The Palaeolithic settlement of Sindh (Pakistan): A review

By Paolo Biagi

Introduction

Sindh is a territory of fundamental importance for the understanding of the cultural processes that took place in South Asia during the Pleistocene. Located midway between the uplands of Balochistan, in the west, and India, in the east, it separates two environmentally and historically distinct regions. It is not by chance that Sindh takes its name from the river that, flowing from north to south, neatly divides it into two halves and denominates the entire Subcontinent. Apart from representing historical India of the ancient Greeks, and the easternmost limit reached by Alexander the Great and his Macedonian army, from an archaeological point of view Sindh is famous mainly for its Bronze Age and later antiquities, and displays the most remarkable traces of the first processes of urbanisation of the old world, which are exemplified by the outstanding ruins of the metropolis of Mohen-jo-Daro. At present the Palaeolithic of Sindh is poorly known, mainly because of the limited systematic research conducted to date, and the geographic, logistic and political difficulties that archaeologists may encounter entering some (tribal) areas of present-day Pakistan. Nevertheless, this is a key region for the understanding of the various topics of Pleistocene archaeology of the Indian Subcontinent, the study of which has progressively improved, especially during the last twenty years. Among these are 1) the route followed by the early hominids who, after moving along the southern periphery of the Arabian Peninsula, crossed the Strait of Hormuz, after their first “out of Africa”, 2) the definition of the south-easternmost limit reached by the Neanderthals and the borderline of the Mousterian Levalloisian Culture, and 3) the spread of the first modern humans towards India and south-east Asia.

The scope of this paper is to update the information available for the Palaeolithic of the country, which at present is known almost exclusively from two well-defined areas: Ongar, in Lower Sindh, and the Rohri Hills, in Upper Sindh, while only a few other assemblages come from the neighbourhoods east of Karachi.
of the Arabian Sea around Karachi10 (Fig. 1). According to their typological characteristics these assemblages can be attributed to a period of time between the middle and the end of the Pleistocene.

The Palaeolithic assemblages of Lower Sindh

Only two regions of Lower Sindh have so far yielded Palaeolithic assemblages: Ongar, south of Hyderabad, and the surroundings of Karachi.

Ongar

The Palaeolithic sites of Ongar, otherwise called Milestone 101,11 were discovered by “an officer of the Pakistan Archaeological Department”12 in the mid 1960s. A few years later Professor A. R. Khan published a preliminary report on the flint assemblages he collected in 1972, in a paper on the Palaeolithic of Lower Sindh.13

The hill called Ongar, west of the eponymous village, is located “about 8 miles north of Jhikar, and a mile or 2 south-west of Jhuga Pir”,14 along the western side of the Karachi-Hyderabad motorway, some 17 miles south-west of Hyderabad. It consists of a series of flat, Eocene, limestone terraces rich in seams of very good quality, large flint nodules of a light brownish grey colour (10YR/2).

Describing the area in detail, W. T. Blandford reports “under Aongar Hill...the Ranikot beds, near the road from Kotri to Jhikar, consist of flaggy brown limestones, resting on variously coloured soft silty shales, red, yellow, brown, &c., and capped by buff marl”. He also noticed that “along the scarp of Aongar Hill, above the rocks just described, appears to be thinly bedded with weathers into flags. Much flint derived from the limestone is scattered about”.16 Ongar, and its surrounding hills, are one of the richest flint sources in Sindh. They were exploited from Acheulian, Palaeolithic times up to the Bronze Age Indus (or Harappan) period.17

The assemblages collected by Prof. A. R. Khan18 can be attributed to at least three distinct complexes. They come from twelve areas located along the eastern, southern and southwestern slopes of the Ongar hill.19 They are represented by 1) Acheulian handaxes (Fig. 2), 2) a Levallois assemblage with discoid cores, flakes and a few blades, with faceted “chapeau de gendarme” platform, straight points and side scrapers with a very pale brown (10YR7/3) to light grey (2.5Y7/2) patina (Fig. 3), and 3) a blade-like flake industry with a pale brown patina (10YR6/3) obtained from subconical and subpyramidal cores (Fig. 4). The only implement attributable to this latter industry is a short end-scraper with a complementary simple, marginal, direct retouch along its left side.

B. Allchin, who visited the area in December 1975, observed that only one “horseshoe-shaped limestone hill with a flat top between one and two square kilometres in extent is capped by a layer of chert nodules. In this respect it seems to be unique among the surrounding hills”.20

The surveys carried out in January and April 2005, and January 2006, 2007 and 2008, showed that the archaeological area is not exclusively restricted to the hill described by Allchin. Also those of Daphro, to the west, and Bekhain, to the southwest, are partly covered with structures and flint artefacts attributable to different prehistoric periods.21

Apart from Ongar, an assemblage of 45 flint tools was collected along the banks of a dry riv-

10 Khan 1979a.
11 Allchin et al. 1978.
12 Allchin 1976, 486.
13 Khan 1979b.
14 Blandford 1880, 148.
16 Blandford 1880, 148–149.
17 Biagi 2006c.

18 In his paper, A. R. Khan (1979b, 80) reports: “the oldest industries are associated with three gravel terraces or remnants of old piedmont slopes of varying elevations. The two later industries, particularly the fourth one, are found as surface material scattered all over the area”. According this author, the Ongar Palaeolithic is to be subdivided into five main chrono-typological assemblages, which he described as follows: the first, which he called Khaskheli, from the “Sindhi tribe a family of which owns a farm near the oldest site”, is characterised mainly by choppers and chopping-tools; the second, which he called Ongar industry, “is a handaxe industry with typical mid-Acheulian handaxes, cleavers and a host of other tools”; the third is a Levalloisian industry “associated with the lowest gravel terrace”; which he called “Miharo industry after the village, close to which has been found in situ in the gravel terrace”; the fourth assemblage, which is distributed all over the terraces and valleys, is represented by “discoidal cores, crude corticated flakes, denticulated tools, scrapers, borers and beaked tools...which shows affinities with the Denticulated Mousterian”; the fifth is “a blade-burin and steep scraper industry resembling the earliest Palaeolithic industry of the Levant coast” (Khan 1979b, 81). Furthermore the same author (Khan 1979c, 64) wrote that, north-west of Ongar “…one tool picked by Mr. Ishaq Ghaznavi, an officer of Geological Survey, from the slope of Laki range is identical with a tool of Lower Acheulo-Levalloisian culture...”. The tool is a transversal scraper on a flakelet with a faceted platform obtained with a simple, deep, direct, distal retouch (Fig. 5A).

19 A. R. Khan pers. comm. 2002.
20 Allchin 1976, 486–487.
21 Biagi 2006b.
Fig. 2
Ongar. 1–6 Acheulian handaxes of A. R. Khan collection (drawings by P. Biagi, inking by G. Almerigogna)
Fig. 3
Ongar, Middle Palaeolithic, Levalloisian Mousterian assemblage of A. R. Khan collection.
1–2 side scrapers; 3, 5, 8 Levallois cores; 4, 6 transverse scrapers; 7 Levallois wide blade (drawings by P. Biagi, inking by G. Almerigogna)
Fig. 4
Ongar. Late Palaeolithic. 1–5 subpyramidal cores; 6–7 subconical cores; 8–9 bifacial picks (drawings by P. Biagi, inking by G. Almerigogna)
erbed, some 2 km west of Sindh University Campus, and attributed to the Middle Palaeolithic, although they do not show any specific typological trait to justify this attribution.

Discussion

The limestone terraces of Ongar and Daphro are one of the most important Palaeolithic areas in Sindh, although some of the discoveries made at the beginning of the 1970s are controversial. According to A. R. Khan the Palaeolithic assemblages of Ongar can be attributed to five distinct complexes, whose time-span covers a long period between the beginning of the Early Palaeolithic and the beginning of the Late (Upper) Palaeolithic. The oldest tools he collected are covered with a white, thick patina. According to the above author they were recovered, almost exclusively, along the eastern and southern slope debris that surround the Ongar hill.

Allchin et al. describe quite a different situation. They pointed out the uniqueness of the horseshoe hill, on the top of which they noticed “clusters of Lower-, Middle- and Upper- Palaeolithic artefacts” and that “certain areas appeared to be working floors of specific periods, but these tended to overlap, making it difficult to define them clearly”.

The surveys carried out in 2005–2008 showed that the archaeological area extended westwards well beyond the horseshoe-shaped hill, which has been almost totally destroyed by industrial limestone quarrying during the last fifty years (Fig. 5). Very small portions of the flint surface that originally covered the mesas were noticed on the hills of Ongar and Daphro. Nevertheless only one narrow hill, which stretches between the above-mentioned two, in an east-west direction (Fig. 6), is still intact. On its surface a few Palaeolithic chipping floors, isolated artefacts of different Palaeolithic periods, as well as traces of Indus flint mining were recorded (Fig. 7).

Only one of the twelve areas mapped by Professor A. R. Khan yielded Middle Palaeolithic artefacts. It was rediscovered in January 2006, when a few typical Levalloisian tools were collected from the top of a sequence exactly in the same stratigraphic position described by the above author. Most of the Palaeolithic tools recovered during the 2005–2008 surveys are weathered and show a strong brown patina. They can be attributed to three main periods: 1) the Acheulian, with assemblages represented by bifacial tools (handaxes) and large flakes with a flat platform, 2) the Middle Palaeolithic, characterised by a few typical Levallois cores, flakes and a few blades with “chapeau de gendarme”, faceted platform and 3) the beginning of the Late (Upper) Palaeolithic, represented by subpyramidal and subconical cores.

22 Salim 2002, fig. 8–10.
23 Khan 1979b, 80.
24 In this paper the terms Late and Upper Palaeolithic are used as synonymous. This is why both terms are always reported following the European (Late) and Indian (Upper) terminology.
26 Biagi 2006a; 2006b.
27 Khan 1979b.
28 Khan 1979b, 81.
with blade-like flake detachments and a few bifacial and unifacial picks.29

The Karachi Gulf

The territory that surrounds Karachi yielded a few assemblages and isolated tools, which can be attributed to the Middle and Late (Upper) Palaeolithic periods. They were recovered mainly during the geological investigations conducted by A. R. Khan30 in the early 1970s. Unfortunately this author published only very few of these finds. The most important discoveries were made on the Mulri Hills, at Deh Konkar and Rehri.

The Mulri Hills

The Mulri Hills rise just south of Karachi University Campus (Fig. 8). They consist of variegated beds, partly developed on sedimentary bedrocks of the Miocene Upper Gaj formation.31 Their weathered, flat surface, some 220–230 feet high, was originally covered with a red clayey soil. It was later eroded and at present it is preserved only in a few pockets still visible along the fringes of the hills. The hills yielded many Mesolithic sites and flint scatters,32 distributed along the faults that cross them, often close to freshwater springs.33 One site, along the northern fringes, Mulri Hills 3 (MH3), yielded three typical Levallois flakes covered with a thick white patina, one of which has a faceted platform (Fig. 9,1–3).

Another important assemblage comes from site MH16, in the central part of the hills, facing southwards.34 It is composed of subconical and cylindrical bladelet cores, lateral and transverse, simple and on retouch burins, narrow backed bladelets and thick, arched points obtained with an abrupt, deep, bipolar, right or left retouch (Fig. 10). This assemblage, or at least most of it, seems to be attributable to the end of the Late (Upper) Palaeolithic, on the basis of the typological characteristics of the tools.35

Deh Konkar

A “chert point was found on the edge of a gravel terrace near field No. 194 at Deh Konkar, near Goth Jalab. It is a very fine specimen of later phase of Levalloisian technique. It is triangular in shape and has a faceted butt ... It is white with patination”.36

Rehri

The village of Rehri is located some 15 miles east of Karachi. Towards the south it faces Kadiro Creek, the banks of which are covered with a thick mangrove vegetation of Avicennia marina bushes. A few prehistoric sites were discovered at Rehri. Rehri 4a, which is to be attributed to the Late (Upper) Pa-

29 Biagi 2006b; Biagi/Franco 2008.
30 Khan 1979a.
31 Zaidi et al. 1999.
34 Biagi 2003–2004, fig. 7.
35 All the archaeological sites discovered by Professor A. R. Khan on the top of the Mulri Hills were destroyed in the 1980s during the urban development of the city of Karachi.
36 Khan 1979a, 13.
laeolithic, is located inside a depression at the eastern edge of the present-day village. Here Professor A. R. Khan recovered a small assemblage of white-patinated flint tools. The artefacts were collected partly from the surface, partly from the clayey deposit that covers the area. The site also yielded very few, small, unidentifiable fragments of mammal bones and wild ox teeth.

The Rehri assemblage is represented by 1 simple side burin and 8 arched backed points on blade-like flakes, obtained with an abrupt, steep, direct, unilateral retouch and a few unretouched flakelets (Fig. 11). A similar industry comes from MH22 in the Mulri Hills (Fig. 12,1–13) and Mendari (Fig. 12,14–19).

A. R. Khan mentions another Palaeolithic find, some 2 miles northwest of Rehri, more precisely “one isolated panshaped point ... that ... was found in the gravel near the old cliff south of Landhi”. It is a typical, unretouched Levallois point on a flake with a faceted platform (Fig. 9,4).

Discussion

The region that surrounds Karachi Gulf shows that “evidence about the Upper Palaeolithic age except for its latest phase, is however, very scanty. Several higher terraces belonging to Pleistocene period are present in the area. But they have been eroded so deeply that the entire loose material and soil from their top has been removed”.

The Mulri Hills 3 (MH3) assemblage consists of a few typical Levallois artefacts. Other Levallois finds come from Deh Konkar, Landhi and Laki Range. These tools are very important, because their presence, and the debated, reported discovery of a “Neanderthal skull”? in a cave in the Kirshar

38 One of the teeth was sent to Groningen radiocarbon laboratory for 14C dating. Unfortunately it was too poor in collagen to be processed (van der Plicht pers. comm. 2003).
39 In his description, A. R. Khan (1979a: 13) wrote: “The most characteristic tool of the late Upper Palaeolithic period is a knife like tool, with strongly curved and steeply blunted back and very sharp and more or less straight cutting edge. It is a beautiful tool derived from the Chatelperronian tradition. It is a little less than two inches long”.
40 Khan 1979a, 13.
41 Khan 1979a, 14.
Range in Dadu District, might help us define the south-easternmost limit reached by the Neanderthals dispersal.

Of particular importance are the assemblages from Rehri 4a, MH16, MH22 and Mendiari. The typological characteristics of some unique tools from the first of these sites, more precisely a class of backed-retouched arched points on blade-like-flake, might attribute it to an early moment (?) in the development of the Late (Upper) Palaeolithic, a period that is unknown in the area.

MH16 yielded an assemblage with a few side and transversal burins (Fig. 10,1–8), narrow backed bladelets and points (Fig. 10,10–20), thick arched points obtained with a backed, bipolar retouch (Fig. 10,21–28), and very few geometrics and microburins, which strongly recalls the Blade and Burin Industries of peninsular India, Renigunta in particular, especially as regards the above-mentioned types of tools. This industry is absolutely different from all the other Mulri Hills assemblages, which have been attributed to the Mesolithic on the basis of the presence of characteristic geometric armatures (lunes, triangles and trapezes) of different typological classes and dimensions, obtained with the microburin technique.

The Palaeolithic assemblages of Upper Sindh

The Rohri Hills

The Rohri Hills are a limestone plateau, deeply dissected by erosion, some 40 km long and 16 wide that gently dips towards the southeast. They stretch between Sukkur and Rohri, in the north, and the westernmost dunes of the Thar Desert, in the south and consist of stratified limestone deposits of Middle Eocene/Early Oligocene period, which belong to the Brahui formation. W. R. Dickinson, in 1867, and J. Burgess, in 1886, were the first to collect Palaeolithic tools near Sukkur. Further discoveries were later made by De Terra and Paterson, B. Allchin, and Biagi and Cremaschi.

De Terra and Paterson described “two groups of sites, one on the limestone hill west-northwest of Sukkur and the other on the opposite Indus bank 1½ miles southeast of Rohri. In both localities the workshops lie on the surface of the flint-bearing Eocene limestone, which rises 130 to 160 feet above the stream bed”. The drawings they published in their seminal volume show that the hills west-northwest of Sukkur yielded Acheulian handaxes and Late (Upper) Palaeolithic assemblages, while the two Rohri sites they mention are most probably Indus Civilisation flint workshops. All the sites discovered on the top of these hills were destroyed before the beginning of the 1970s by industrial limestone quarrying.

The discoveries made in the 1970s

In 1975–1976, the Cambridge University Archaeological Expedition carried out a brief survey, mainly centred along the northern edge of the hills, around

62 Ashfaqe 2004, 153, reports “the person who possesses this anthropological trophy has kept it in a bank vault at Karachi. His claim of having the Neanderthal skull was confirmed independently from another gentleman, who is a retired school teacher, who actually first found it in a cave in the hills of his home district of Dadu, along with many other curios and bits of animal fossils”.

63 Biagi 2007.

64 Mury 1979.

65 Mury 1968.

67 Blandford 1880.

68 Cook/Martingell 1994; Biagi 1997.

69 De Terra/Paterson 1939.

70 Allchin 1976; Allchin et al. 1978.

72 De Terra/Paterson 1939, 331.

73 De Terra/Paterson 1939, pl. 48.

74 De Terra/Paterson 1939, pl. 55.

75 Biagi 2006d.
Fig. 10
Mulri Hills 16 (MH16),
1–8 burins; 9 long end scraper; 10–14 backed bladelets; 15–20 backed points; 21–28 bipolar backed points and blades (drawings by P. Biagi, inking by G. Almerigogna)
the town of Rohri. According to B. Allchin, Middle and Late Palaeolithic flint working floors were discovered in this region alongside many others, which were attributed to the Indus Civilisation. Further discoveries were made by the same expedition at Chancha Baluch, 4 km southwest of Kot Diji, on “an old silt terrace, at a slightly higher level than the plain itself, near a small outlying limestone hill with some exposed chert on its summit, a few hundred metres south of the Mir Wah Canal”. The precise location of the site is nevertheless unknown and the surveys carried out in the 1990s failed identifying the locality of Chancha Baluch, which is not mentioned in the Survey of Pakistan regional sheet. From this area, the above authors report the presence of Middle and Late (Upper) Palaeolithic working floors.

Another important site is Nawab Punjabi, locally called Unnar or Unar (Fig. 13). It is on an isolated hill, southwest of Kot Diji. On its top the above authors discovered Middle and Late Palaeolithic workshops as well as Indus Civilisation flint working floors. This site, which was totally destroyed by industrial quarrying during the last thirty years, is very important because of 1) the presence of in situ pockets of a Pleistocene red soil, 2) the recovery of bifacial tools/handaxes among which are a few specimens attributable to Series 1 of the sequence proposed by Negrino and Kazi (Fig. 14), and 3) Indus Civilisation chipping floors with assemblages significantly different from those from the workshops of Shahed Shaheed and Rohri.

The discoveries made in the 1980s

The brief survey carried out in February 1986 was aimed at the recovery of Palaeolithic and Indus Civilisation flint sites, and the definition of their chrono-stratigraphy. During that season two geological sequences were discovered at Unnar, in the south-western part of the hills, and Shah Sakar Ganj, along their north-western edge. Pockets of Pleistocene red soil still in situ, which unfortunately did not yield any Palaeolithic tool, were described from both sites. Thanks to the discoveries made during this survey, and the SEM analysis of the surface and section of a few flint artefacts of different ages, it was possible to propose a first preliminary sequence of the environmental changes that took place.

56 Allchin 1976, 479.
57 Allchin et al. 1978, 287.
58 Allchin 1976, 483; Allchin et al. 1978, 288.
59 Negrino/Kazi 1996.
The discoveries made by the “Joint Rohri Hills Project”

The hills were systematically surveyed between 1993 and 2000, during a research programme (“Joint Rohri Hills Project”) carried out by Ca’ Foscari (Venice, Italy) and Shah Abdul Latif Universities (Khairpur, Pakistan). Hundreds of Palaeolithic and Indus flint scatters, workshops and mines were discovered, a few of which were partly excavated. Concentrations of Acheulian handaxe workshops were recorded in the Shatee Shaheed Hills, south of the tomb of Ziarat Pir Shabán, and along the northern terraces, between Rohri and Aror. This latter area was visited in February 2001, when limestone quarrying had already almost completely destroyed most of the Acheulian sites of the so-called “Bypass area”.66

Hundreds of Late (Upper) Palaeolithic flint scatters and workshops were recorded along the western terraces of the central region of the hills, east of the Shrine of Shatee Shaheed.67 The surveys also yielded a few isolated Early Palaeolithic tools, on the surface of the mesas (Fig. 15). Late (Upper) Palaeolithic workshops have been reported also from the Thar Desert Veesar Valley, although none of the tools illustrated from this region can be attributed to this period with certainty, on the basis of their typological characteristics.68

Three Palaeolithic workshops were excavated between 1995 and 2000 south of Ziarat Pir Shabán. One of these (ZPS1), was attributed to a final stage in the development of the Acheulian Culture,69 and the other two, ZPS270 and ZPS4,71 to the beginning of the Late (Upper) Palaeolithic. During those years also the Early Palaeolithic site 797bis was systematically recorded.72

M. M. Kazi discovered the Acheulian workshop ZPS1 in August 1994, some 750 m south-east of the above-mentioned tomb, at 27°27′28″N – 68°52′52″E.73 The site covered some 50 m², 12 of which were excavated (Fig. 16). It yielded 29,047 artefacts characterised by a brown (10YR 4/3) patina, amongst which are 18 handaxes (17 rough-outs and 1 finished, broken specimen), 2 side scrapers, 27 cores and 13 flint hammerstones. The tools were collected mainly from the surface, although a few were embedded, both horizontally and vertically, in a silty soil, some 10 cm thick, rich in limestone cobbles.

63 Biagi/Cremaschi 1988, 431.
64 Biagi et al. 1997.
65 With Professors M. M. Kazi and G. M. Veesar of the Department of Archaeology, Shah Abdul Latif University, Khairpur.
69 Biagi et al. 1996.
72 Negrino/Kazi 1996.
73 Biagi et al. 1996, 49.
The Late (Upper) Palaeolithic workshops ZPS2 and ZPS4 were excavated in 1996 and 2000, respectively. The first lies some 2 kms south-east of the above tomb (27°27’03” N – 68°53’03” E), while the second a few hundred metres to the south-west of ZPS1 (27°27’26” N – 68°52’49” E).

ZPS2 was located “at the northern edge of a sand spot 7.50 m long and 3.75 m wide, most probably caused by the removal of the flint nodules and the limestone pebbles which lay on the surface of the terrace at the time the site was settled”. The excavation was carried out on a surface of 13 m². It yielded 4794 flint artefacts, with a brown (10YR 4/3), slightly translucent patina. The assemblage was mainly collected from the surface, partly contained in a thin, aeolian sand deposit, which filled also the oval-shaped patch. It is composed of 57 blade-like flake cores, mainly of short, subconical shape, 13 pre-cores, 3 crested blades and 5 hammerstones obtained from small flint nodules. The unretouched tools consist mainly of flakes (37.52%), and blade-like flakes and blades (23.84% and 13.04% respectively).

The Late (Upper) Palaeolithic workshop ZPS4 was selected for excavation because of the presence of bifacial picks on its surface. It was located at the south-western edge of an oval sand patch, measuring some 4 × 2.5 m (Fig. 17–18). The excavation was carried out over a strip 8 m long and 2 m wide. It yielded 7505 flint artefacts, among which are 132 cores with blade-like flake detachments, mainly of a short, subconical type, 10 pre-cores, 12 crested blades and flakes, 16 bifacial and unifacial picks and 16 flint hammerstones (Fig. 19). The sedimentary characteristics of the site, and the patina of the artefacts, are identical to those of ZPS2 (see also Table 2).

Site 797bis was excavated in 1997 “close to the western edge of a wide plateau where the Harappan mines and workshops are present, not far from Site 862 and 12 m northeast of Site 797”. The site, which yielded 743 artefacts, covered a surface of 80 m². It is supposed to be the oldest site so far recovered almost in situ in the Rohri Hills.

The tools, which show brown-orange and black, bright surfaces, caused by aeolisation, consist only of complete and broken flakes and flakelets, obtained with a Levallois-like debitage (Fig. 20). The above authors attributed this site to the Early Palaeolithic, most probably to a period between the Middle and the Late Pleistocene.

Discussion

Negrino and Kazi have recently proposed a first chrono-typological sequence of the Palaeolithic industries of the Rohri Hills on the basis of the results obtained from the study of the assemblages recovered during the surveys and excavations carried out in the 1980s and 1990s. These authors subdivided them into six main series, the first three of which are attributed to the Early Palaeolithic, the following two to the Middle Palaeolithic, and the last to the Late (Upper) Palaeolithic.

<table>
<thead>
<tr>
<th>Site name/artefacts</th>
<th>unretouched artefacts</th>
<th>cores</th>
<th>pre-cores</th>
<th>crested blades/flakes</th>
<th>flint hammerstones</th>
<th>bifacial picks</th>
<th>excavated area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPS2</td>
<td>4794</td>
<td>57</td>
<td>13</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>ZPS4</td>
<td>7505</td>
<td>132</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Tab. 2

Rohri Hills. Main characteristics of the flint artefacts excavated from the Late (Upper) Palaeolithic sites ZPS2 and ZPS4.

74 Biagi et al. 1998–2000, 111.
77 Negrino/Kazi 1996, 18.
The first two Series (1 and 2), which are represented only by isolated tools collected from the surface, should be referred to the Middle Pleistocene. They were originally contained in the red soil still present in some areas of the hilltops.

1) The first two Series (1 and 2), which are represented only by isolated tools collected from the surface, should be referred to the Middle Pleistocene. They were originally contained in the red soil still present in some areas of the hilltops. The artefacts of Series 1 show a very thick patina of yellow-brown to red-black colour, those of Series 2, a thick patina and bright surfaces of brown-orange to red-black colour. Some of the tools from Unnar (Nawab Panjabi), and, perhaps, the so-called Bypass area, between Rohri and Aror, seem to be attributable to this second Series.

2) Series 3: known only from site 797bis. As mentioned above, the flint assemblage from this site, which shows a Levallois-like debitage technique (Fig. 20), is most probably to be assigned to a period comprised between the Middle and the Late Pleistocene.

3) Series 4: represented by the Late Acheulian workshops of Ziarat Pir Shabān, Unnar, the sites located at the northernmost edge of the hills, not far from Aror, and the hills of west north-west of Sukkur, west of the course of the Indus. These assemblages are most probably to be attributed to the beginning of the Middle Palaeolithic.

4) Series 5: known from very few, isolated artefacts, among which are Levallois-like flakes and one bifacial tool, "with slightly bright surfaces of light brown colour, which are more similar to those of the Late (Upper) Palaeolithic assemblages".

5) Series 6: represented by hundreds of blade-like flake workshops obtained from subconical/sub-pyramidal cores, which are supposed to belong to the beginning of the Late (Upper) Palaeolithic. Among these are sites 1288, ZPS2 and ZPS4 and the hills west-northwest of Sukkur.

A Palaeolithic sequence for Sindh?

The discoveries made in the Rohri Hills and Ongar, and the analysis of the assemblages collected by Professor A. R. Khan around Karachi, have contributed to a preliminary assessment of the chrono-typological sequence of the Palaeolithic of Sindh that future research in the area might confirm, correct or reject. The main problems are due to the limited number of investigated areas, and the absence of multi-stratified deposits with radiometrically datable materials; in contrast, these characteristics are sometimes present in the Thar Desert sites of India and other regions in the Subcontinent.

Only two areas, which are very rich in flint outcrops, yielded Early Palaeolithic industries: Ongar and the Rohri Hills. Nevertheless differences can be noticed between the assemblages from these two sites whose geomorphologic and sedimentary characteristics show close similarities.

79 Biagi/Cremaschi 1990, 423.

80 Materials at Shah Abdul Latif University Archaeological Museum, Khairpur.
81 De Terra/Paterson 1939, 331 pl. 48.
82 Negrino/Kazi 1996, 30–32.
83 De Terra/Paterson 1939, 331 pl. 55.
84 Misra/Rajaguru 1980; Petraglia 2001, 222.
86 Raza/Bender 1995, 193.
Following the classification proposed by Ne-grino and Kazi, the oldest finds belong to the Middle and Middle/Late Pleistocene. Isolated tools of this period were recovered from the surface of the Rohri Hills, mainly from the terraces east of the Shrine of Shadée Shaheed.

Acheulian bifaces and handaxes come from Ongar and the Rohri Hills, Unnar, Chancha Baluch and Bypass area included. While the implements from the Rohri Hills, which are obtained from very large flakes (i.e. those from ZPS), are most probably to be attributed to the beginning of the Middle Palaeolithic, some other finds are of a more problematic chronological attribution. For instance, the handaxes collected by A. R. Khan at Ongar are mainly from cobbles (Fig. 2). Their surface shows a thick white or light grey (10YR7/1) patina, the same that covers the surface of the Levallois cores, flakes and blades (Fig. 3) recovered by the same author in the same region. In contrast cleavers, which are reported from Ongar, are known with only one specimen from Unnar in the Rohri Hills (Fig. 14, 4).

Many Middle Palaeolithic flake assemblages have been described from the Rohri Hills as belonging to a “long...humid phase” that in other areas, among which is the Luni Valley, in western India, would suggest “through-flowing rivers and deposition of coarse gravels”. Researches carried out by the “Joint Rohri Hills Project” in the area did not yield much evidence of this period, apart from a few isolated tools.

One typical Mousterian point on a Levallois flake with a faceted platform from Deh Konkar is of unique importance (Fig. 9, 5). Tools with these characteristics have never been discovered in the Rohri Hills, from which typical Mousterian artefacts are so far unknown, while they occur at Ongar. In addition, three typical, white-patinated Levallois flakes come from Mulri Hills (MH) south of Karachi University Campus. These finds might help define the south-eastern limit reached by the Levalloisian Mousterian given that they are the south-easternmost artefacts of this type ever found.

Regarding the Late (Upper) Palaeolithic, both the Rohri Hills and Ongar yielded industries characterised by subconical and subpyramidal cores with blade-like flake and blade detachments, which are supposed to represent the beginning of this period in the study region, although the Late (Upper) Palaeolithic cores from the two above regions show strong differences (Fig. 4; 19). Blade-like flake flint workshops are very frequent in some parts of the Rohri Hills, even though characteristic Late (Upper) Palaeolithic implements are very rare. The research carried out during the last twenty years in the area does not always seem to confirm the impression that “Middle-Palaeolithic industries persist into the Upper Palaeolithic, but the basic Middle-Palaeolithic technique of producing flakes from previously prepared cores of various kinds other than blade cores also persists, along-

87 Negrino/Kazi 1996.
88 Negrino/Kazi 1996, 35.
89 Khan 1979b.
90 Allchin et al. 1978, 299.
91 Negrino/Kazi 1996, fig. 19, 1.
92 Allchin 1976, 485; Allchin et al. 1978, 312.
93 Allchin et al. 1978, 310.
94 Allchin/Goudie 1978, 309.
95 Negrino/Kazi 1996, 30–32.
96 Except for a few atypical specimens published as Protolevallois (?), mainly from Unnar; Biagi/Cremaschi 1988, 429.
97 Biagi 2007.
98 Allchin/Allchin 1982.
99 Negrino/Kazi 1996, fig. 24.
Relationships with neighbouring countries

Contrary to what is known from other regions of the Indian Subcontinent, which are very rich in Palaeolithic sites of different ages, this period of prehistory is still poorly documented in the country under study. Nevertheless, moving towards territories adjacent to Sindh, like the dunes of the Indian Thar Desert, which are rich in Palaeolithic and Mesolithic finds, Budha Pushkar and didwana, yielded two of the most ‘complete’ Palaeolithic sequences in western Rajasthan. They both produced well-stratified Early, Middle and Late (Upper) Palaeolithic assemblages. The research carried out in this region shows that here the oldest Acheulian industries are dated to at least 400 kyr, while older radiometric dates have been obtained from other territories of the Indian Subcontinent.¹¹³

¹⁰³ Ranov/Gupta 1979, 57–85; Борисковский 1984, fig. 66–71.
¹⁰⁴ Brantingham et al. 2001
¹⁰⁵ Derevianko et al. 2004, 222.
¹⁰⁹ Korisettar 2004; Williams et al. 2006.
In the stratigraphy of 16R dune, Didwana, the Late (Upper) Palaeolithic, characterised by assemblages with a low percentage of bladelet artefacts, makes its appearance around 25,000 BP.114 The scarcity of complexes of this period is “attributed to increased aridity in this region during the late Upper Palaeolithic”,115 although aridity is reported to have increased not earlier than 22,000 BP.116 This statement does not seem to contradict the presence of a very high number of Late (Upper) Palaeolithic workshops discovered in the Rohri Hills during the 1990s surveys,117 which are supposed to be older than 22,000 BP, when the climate still oscillated between semiarid and arid.118

Other important sequences are Bhimbetka, shelter III F-23, in central India,119 the Son and Belan Valleys in north-central India,120 and Patne in Maharashtra,121 from which a radiocarbon date of 25,000 ± 200 BP (GrN-7200) from ostrich eggshells, was obtained from the Late (Upper) Palaeolithic occupation layer, although, according to the opinion of the author of the excavations, “the beginning of the Upper Palaeolithic at Patne may well go back to around 35000 years BP”122 that is in accordance with the oldest radiocarbon dates obtained from other regions of India for the beginning of the Late (Upper) Palaeolithic,123 which is generally supposed to begin around 40 kyr.124 It is important to point out that the beginning of the Late (Upper) Palaeolithic is always represented by the appearance of blade-like flakes or blade(let)s detached from subconical/subpyramidal cores as it is also the case for the Rohri Hills, Ongar and the Thar Desert sites of Rajasthan.125 According to Misra,126 the assemblages of this period, which in India consist mainly of blade and burin instruments, show a noticeable regional diversity in the Subcontinent, although this author does not provide us with any further information about the tool classes that characterize the different horizons into which it might be further subdivided.

Similar radiocarbon results are known for the beginning of the Late (Upper) Palaeolithic also from Afghanistan, where the earliest blade industries of Kara Kamar rock-shelter date back to some 32,000 BP,127 while the first occurrence of a blade technology, in northern Pakistan, has been thermo-luminescence-dated to some 45–42 kyr,128 at Riwat, site 55.129 This chronology is widely accepted for the beginning of blade manufacturing and major variability in tools production in South Asia,130 although no such old dates are so far known from the northern regions of central India.131 It is important to point out that Riwat 55 assemblage contains a very low number of “real” blade artefacts132 and no typical Late (Upper) Palaeolithic implements and cores, which makes its cultural attribution problematic. Similar observations can be made for the

\begin{itemize}
\item114 Misra 1989.
\item115 Misra 1989, 13; see also Ailchín/Goudie 1978, 311.
\item116 Tandon/Jain 2001, 20.
\item117 Biagi et al. 1998–2000.
\item118 Misra/Rajaguru 1986, 435.
\item119 Misra 1985.
\item120 Williams et al. 2006.
\item121 Sali 1989.
\item122 Sali 1985, 145.
\item123 Misra 2001, 496.
\item124 Misra 1995, 13.
\item125 Ailchín et al. 1978.
\item126 Misra 2001, 496.
\item127 Davis 1978, 48.
\item128 Rendell/Dennell 1987.
\item129 Rendell et al. 1989, 204.
\item130 James/Petraglia 2005, S12.
\item131 Jayaswal 1990.
\item132 Artefacts whose length/width ratio is greater than 2:1.
\end{itemize}
Late (Upper) Palaeolithic of other northern areas of Pakistan, which is known almost exclusively from Sanghao Cave.\(^{133}\) The excavations carried out at this site yielded a unique assemblage on flakelet and bladelet, mainly from hyaline quartz,\(^{134}\) which does not find any parallel with the Sindh industries discussed in this paper. Other Late (Upper) Palaeolithic sites in this area are the painted caves discovered by F. D. Kakar\(^{135}\) in the Zhob and Musakhel districts of Balochistan. Painted caves and rock-shelters are also known from the Bugti Balochi mountainous tribal area, where the French Palaeoanthological Mission, directed by J.-L. Welcomme, in 2002–2003 collected a few blades, which are still unpublished, most probably attributable to the Late (Upper) Palaeolithic.\(^{136}\) Nevertheless most of Balochistan and the Makran coast are still to be accurately surveyed in search for Pleistocene sites, as they were fifty years ago.\(^{137}\)

Palaeolithic assemblages come from several sites in the northern provinces of the Indian Subcontinent,\(^{138}\) among which are those attributed to the Soan Culture,\(^{139}\) an aspect unknown in Sindh.\(^{140}\) It is characterised by a great variety of tools on pebbles and large flakes, whose chronology is still largely debated,\(^{141}\) although an absolute dating between 400 and 200 kyr seems to be widely accepted.\(^{142}\) Apart from this aspect, bifacial, Acheulian tools are recorded also from the above regions.\(^{143}\)

West of Sindh, the Ladizian chert scatters of Balochistan\(^ {144}\) are amongst the few Palaeolithic open-air sites discovered in southeast Iran.\(^ {145}\) Their chronology is difficult to ascertain, and the typological characteristics of the few (pebble) tools undoubtedly attributable to the Palaeolithic, do not resemble those of the Early and Middle Palaeolithic industries of Sindh.

Conclusion

At present the Palaeolithic of Sindh is poorly known, most probably because of the scarcity of research so far conducted. Nevertheless sites attributable to the Early, Middle and Late (Upper) Palaeolithic are all known from a few, environmentally diversified zones of the country, in which surveys have been systematically conducted. The main problems that are still to be solved include: 1) the detailed chronology of most of the assemblages, 2) their distribution pattern, or intensity of occurrence, in some specific territories, 3) the presence/absence of the Levallois technique in the different areas, and 4) the reason of the typological variability of the industries.

1) The first point is currently difficult to solve because of the absence of multi-stratified deposits and radiometrically datable materials. The relative chronology of the industries is mainly based on their typology, manufacturing technique, patina, deposition within single-layered deposits, and the parallels extended to other sites with assemblages in a better-defined chrono-stratigraphic position.

2) Some specific areas, like the Rohri Hills and Onsar, are very rich in lithic prehistoric sites. In effect they constitute the most important, excel-

\(^{133}\) Dani 1964; Ranere 1982.

\(^ {135}\) Kakar 2000.

\(^ {136}\) Welcomme pers. comm. 2003.

\(^ {138}\) De Terra/Paterson 1939; Rendell et al. 1989; Allchin 1995; Chauhan 2005; Micheli 2006.

\(^ {140}\) The presence of pebble tools at Mehrano, along the southwestern fringes of the Rohri Hills (Shar 1995), Onsar (Khan 1979b), and Daun, along the coast of Lasbela (Khan pers. comm. 2002) is uncertain. This is why it is not discussed in this paper.

\(^ {141}\) Chauhan 2007.

\(^ {142}\) Chauhan 2004, 320.

\(^ {143}\) Salim 1996; 1997.

\(^ {144}\) Hume 1976.

\(^ {145}\) Smith 1986, fig. 3.
lent quality, raw material outcrops of the Indus Valley, which, for this reason, attracted prehistoric populations since the beginning of the Palaeolithic. The abundance of Acheulian, and moreover Late (Upper) Palaeolithic manufacturing areas or workshops, on the top of these terraces is impressive. Nevertheless it is very difficult to reconstruct their internal, detailed chronology and the destination of the final products, given that no Palaeolithic site has ever been recorded from their adjacent areas of the Thar Desert and the Indus Valley. Regarding the Late (Upper) Palaeolithic workshops for the manufacture of blade-like flake and blade products, the presence of long bifacial picks, might indicate that during this period the flint nodules were in some cases extracted from the limestone formation, follo-

wing a technique different from those of the Acheulian (surface collection), and Bronze Age Indus Civilisation (open-air deep mining). The currently available evidence from both the above territories seems to support the impression of the absence of any rapid techno-typological change marking the arrival of modern humans, as it is clearly observable, for instance, in Europe. 2) of any possible cultural/chronological subdivision based on the systematic occurrence of industries with typologically well-defined traits throughout the entire Late (Upper) Palaeolithic. This phenomenon seems to last until the very end of the Pleistocene/beginning of the Holocene, when the first assemblages with geometric (hyper)microliths are supposed to make their appearance most probably in different areas of Sindh, from the Arabian Sea coast up to the Thar Desert lakes, east of the caravan city of Thari. Although their chronological attribution is still disputed, in India, a few earliest of them are radiocarbon-dated to the ninth millennium uncal BP, on the basis of the results obtained from the skeletal remains from Damdama and Lekhahia.

3) The presence of typical Levallois assemblages and isolated tools, cores, points and blades, recovered from sites located to the west of the Indus River is, in my opinion, of extreme importance for the definition of the south-easternmost limit reached by this technique. Although the data so far available are scarce, nevertheless there is no doubt that a few complexes are technologically unequivocal, opposed to what is known from many Indian assemblages, which have been erroneously attributed to this technique. To my knowledge, in Pakistan, typical Levallois flakes and points are so far known only from Daud Khel in the North Western Frontier Province. Whether or not they represent a Neanderthal production will be confirmed or rejected by future research in the area. It is perhaps important to point out that, further to the north, across the mountain chain of the Hindu Kush, typical Mousterian Levalloisian assemblages are known from several open-air sites in the uplands of Tajikistan.

147 Starnini/Biagi 2006.
149 Kennedy 1996.
151 Petraglia et al. 2003, 20.
152 Salim 1992, fig. 7–10.
4) The typological variability is very high especially as regards the Late (Upper) Palaeolithic complexes. There is little doubt that the blade-like flake and blade assemblages obtained from sub- conical and subpyramidal cores from the Rohri Hills (Fig. 19) and Ongar (Fig. 4) are somewhat similar, although not at all identical, but it is also true that they cannot be compared with those from the Karachi coastal area. The complexes from these two regions are most probably not contemporaneous at all; most of the Karachi assemblages represent (much?) more advanced stages in the development of the Late (Upper) Palaeolithic. In this latter territory, a few assemblages are characterised by burins and backed instruments, among which are bipolar, arched points and lunates that seem to slowly evolve into the earliest assemblages of the Mesolithic, Holocene period, which are known in abundance from this part of Lower Sindh, although their detailed chronology is still to be defined, because of the present-day absence of radiocarbon-datable sites.

Given the utmost archaeological importance of the Palaeolithic sites of Sindh, it is highly regrettable that many of them have already been totally destroyed (Unnar and the Mulri Hills for instance), or very heavily damaged (Rohri Hills and Ongar) by industrial activities still underway (Fig. 21–22), and that no measure has ever been taken by both the national and local authorities to preserve at least part of this unique archaeological patrimony of the Indian Subcontinent.

Acknowledgements

The 2005–2008 surveys at Ongar were carried out in collaboration with the Institute of Sindhology, Sindh University. The author is very grateful to the Vice-chancellor of Sindh University, Jamshoro, Mr. Mazharul Haq Siddiqui and to the Institute’s Director, Mr. Shoukat Shoro for all their help before and during his permanence in Jamshoro. Special thanks are due and to Mir Atta Mohammad Talpur, Mir Farooq Talpur, Mir Ghulam Rasool Talpur, Mir Akhtar Talpur, Mir Rehman Talpur and four Sindh policemen who took part in the surveys.

Thanks are also due to Professors A. R. Khan and B. Talat of the Department of Geography of Karachi University who allowed the author to analyse the material stored in the Museum of Prehistory and Palaeogeography of the same University, to Dr. M. Spataro (British Museum, London, UK), who helped analyse the collections from the above Museum, the EURAL Gnutti Ltd (Rovato, Brescia, I) that sponsored the 2008 research at Ongar, Dr. C. Franco (Ca’ Foscari University, Venice), who took part in the 2008 fieldwork season at Ongar and Daun, and all the Italian and Pakistani members of the “Joint Rohri Hills Project”.

Particular thanks are also due to Dr. M. D. Petraglia (Cambridge University, UK) for the critical review of the manuscript and the revision of the original English text and to Dr. D. Kiosak (Odessa Archaeological Museum, UA) for the Russian summary. All the faults that remain are mine.

Bibliography

Allchin 1976

Allchin 1995

Allchin 1999

Allchin/Allchin 1982

Allchin/Allchin 1997

Allchin/Goudie 1974
B. Allchin/A. Goudie, Pushkar: Prehistory and climatic change in Western India. World Archaeology 5, 1974, fasc. 3, 358–368.

Allchin/Goudie 1978
B. Allchin/A. Goudie, Climatic change in the Indian Desert and North-West India during the Late Pleistocene and Early Holocene. In: W. C. Brice (ed.) The environ-

155 The recent discovery (January 2008) of geometric microlithic tools, obtained with the microburin technique, on the surface of the shell-middens of Daun 1 and Daun 10, in the province of Las Bela, along the Arabian Sea coast of Balochistan, some 60 km west of Karachi, might help refine the radiocarbon chronology of the most recent aspects of the Atlantic assemblages with geometric armatures (Biagi/Francis 2008). The above two sites have been radiocarbon-dated, by samples of Terebra palustris mangrove gastropods, respectively to 6380 ± 40 uncal BP (GN-26368; Daun 1) (Biagi 2004, table 2) and 6305±45 uncal BP (GN-31489; Daun 10) (van der Plicht pers. comm. 2008).
Biagi et al. 1994
Biagi et al. 1997
Biagi et al. 1998–2000
Blandford 1880
Branningham et al. 2001
Caton-Thompson 1954
Chakrabarti 1999
Chauhan 2000
Chauhan 2005
Chauhan 2007
The Palaeolithic settlement of Sindh (Pakistan): A review

Childe 1934
V. G. Childe, New light on the most Ancient East: The Oriental prelude to European prehistory (London 1934).

Cook/Martindell 1984

Cousens 1929
H. Cousins, The antiquities of Sind (Calcutta 1929).

Dani 1964

Dar 1991

Davis 1978

de Cardi 1983

Dennell 1995

Dennell 1999

Dennell/Rendell 1991

Derevianko et al. 2004

De Terra/Paterson 1939

Dupree 1997

Field et al. 2007

Flam 1987

Forster 2004

Gaillard 2005

Hume 1976

James/Petraglia 2005

Jayaswal 1990

Kakar 2000
F. D. Kakar, Cultural heritage. Balochistan conservation strategy background paper (Quetta 2000).

Kennedy 1996

Khan 1979a

Khan 1979b

Khan 1979c

Korisettar 2004
R. Korisettar, Geoarchaeology of the Purana and Godavari basins of peninsular India: peripheral or paramount. In: Sixth-fifthy session of the Indian History Congress. Archaeology section (Bareilly 2004) 2–38.

Lukacs et al. 1996

Majumdar 1934

Marshall 1931
J. Marshall, Mohenjo-daro and the Indus Civilization being an account of archaeological excavations at Mohenjo-daro carried out by the Government of India between the years 1922 and 1927 (London 1931) (three volumes).

M'Crindle 1896
J. W. M'Crindle, The invasion of India by Alexander the Great. As described by Arrian, Q Curtius, Diodoros, Plutarch and Justin (Karachi 1896).

Micheli 2006

Mishra 1992

Misra 1985

Misra 1989

Misra 1995

Misra 2001

Misra/Rajaguru 1986

Misra et al. 1982

Murty 1968

Murty 1979

Negriino/Kazi 1996

Negriino/Stamini 1995

Pappu 2001
R. S. Pappu, Acheulian culture in peninsular India (New Delhi 2001).

Petraglia 1995

Petraglia 2001

Petraglia 2003

Petraglia et al. 2003

Pithawala 1978
M. B. Pithawala, Historical geography of Sind (Jamshoro 1978).

Raju/Venkatasubbaiah 2002

Ranere 1982

Ranov/Gupta 1979
V. A. Ranov/S. P. Gupta, Archaeology of Soviet Central Asia, and the Indian Borderlands 1 (Delhi 1979).

Ranov et al. 2005

Raza/Bender 1995

Rendell/Dennell 1987

Rendell et al. 1989
Summary

The Palaeolithic Settlement of Sindh (Pakistan): A review

The re-analysis of the Palaeolithic assemblages of Sindh has demonstrated that this region of the Indian Subcontinent has been inhabited at least since the Middle Pleistocene. The discoveries made on the Rohri Hills and Ongar show that Acheulean Culture assemblages occur from both these two territories, although their chronology cannot be precisely defined. The presence of typical Levalloisian cores and Mousterian tools, from both Ongar and a few other sites east of Karachi, is of particular interest, since they pose the question of the south-eastern limit reached by the Mousterian Neanderthals. Chipped stone industries with typical subconical/subpyramidal cores and blade-like-flake detachments occur at both the Rohri Hills and Ongar. They are supposed to represent the earliest Late (Upper) Palaeolithic assemblages of the region under study. The typological characteristics of the tools recovered from a few other sites close to the Arabian Sea coast, east of Karachi, attribute them to different periods in the development of the Late (Upper) Palaeolithic. They undoubtedly precede the Mesolithic, during which the assemblages are characterised by different types of geometric microliths.

Zusammenfassung

Die paläolithische Besiedlung von Sindh (Pakistan): Ein Überblick

Резюме

Заселение Синдна (Пакистан) в эпоху палеолита: обзор
Повторное изучение палеолитических комплексов Синдна показало, что эта часть Индийского субконтинента была заселена уже, по меньшей мере, в среднем плейстоцenie. Открытия, сделанные на Рори Хиллс и в Онгаре демонстрируют, что в этих местах присутствуют ашельские комплексы, хотя их точная хронология пока не известна. Наличие типичных ядрцов индустрии леваллуа и мустерских орудий как в Онгаре, так и на стоянках к востоку от Карачи, привлекает особое внимание, поскольку они дают возможность поставить вопрос о юго-восточной границе распространения мустерских неандертальцев. Индустрии, включающие типичные субконические или субпира- мидальные нуклеусы и пластинчатые скобы, есть на Рори Хиллс и в Онгаре. Мы предполагаем, что они представляют собой самый ранний комплекс эпохи позднего палеолита в изучаемом регионе. Типологические характеристики орудий, найденных на памятниках вдоль побережья Аравийского моря, к востоку от Карачи, позволяют отнести их к различным стадиям позднего палеолита. Они, безусловно, предшествуют мезолиту, комплексы которого отличаются присутствием разнообразных типов геометрических микролитов.