L. Cattelan, M. Noè, M. Selva, N. Demitri, A. Perosa*

Methyltriphenylphosphonium Methylcarbonate, an All-In-One Wittig Vinylation Reagent

The Inside Back Cover picture shows the concept of a simplified vinylation protocol. A new all-in-one Wittig reagent was developed. Mixed with an aldehyde or a ketone, this phosphonium salt yields the corresponding vinyl derivatives very efficiently simply upon heating in a solvent (no base, no halides, and no inorganic byproducts). Deuterium exchange experiments allowed the synthesis of deuterated olefins and, coupled to XRD studies, explanation of the nature and reactivity of this reagent. Simple green metrics indicate that this phosphonium salt is more efficient for vinylation than existing reagents. More details can be found in the Communication by Cattelan et al. (DOI: 10.1002/cssc.201500935).
The methyltriphenylphosphonium methylcarbonate salt [Ph₃PCH₂][CH₂OCO₂], obtained directly by quaternarization of triphenylphosphine with dimethylcarbonate, is a latent ylide that promotes Wittig vinylation of aldehydes and ketones. Alkenes are obtained simply by mixing [Ph₃PCH₂][CH₂OCO₂] and the carbonyl and heating in a solvent (no base, no halides, and no inorganic byproducts). Deuteration exchange experiments and the particularly short anion-cation distance measured by XRD in [Ph₃PCH₂][CH₂OCO₂] allowed to explain the nature and reactivity of this species. Green chemistry metrics (atom economy, mass index, environmental factor) indicate that this vinylation procedure is more efficient than comparable ones. Deuterated [Ph₃PCD₂][CH₂OCO₂] promoted the synthesis of deuterated olefins.

While its mechanism is still an open topic, the Wittig reaction is widely applied in both the academic and industrial sectors for the olefination of carbonyl substrates, including formaldehyde, aldehydes, and ketones. Even so, the Wittig reaction suffers from a number of shortcomings, summarized in Figure 1.

In particular, a primary issue is the reaction’s low atom economy (AE), due to the unavoidable formation of phosphate oxide. A catalytic alternative, based on in situ reduction of the phosphate oxide with a silane, still suffers from the coproduction of stoichiometric amounts of waste, although lifecycle analysis (LCA) of the process seem to indicate that it is more efficient than traditional procedures. A second issue is related to the need for organic solvents; this has met with only partial solutions through the use of water; biphasic systems, ionic liquids, and solvent-free conditions. The third drawback of the Wittig reaction is the need for alkyl halides in the preparation of the phosphonium, along with the necessity of an external base to generate the ylide. This leads to stoichiometric amounts of halide salts that require separation and disposal. To the best of our knowledge, there are no reports on halide- and base-free Wittig reactions. Likewise, other direct procedures to convert a carbonyl into an ethylene moiety involve complex and expensive reagents such as Tebbe’s complex, which is water- and air-sensitive.

We have previously established the halide-free synthesis of phosphonium and ammonium ionic liquids using dimethylcarbonate (CH₂OCO₂CH₃, DMC) as a green methylating agent. The resulting compounds have the structure [R₂P(CH₃)₂] (Q = N, P) and behave as very efficient basic organocatalysts. This catalytic behavior was explained by a cooperative double activation mechanism of the substrate.

Considering the structures of these methyl-phosphonium compounds from a different perspective (Scheme 1, left box), suggests that they incorporate both the basic and phosphonium moieties indispensable for the preparation of phosphorus ylides. We therefore imagined that the methylcarbonate anion might be able to generate the ylide in situ, as shown in Scheme 1, and thus give access to a new Wittig vinylation protocol.

Because methyltriphenylphosphonium is one of the most commonly reported Wittig ylide precursors, we started by developing its synthesis by methylation of triphenylphosphine (TTP) with DMC as a generalization of our previous results with trialkylphosphines (Scheme 2). Optimization of the reaction

Methyltriphenylphosphonium Methylcarbonate, an All-In-One Wittig Vinylation Reagent

Lisa Cattelan, Marco Noè, Maurizio Selva, Nicola Demitri, and Alvise Perosa

The methyltriphenylphosphonium methylcarbonate salt [Ph₃PCH₂][CH₂OCO₂], obtained directly by quaternarization of triphenylphosphine with dimethylcarbonate, is a latent ylide that promotes Wittig vinylation of aldehydes and ketones. Alkenes are obtained simply by mixing [Ph₃PCH₂][CH₂OCO₂] and the carbonyl and heating in a solvent (no base, no halides, and no inorganic byproducts). Deuteration exchange experiments and the particularly short anion-cation distance measured by XRD in [Ph₃PCH₂][CH₂OCO₂] allowed to explain the nature and reactivity of this species. Green chemistry metrics (atom economy, mass index, environmental factor) indicate that this vinylation procedure is more efficient than comparable ones. Deuterated [Ph₃PCD₂][CH₂OCO₂] promoted the synthesis of deuterated olefins.

While its mechanism is still an open topic, the Wittig reaction is widely applied in both the academic and industrial sectors for the olefination of carbonyl substrates, including formaldehyde, aldehydes, and ketones. Even so, the Wittig reaction suffers from a number of shortcomings, summarized in Figure 1.

In particular, a primary issue is the reaction’s low atom economy (AE), due to the unavoidable formation of phosphate oxide. A catalytic alternative, based on in situ reduction of the phosphate oxide with a silane, still suffers from the coproduction of stoichiometric amounts of waste, although lifecycle analysis (LCA) of the process seem to indicate that it is more efficient than traditional procedures. A second issue is related to the need for organic solvents; this has met with only partial solutions through the use of water; biphasic systems, ionic liquids, and solvent-free conditions. The third drawback of the Wittig reaction is the need for alkyl halides in the preparation of the phosphonium, along with the necessity of an external base to generate the ylide. This leads to stoichiometric amounts of halide salts that require separation and disposal. To the best of our knowledge, there are no reports on halide- and base-free Wittig reactions. Likewise, other direct procedures to convert a carbonyl into an ethylene moiety involve complex and expensive reagents such as Tebbe’s complex, which is water- and air-sensitive.

We have previously established the halide-free synthesis of phosphonium and ammonium ionic liquids using dimethylcarbonate (CH₂OCO₂CH₃, DMC) as a green methylating agent. The resulting compounds have the structure [R₂P(CH₃)₂] (Q = N, P) and behave as very efficient basic organocatalysts. This catalytic behavior was explained by a cooperative double activation mechanism of the substrate.

Considering the structures of these methyl-phosphonium compounds from a different perspective (Scheme 1, left box), suggests that they incorporate both the basic and phosphonium moieties indispensable for the preparation of phosphorus ylides. We therefore imagined that the methylcarbonate anion might be able to generate the ylide in situ, as shown in Scheme 1, and thus give access to a new Wittig vinylation protocol.

Because methyltriphenylphosphonium is one of the most commonly reported Wittig ylide precursors, we started by developing its synthesis by methylation of triphenylphosphine (TTP) with DMC as a generalization of our previous results with trialkylphosphines (Scheme 2). Optimization of the reaction

Scheme 1. Phosphonium–ylide equilibrium.

![Scheme 1. Phosphonium–ylide equilibrium.](image-url)
conditions by 1H NMR monitoring (TPP: 89.6 mmol, DMC: 617 mmol, CH\textsubscript{3}OH: 52 mL, N\textsubscript{2} atmosphere, 140 °C for 24 h) led to an 89% yield of 1 as a white powder. Recrystallization yielded 1 suitable for crystal structure determination by X-ray diffraction (XRD) (Figure 2).

The crystal structure of 1 (Figure 2) highlighted a short distance between the methyl carbonate oxygen and the P-CH\textsubscript{3} methyl group (3.174 Å at 100 K), suggesting significant hydrogen-bonding in the solid state.[21] Comparison with the distances between the P-CH\textsubscript{3} methyl group and the anion in other \{Ph\textsubscript{3}PCH\textsubscript{3}\}[X] salts (Supporting Information, Table S1 and references therein) further supports this peculiar proximity. This offers strong evidence for the possibility of “counterion mediated” deprotonation, as hypothesized in Scheme 1, and therefore in favor of the existence of a latent ylide able to promote Wittig olefination.

1H NMR analysis of 1 provided additional evidence of the latent ylide intermediate postulated in Scheme 1. Specifically, 1H NMR of 1 in the resonance region of the P-CH\textsubscript{3} protons (3.29–3.39 ppm) collected in [D\textsubscript{6}]DMSO showed a doublet (\textit{J} = 14.79 Hz) as expected, due to coupling of the methyl protons with 31P (Supporting Information, Figure S7). Instead, the same spectral region collected in CDCl\textsubscript{3} as solvent showed a time-dependent disappearance of the P-CH\textsubscript{3} protons signal (Figure 3). This disappearance is attributed to hydrogen–deuterium exchange between the P-CH\textsubscript{3} protons (pK\textsubscript{a} > 20) in 1 and deuterium in CDCl\textsubscript{3} (pK\textsubscript{a} = 25), in analogy to other studies[22] and with the methyl carbonate anion acting as the base.[23]

H/D exchange was further supported by treating the phosphonium 1 with a 15-fold molar excess of CDCl\textsubscript{3} that yielded quantitatively (1.34 g) the deuterated analog \{Ph\textsubscript{3}PCH\textsubscript{3}\} [CH\textsubscript{3}OCO\textsubscript{2}] \textsubscript{1-d\textsubscript{3}}. The equilibrium postulated in Scheme 1 triggers complete H/D exchange by successive steps (Scheme 3), in analogy to what was previously described for hindered phosphoranes.[22, 24] Others have explained a similar carbonate-induced deprotonation of a phosphonium by invoking a preceding decarboxylation of the alkyl carbonate.[28] In our opinion, the available data points towards deprotonation occurring first. In the reverse process, 1-d\textsubscript{3} was dissolved in CHCl\textsubscript{3} to yield 1 back again.

Next, benzaldehyde 2a was chosen as the model carbonyl substrate to test the Wittig olefination with 1.[25] Prescreening of different solvents (Supporting Information, Figure S3) indicated that in biobased 2Me-THF[26] the reaction was extremely effective both in terms of conversion and selectivity, notwithstanding that 1 is only sparingly soluble in all the tested solvents. By simply mixing 1 and 2a at the reflux temperature of 2Me-THF (80 °C), total conversion of benzaldehyde 2a to yield styrene was observed after 20 min, with 100% selectivity (Scheme 4).

The scope of this procedure was extended by reacting a series of aldehydes (4-nitro-benzaldehyde, 2b; 4-chloro-benzaldehyde, 2c; 4-methoxy-benzaldehyde, 2d; piperonal, 2e; furfural 2f, 1-decanal 2g; 3-phenylbutanal 2h) with 1 in 2Me-THF to obtain the corresponding vinyl derivatives 3b–3h (Scheme 5).

\begin{itemize}
 \item \textbf{Scheme 2.} Synthesis of 1 from TPP and DMC.
 \item \textbf{Figure 2.} X-ray crystal structure (50% probability ellipsoids) of 1 (100 K, C: grey, P: yellow, O: red, H: white).
 \item \textbf{Figure 3.} 1H NMR spectra of \{Ph\textsubscript{3}PCH\textsubscript{3}\} [CH\textsubscript{3}OCO\textsubscript{2}] \textsubscript{1} in the P-CH\textsubscript{3} region acquired in CDCl\textsubscript{3} at 10 min time intervals.
 \item \textbf{Scheme 3.} Hydrogen–deuterium exchange mechanism.
 \item \textbf{Scheme 4.} Wittig reaction between benzaldehyde and \{Ph\textsubscript{3}PCH\textsubscript{3}\} [CH\textsubscript{3}OCO\textsubscript{2}] \textsubscript{1}.
\end{itemize}
atom efficient (29.5%) due to the absence of halides and of added base. Sheldon’s EF is favored in Aslam’s procedure due to a staggering 97% yield using purely stoichiometric amounts (1.0 equiv) of phosphonium salt and BuLi. On the contrary, the MI of our protocol was significantly more advantageous (9.60) than the other three (15.70–19.31). This was due to the very high conversion and selectivity achieved with a low amount of solvent (2e/2Me-THF = 0.150 g.mL⁻¹) that also favored the reaction rate. In all cases, chromatography solvents were not included in the calculation.

A complete evaluation in terms of efficiency and environmental impact would require a full life-cycle analysis (LCA), as was shown elsewhere. However, the complexity of such an investigation is meaningful for specific industrial processes, and is therefore rather beyond the scope of the present work.

With deuterated [Ph₃PCD][CH₃CO₂] 1-dₓ in hand, we applied our protocol to the synthesis of 2,2-dideutero-methylene-dioxystyrene 3e-dₓ, which was obtained in 75% yield and 90% isotopic purity (by NMR) (Scheme 7).

The scope of the new Wittig vinylation reaction was further expanded by testing the reactivity of 1 with two representative ketones: acetophenone 2i and benzophenone 2j. The results are summarized in Scheme 8. The vinylation of ketones required to increase the molar ratio ketone up to 3 in order to achieve 100% conversion and 100% selectivity toward the desired products (Scheme 8). A third representative ketone, cyclohexanone, did not undergo Wittig olefination, affording only unidentifiable acyclic products.

In summary, the phosphonium salt 1—prepared by a halide-free procedure—is a latent ylide able to perform Wittig-type vinylation reactions simply by heating it at reflux with a variety of carbonyls. The solvent of choice was biobased 2Me-THF, but

![Scheme 5. Wittig vinylation products obtained from different aldehydes.](image)

![Scheme 6. Synthesis of 3e from piperonal 2e in the presence of 1.](image)

![Scheme 7. Preparation of deuterated 3e-dₓ by reaction of 2e with 1-dₓ.](image)

![Table 1. Calculated green metrics for the conversion of 2e into 3e.](table)
the reaction was shown to proceed also in dimethyl carbonate (DMC), EtOAc, cyclopentylmethyl ether, toluene and in a 2Me-THF/ EtOH mixture. The absence of halides throughout the whole process guaranteed the lack of formation of inorganic halide salts. The vinylation products were isolated from the crude reaction mixture by a simple filtration over silica to remove triphenylphosphine oxide (TPPO) and residual 1. Synthesis of deuterated 1-d confirmed formation of the ylide intermediate through “counterion-mediated” deprotonation and allowed us to prepare deuterated olefins using CDCl₃ as an inexpensive and readily available deuterium source. The straightforward synthesis of 1 and its simple handling should enable the use of this new vinylation reagent in academic and industrial research and development laboratories, as well as in advanced teaching laboratories.

Acknowledgements

Dr. Marco Bortoluzzi is gratefully acknowledged for help with 2H NMR spectra.

Keywords: green chemistry · halides · phosphorus · Wittig reactions · ylides

[29] Atom economy is defined as: AE = [MW(g mol⁻¹)·product]/[MW(g mol⁻¹) of all reagents]·100. See also B. M. Trost, Science 1991, 254, 1471–1477.

Received: July 10, 2015
Published online on September 18, 2015