Computational investigations on the unexpected extrusion of molecular iodine in Pd(II) σ-butadienyl complexes.

Thomas Scattolin¹, Fabiano Visentin³, Luciano Canovese³ and Claudio Santo³

¹Dipartimento di Scienze Molecolari e Nanosistemi, Universita’ Ca’ Foscari, Venezia
e-mail: thomas.scattolin@unive.it

We have experimentally and theoretically studied the stoichiometric addition of halogens or interhalogens to σ-butadienyl Pd(II) complexes bearing thioquinolines as spectator ligands.¹ The observed reactions do not involve the expected elimination of the butadienyl fragment² but rather the unpredictable extrusion of molecular iodine (Schemes 1-2).¹

![Scheme 1](image1)

![Scheme 2](image2)

We have explained this peculiar reactivity with a mechanistic hypothesis (Scheme 3) involving Pd(IV) intermediates (to save computer time, the COOMe was substituted with CN group).¹ In the case of the reaction between complex 1a and IBr, it is apparent from the computational output (Scheme 4) that I₂ and complex 1b represent the favored reaction products from both kinetic and thermodynamic points of view (the energy values are expressed as ΔG° at 298K).

![Scheme 3](image3)

![Scheme 4](image4)

The geometrical optimization of the complexes was carried out using the hyper-GGA functional MO6³ in combination with the LAN2TZ(f)⁴ basis set for the Pd atoms, the LANL2DZdp basis set⁵ for the halogen atoms and the 6-31G(d,p) basis set for the other elements. Solvent effects (dichloromethane, ε = 8.93) were included using CPCM⁶. The thermodynamic parameters were obtained by means of the stationary points characterized by IR simulation.

References