500 files, considering only the ones containing the PHP code. The code of every unit is produced through a framework that automatically creates the basic structure of the reports and the elementary operations, facilitating the development process. All the fundamental programs generated are widely customized, to adapt the product to the existing needs. All the transformation rules introduced in Section 4 have been proven effective while applied to this system, yielding to an almost complete transformation of all the functions.
The analysis phase of all the 500 files needed about half a second, while the conversion of the entire code, performed through the database link based conversion process, takes about 20 seconds.

[image: image2.png]T MySQLtoPDO converter

Only PHP fies

File name. Database connection
Contracts | mysal connect{Sdbhost, Sdbuser, Sdbpass):

Documents [mysaql_connect(§dbhost, Sdbuser, Sdbpass):

Orders ysql_connect(§dbhost, Sabuser, Sdbpass)
Products [mysql_connect(§dbhost, Sdbuser, Sdbpass)

Users ysql_connect(§dbhost, Sabuser, Sdbpass)

Analyze files

Conversion rules

Source function Replacement function
[mysal_connect(SserverS, Suser |new DatabasePDOConnection|
[mysal_query(Squery$, SdbCon |execQuery(Squerys, SdbConn§
[mysal_query(Squery$, SdbCon |execQuery(Squerys, SdbConn§
[mysal_query(Squery$, SdbCon |execQuery(Squerys, SdbConn§
[mysql_fetch_assoc(Sparam1$) | [fetchAssocQuery(Sparam1$) |
[mysql fetch_array(Sparam13) | [fetchArrayQuery(Sparam1s) |
[mysal_fetch_row(Sparam1S) | |fetchRowQuery({Sparam15) |
[mysal_affected_rows(SdbConn| affectedRowsQuery(SdbConn§|
[mysal_insert_id(SdbConns) | lastinsertidQuery(SdbConns) |

[mysal_real_escape_string($strif |Sstring$]
[mysql_error(SdbConns)] []
[mysal_ermof(SdbConns) | |]

[Wowtp [Wowbow | Ad | remowe

reate new file

Fig.2: Tool Interface
When considering the impact of the code transformation on the execution, it results that that there is no significant difference between the old version and the new one both for the execution time and for the memory space usage.
7 Conclusions
The system presented in this paper covers most of the relevant issues in the migration to PHP 7. Unfortunately, there are a few scenarios where the conversion procedure is not able to provide a complete and accurate transformation. This is the case when there are two or more inputs inside the same portion of query code. If the instruction that produces a part of the query string concatenates the MySQL code to more than one variable, the transformation algorithm is able to substitute only the first one of them. Another problem that remains to be solved is related to the conversion rule defined for the mysql_affected_rows function: the original MySQL instruction takes as parameter the database link while the corresponding replacement method of the PDO class takes as parameter the variable that stores the result of the query execution. These open issues are currently under investigation to fully automatize the conversion process, providing an interesting workbench for applying static analysis techniques for security enforcement [3,10,12].
References
[1]
S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A.M. Paradkar, M.D. Ernst. Finding Bugs in Web Applications Using Dynamic Test Generation and Explicit-State Model Checking. IEEE Trans. Software Eng. 36(4): 474-494 (2010)

[2]
J.A. Clause, Wanchun Li, A. Orso. Dytan: a generic dynamic taint analysis framework. ISSTA 2007: 196-206

[3]
G. Costantini, P. Ferrara, A. Cortesi: Static Analysis of String Values. ICFEM 2011: 505-521

[4]
D. Hauzar, Jan Kofron. Framework for Static Analysis of PHP Applications. ECOOP 2015: 689-711

[5]
Z. Hemel, D.M. Groenewegen, L.C.L. Kats, E. Visser. Static consistency checking of web applications with WebDSL. J. Symb. Comput. 46(2): 150-182 (2011)

[6]
Y. Khmelevsky, M. Rinard, S. Sidiroglou-Douskos, A Source-to-Source Transformation Tool for Error Fixing, 2013.
[7]
A. Kiezun, P. J. Guo, K. Jayaraman, M. D. Ernst: Automatic creation of SQL Injection and cross-site scripting attacks. ICSE 2009: 199-209.

[8]
D.B. Loveman. Program Improvement by Source-to-Source Transformation. J. ACM 24(1): 121-145 (1977)

[9]
R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, L. Seinturier, Spoon: A Library for Implementing Analyses and Transformations of Java Source Code. Software: Practice and Experience, Wiley, 2015, 46, pp.1155-1179.
[10]
I. Pollet, B. Le Charlier, A. Cortesi: Distinctness and Sharing Domains for Static Analysis of Java Programs. ECOOP 2001: 77-98
[11]
G. Wassermann, Z. Su. Sound and precise analysis of web applications for injection vulnerabilities. PLDI 2007: 32-41.

[12]
M. Zanioli, P. Ferrara, A. Cortesi: SAILS: static analysis of information leakage with sample. ACM SAC 2012: 1308-1313

[13]
A MySQL Converter Tool, https://github.com/philip/MySQLConverterTool

[14]
C2CUDATranslator, https://github.com/prem30488/C2CUDATranslator.

[15]
Grumpy: Go running Python, https://github.com/google/grumpy.
[16]
Migrating from PHP 5.6.x to PHP 7.0.x, http://php.net/manual/en/migration70.php.

[17]
PHP Backward incompatible changes http://php.net/manual/en/migration70.incom-patible.php.
[18]
PHP Supported Versions, http://php.net/supported-versions.php.

[19]
PHP 5.4 Short Array Syntax Converter, https://github.com/thomasbachem/php-short-array-syntax-converter.

[20]
PIPS: Automatic Parallelizer and Code Transformation Framework, https://pips4u.org.
[21]
The PIPS Workbench Project, http://www.cri.ensmp.fr/PIPS/home.html.

[22]
ROSE compiler infrastructure, http://rosecompiler.org.

[23]
XTRAN, LLC, http://www.xtran-llc.com/xtran.html.

[24]
YAK Pro - mysql to mysqli converter, http://mysql-to-mysqli.yakpro.com/
