Carbonate based ionic liquids and beyond

Alvise Perosa

Today’s outline

1. Synthesis of carbonate ionic liquids
2. Organocatalysis
 2.1 Carbon-Carbon bond
 2.2 Transesterification
3. Multiphase systems
4. Luminiescent ionic liquids
5. ...and beyond
1. Syntheses of ionic liquids

Ionic liquids synthesis, our toolbox

1. QUATERNARISATION REACTION:
Amines/Phosphines → Amonium/Phosphonium

1. DIMETHYLCARBONATE as methylating reagent:

DMC

100% NON-TOXIC
Why use dimethylcarbonate?

100% NON-TOXIC

Dimethylcarbonate (DMC)

Dimethylsulfate (DMS)

Methyl iodide

Dimethylcarbonate, its syntheses
Dimethylcarbonate, methylation reactivity

Dimethylcarbonate

\[
\text{NuH} + \text{CH}_3\text{O} = \text{O} \rightarrow \text{NuCH}_3 \rightarrow \text{CH}_3\text{OH} + \text{CO}_2
\]

Dimethylsulfate

\[
2\text{NuH} + \text{O}_\text{Si}=\text{O} \rightarrow 2\text{NuCH}_3 \rightarrow 2\text{H}_2\text{SO}_4
\]

For more on dimethylcarbonate

You might have visited poster no. 56!

Jess Stanley

... or poster no. 57!

Marco Noe’
“Parent” Ionic liquids:
Amines/phosphines + dimethylcarbonate

\[
\begin{align*}
R-N^+\text{CH}_3 + \text{HOCOCOCH}_3 & \rightarrow R-N^+\text{CH}_3\text{OOCOCOCH}_3 \\
R-P^+\text{CH}_3 + \text{HOCOCOCH}_3 & \rightarrow R-P^+\text{CH}_3\text{OOCOCOCH}_3
\end{align*}
\]

\[\text{Conditions: } 140 \, ^\circ\text{C}, 20 \, \text{h, some methanol}\]
\[\text{Workup: remove volatiles}\]

Pereza et al., Chem. Eur. J. 2005, 11, 12273;

“Offspring” Ionic liquids:
by anion exchange

\[
\begin{align*}
R-P^+\text{CH}_3 + \text{H}_2\text{O} & \rightarrow R-P^+\text{CH}_3\text{O} + \text{CH}_3\text{OH} \\
R-P^+\text{CH}_3 + \text{H-X} & \rightarrow R-P^+\text{CH}_3X^- + \text{CO}_2 + \text{CH}_3\text{OH}
\end{align*}
\]

\[\text{Conditions: } \text{RT}, 5 - 60 \, \text{minutes, no solvent}\]
\[\text{Workup: remove methanol}\]

Pereza et al., Chem. Eur. J. 2005, 11, 12273;
With MW irradiation as well...

Methylation to methylcarbonate salt

Neutralisation with acid to ionic species

[Rogers et al. Green Chem. 2010, 12, 407;]

Imidazolium methylcarbonate

Some recent examples:

\[
\begin{align*}
[N_{8,8,8,1}] & \quad \text{SO}_3^- & \quad \text{NH}_2 \\
[P_{8,8,8,1}] & \quad \text{O} & \quad \text{O} \\
[P_{8,8,8,1}] & \quad \text{O} & \quad \text{CF}_3 \\
[P_{8,8,8,1}] & \quad \text{O} & \quad \text{O}
\end{align*}
\]

Manuela Facchin

In summary:

<table>
<thead>
<tr>
<th>Compound</th>
<th>P_{16,6,6,1}</th>
<th>P_{24,8,8}</th>
<th>P_{16,6,6}</th>
<th>P_{8,8,8}</th>
<th>N_{16,6,6,1}</th>
<th>N_{8,8,8,1}</th>
<th>N_{6,6,6,1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_3COO</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF_3COO</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH_2COO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Ph_COO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Anthranilate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>HPO_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Dicyanomethanide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>4-nitrobenzoate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>4-methylbenzoate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Ph_COO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Dibenzoylmethanate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>TTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Chiral ionic liquids:

<table>
<thead>
<tr>
<th>Anion</th>
<th>(\text{Ph}^+)</th>
<th>(\text{N}_{\text{Ph}}^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)-Menthylcarbonate</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>L-Phenylethyl carbonate</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(-)-Methoxycacetate</td>
<td>✔</td>
<td>✓</td>
</tr>
<tr>
<td>(+)-Camphor-10-sulfate</td>
<td>✔</td>
<td>✓</td>
</tr>
<tr>
<td>L-Phenylalaninate</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>L-Valinate</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

*not isolated

Truly green synthesis...

“SIMPLE, EFFICIENT, & SAFE”

- Clean
 - 100% yields, 100% purity, 100% atom economy
 - one step
 - halide-free
 - some methanol as solvent
 - use of green reagents
 - no workup
 - no by-products
- Modular
 - not limited to one target product
 - make whole classes of compounds
 - tune properties
- Clear and robust materials
- (Relatively) large volumes
Dibenzoylmethanate

\[\text{H-NMR} \]

Neat, 60 °C

\[[\text{Para}] \text{H}_2\text{CO} \rightleftharpoons [\text{Para}] \text{CO}_2 + \text{CH}_3\text{OH} \]

2-Thenoyl trifluoroacetonate

\[\text{H-NMR} \]

Neat, 60 °C

\[[\text{Para}] \text{H}_2\text{CO} \rightleftharpoons [\text{Para}] \text{CO}_2 + \text{CH}_3\text{OH} \]
Nitromethane disappears

WHAT WE OBSERVED:

- the methylcarbonate anion slowly disappeared;
- nitroethane was converted 100%;
- no other proton signals appeared.
We hypothesised an α-elimination-rearrangement of nitroethane to yield the nitrite anion and ethylene:

\[
\begin{align*}
\text{NO}_2 + \text{CH}_2\text{CH}_2\text{O} & \rightarrow \text{H}_2\text{O} + \text{CO}_2 + \text{CH}_3\text{OH} \\
\text{H}_2\text{C} = \text{NO}_2 & \rightarrow \text{H}_2\text{C} = \text{C} - \text{NO}_2 \rightarrow \text{CH}_2\text{CH}_2\text{O} + \text{NO}_2^-
\end{align*}
\]

Further observations:

- Griess test was certainly positive for nitrite: NO₂
- Conflicting evidence for the presence of ethylene (GC-MS, GC-FID, GC-TCD)
... so we read the literature:

\[
\begin{align*}
\text{H}_3\text{C} & \text{NO}_2 \\
& \xrightarrow{\text{OH}} \\
& \text{H}_3\text{C} \text{N}_2\text{O} \\
& \xrightarrow{\text{OH}} \\
& \text{H}_3\text{C} \text{N}_2\text{O}_2 \\
& \xrightarrow{\text{OH}} \\
& \text{H}_3\text{C} \text{H} + \text{NO}_2 \\
& \xrightarrow{\text{OH}} \\
& \text{H}_3\text{C} \text{N}_2\text{O}_2
\end{align*}
\]

... still wondering what happens.

...but, it appears we have a route to nitrite ILs

\[
\begin{align*}
\text{F}_{6}\text{a}_{6}\text{a}_{3} & \text{H}_3\text{CO} \text{O}^+ \text{H} \text{NO}_2 \\
& \xrightarrow{} \\
& \text{F}_{6}\text{a}_{6}\text{a}_{3} \text{NO}_2
\end{align*}
\]
2. Organocatalysis

2.1 Carbon-Carbon Bond

IL organo-catalyst

\[P_{8,8,8,1} \text{ MC} \]
The first hint

Michael reaction

Conditions: room temperature, no solvent, 0.4% P_{8,8,8,1} MC

A second hint: Henry Reaction

0.5 M in CDCl₃, Nitroethane 5 equiv., 25°C
Catalyst:aldehyde ratio = 5%

A second hint: Henry Reaction

$$R^\equiv + \text{NO}_2^{\text{P}}_{8,8,8,1}[\text{CH}_3\text{COO}] \rightarrow R^{-}\text{NO}_2$$

<table>
<thead>
<tr>
<th>Aldehyde R</th>
<th>time (h)</th>
<th>Nitroaldol product (%)</th>
<th>Y (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$CH$_2$Ph</td>
<td>2</td>
<td>96</td>
<td>88</td>
</tr>
<tr>
<td>CH(CH$_3$)Ph</td>
<td>2</td>
<td>96</td>
<td>93</td>
</tr>
<tr>
<td>C$_2$H$_5$</td>
<td>2</td>
<td>93</td>
<td>90</td>
</tr>
<tr>
<td>C${10}$H${21}$</td>
<td>2</td>
<td>99</td>
<td>97</td>
</tr>
<tr>
<td>4-NO$_2$C$_6$H$_4$</td>
<td>2</td>
<td>95</td>
<td>91</td>
</tr>
<tr>
<td>4-ClC$_6$H$_4$</td>
<td>3</td>
<td>82</td>
<td>71</td>
</tr>
<tr>
<td>C$_6$H$_5$</td>
<td>2</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

T = 25°C

The third hint

Baylis-Hillman-type reaction

Conditions: 60 °C, no solvent, 1.0% P$_{8,8,8,1}$ MC
Accepted Baylis-Hillman reaction mechanism

So, why does $P_{8,8,8,1}$MC behave as a strong base/nucleophile?

Initial rates of conversion of cyclohexenone to the dimer in the presence of different nucleophilic N and electrophilic catalyst E.

<table>
<thead>
<tr>
<th>N (Anion)</th>
<th>pKa</th>
<th>E (Cation)</th>
<th>rate h^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeOCO$_2$</td>
<td>5.51</td>
<td>$P_{8,8,8,1}$</td>
<td>12.60</td>
</tr>
<tr>
<td>Br</td>
<td>-4.8</td>
<td>$P_{8,8,8,1}$</td>
<td>0.00</td>
</tr>
<tr>
<td>P_1-Bu</td>
<td>26.98</td>
<td>-</td>
<td>9.37</td>
</tr>
<tr>
<td>DBU</td>
<td>24.34</td>
<td>-</td>
<td>1.48</td>
</tr>
</tbody>
</table>

Probably not just due to the pKa of the anion!
There must be something else going on …

Maybe activation by the cation?

Initial rates of conversion of cyclohexenone to the dimer in the presence of different nucleophilic N and electrophilic catalyst E:

<table>
<thead>
<tr>
<th>N (Anion)</th>
<th>pK_a</th>
<th>E (Cation)</th>
<th>rate h^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeOCCO$_2$</td>
<td>5.51</td>
<td>$P_{8,8,8,1}$</td>
<td>12.60</td>
</tr>
<tr>
<td>Br$^-$</td>
<td>-4.9</td>
<td>$P_{8,8,8,1}$</td>
<td>0.00</td>
</tr>
<tr>
<td>$P_{1,8}lu$</td>
<td>26.98</td>
<td>-</td>
<td>9.37</td>
</tr>
<tr>
<td>DBU</td>
<td>24.34</td>
<td>-</td>
<td>1.48</td>
</tr>
</tbody>
</table>

To look at this we decided to “separate” the effect of the anion (N) from the effect of the cation (E):

we used DBU as the nucleophile (N)…

... and added increasing amounts of $P_{8,8,8,1}Br^-$

Added amounts of $P_{8,8,8,1}Br^-$

<table>
<thead>
<tr>
<th>N (Anion)</th>
<th>E (Cation)</th>
<th>$[E] /[N]$</th>
<th>rate h^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br$^-$</td>
<td>$P_{8,8,8,1}$</td>
<td>0.015</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>$P_{1,8}lu$</td>
<td>0.015</td>
<td>1.00</td>
</tr>
<tr>
<td>DBU</td>
<td>0.042</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>$P_{8,8,8,1}$</td>
<td>0.007</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>$P_{8,8,8,1}$</td>
<td>0.013</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>$P_{8,8,8,1}$</td>
<td>0.020</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>$P_{8,8,8,1}$</td>
<td>0.039</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>$P_{8,8,8,1}$</td>
<td>0.057</td>
<td>1.35</td>
</tr>
</tbody>
</table>

DBU by itself
Ambiphilic activation?

Electrophile

Nucleophile

Deconvolution of selected 13C resonances.
Precedents...

... hypotheses without experimental proof.

Interesting application...

Methylation using dimethyl carbonate catalysed by ionic liquids under continuous flow conditions

Toma N. Gnanov,*, John D. Hulbrey,† C. Oliver Kappe,** Kenneth R. Seddon* and Ting Yue†

Green Chemistry 2012 accepted article
2. Organocatalysis

2.2 Transesterification

Transesterification of organic carbonates.

\[
\text{H}_3\text{C}\text{O}_2\text{C}_2\text{H}_3 + \text{R-OH} \xrightarrow{\text{ILs cat \ 90-240 °C}} \text{H}_3\text{C}\text{O}_2\text{C}_2\text{H}_3 + \text{CH}_2\text{OH} \\
\text{R-OH} = \text{HO-CH=CHC_6H_4-CH}_2\text{CH(OH)CH(OH)CH(OH)CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3
\]

No decarboxylation of dimethylcarbonate is observed!
Transesterification of organic carbonates.

\[
\text{H}_2\text{C}_\text{O} \text{O} \text{CCH}_3 + \text{HO} \xrightarrow{\text{IL 1\% 200 °C}} \text{H}_2\text{C}_\text{O} \text{O} \text{CCH}_3 + \text{C}_3\text{H}_7\text{OH}
\]

Catalyst	Conversion (%)	Selectivity (%)
[P₈₈₈₁][CH₃COO] | 52 |
[P₈₈₈₁][HOCOO] | 68 | >99
[P₈₈₈₁][AcO] | 93 |
[P₈₈₈₁][PhO] | 78 |

Transesterification of organic carbonates.

Transesterification of organic carbonates.

Transesterification of diols

M. Selva's work:
Transesterification of diols

<table>
<thead>
<tr>
<th>1,2 diols</th>
<th>1,3 diols</th>
<th>1,4 diols</th>
<th>1,6 diols</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>1,1</td>
<td>1,4</td>
<td>1,6</td>
</tr>
<tr>
<td>1,2</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2</td>
<td>2,2</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transesterification of diols

DMC : diol = 20 : 1
DMC : diol = 5 : 1
DMC : diol = 2 : 1
Transesterification of diols

<table>
<thead>
<tr>
<th>Main Product</th>
<th>Isolation</th>
<th>Purity %</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distillation</td>
<td>> 99%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>Sublimation</td>
<td>> 99%</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>Distillation</td>
<td>> 99%</td>
<td>68%</td>
<td></td>
</tr>
<tr>
<td>mixture</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Distillation</td>
<td>> 99%</td>
<td>73%</td>
<td></td>
</tr>
</tbody>
</table>

Steric hindrance effect

Chain length effect

Cyclic carbonate

Linear carbonate
3. Multiphase systems based on ionic liquids

Marina Gottardo

Multiphase systems based on ILs

Multiphase systems based on ILs

no IL

IL = [N_{8,8,8,1}]Cl

Multiphase systems based on ILs applied to the upgrade of bio-based molecules

Catalyst: Ru/C 5%
Strategy for multiphase system design

1. Choose organic solvent
2. Choose ionic liquid

Multiphase system design: Organic solvent choice

<table>
<thead>
<tr>
<th>Solvent</th>
<th>LA solubility</th>
<th>GVL solubility</th>
<th>Solubility in water @ 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iso-octane</td>
<td>no</td>
<td>no</td>
<td>immiscible</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>no</td>
<td>no</td>
<td>immiscible</td>
</tr>
<tr>
<td>Toluene</td>
<td>yes</td>
<td>yes</td>
<td>0.52 g/L</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>yes</td>
<td>yes</td>
<td>0.83 g/L</td>
</tr>
<tr>
<td>Ethyl lactate</td>
<td>yes</td>
<td>yes</td>
<td>miscible</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>yes</td>
<td>yes</td>
<td>miscible</td>
</tr>
<tr>
<td>Water</td>
<td>yes</td>
<td>yes</td>
<td>miscible</td>
</tr>
</tbody>
</table>

IL = [N\(_{8,8,8,1}\)][Cl]
"Inverse" multiphase system

But... $[N_{8,8,8,1}]\text{Cl}$ is partially soluble in water....

Multiphase system design: Choice of IL

<table>
<thead>
<tr>
<th>IL</th>
<th>LA Conversion</th>
<th>IL in H$_2$O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[N_{8,8,8,1}]\text{Cl}$</td>
<td>32</td>
<td>2.3</td>
</tr>
<tr>
<td>$[N_{8,8,8,1}]\text{NTf}_2$</td>
<td>100</td>
<td>not measurable</td>
</tr>
<tr>
<td>$[P_{8,8,8,1}]\text{NTf}_2$</td>
<td>100</td>
<td>not measurable</td>
</tr>
<tr>
<td>$[N_{8,8,8,1}]\text{TFA}$</td>
<td>100</td>
<td>41</td>
</tr>
<tr>
<td>$[P_{8,8,8,1}]\text{NO}_3$</td>
<td>100</td>
<td>17</td>
</tr>
</tbody>
</table>
Conversion of LA to GVL in the multiphase system with 5% Ru/C as a function of temperature after 30 min: (△) without the IL third phase; (□) with a third phase made by [P8,8,8,1][NTf2]. p[H2] = 35 bar, Ru 0.15 mol%.

Conversion of LA to GVL: recycling of the Ru/C catalyst system.
Same thing with homegenous RuCl₃

Conversion of LA to GVL: recycling of the RuCl₃ catalyst system (Conditions: 16 h, 150 °C, p[H₂] = 35 bar, RuCl₃ (20 mg, 0.0765 mmol; Ru = 1.0 mol%)
4. Luminescent ionic liquids

Manuela Facchin

Dibenzoylmethanate

\[
\text{[P}_{8,8,8,1}\text{]H}_2\text{CO} \rightarrow \text{[P}_{8,8,8,1}\text{]} + \text{CO}_2 + \text{CH}_3\text{OH}
\]

\(^1\text{H-NMR}

Neat 60 °C
2-Thenoyltrifluoroacetonate

H-NMR

Neat, 60 °C

UV irradiation

Luminescent ionic liquids
5. ongoing….

Zwitterionic liquids

\[\text{Zwitterionic Liquid Structure} \]
Thank you!

and...

- Ministero Istruzione Universita’ Ricerca “PRIN”
- “Cooperlink”
- Regione Veneto (ESF)

- Maurizio Selva
- Thomas Maschmeyer (University of Sydney)
- Roberto Ballini (Universita’ di Camerino)
- Vittorio Lucchini (Universita’ Ca’ Foscari)