Aryldiazenido complexes of ruthenium(II) with tris(pyrazolyl)borate: A DFT study

Emilio Bordignon, Marco Bortoluzzi *

Dipartimento di Chimica, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia, Italy

Received 26 March 2005; accepted 28 May 2005
Available online 7 July 2005

Abstract

Aryldiazenido complexes of ruthenium(II) with tris(1-pyrazolyl)borate as ancillary ligand of the kind [Ru(N=NAr)(Tp)P^0P^00](BF_4)_2 [Tp = hydrotris(pyrazol-1-yl)borate; P^0P^00 = (PPh_3){P(OEt)_3}, (PPh_3){PPh(OEt)_2}, {P(OEt)_3}_2; Ar = C_6H_5, 4-CH_3C_6H_4] have recently been reported. The exceptionally high values of \(\nu(\text{NN}) \) stretching in infrared spectra indicate a near-linear [Ru]-N=N=Ar group. Further support to this hypothesis and information about the structural and electronic properties of these complexes were obtained by DFT B3LYP calculations.

Interest in the chemistry of “diazo” complexes is due to its relationship with the intermediates of biological dinitrogen fixation and to research regarding new ways of obtaining derivatives of dinitrogen reduction. The chemistry of “diazo” compounds of transition metals has developed extensively in the last 30 years, with \(\pi \)-acceptors such as carbonyl, phosphines and cyclopentadienyl anions as ancillary ligands [1]. The first examples of “diazo” derivatives of the iron triad containing (pyrazolyl)borates as supporting ligands were dicatonic aryldiazenido complexes of ruthenium(II) [Ru(N=NAr)(Tp)P^0P^00](BF_4)_2 [Tp = hydrotris(pyrazol-1-yl)borate; P^0P^00 = (PPh_3){P(OEt)_3}, (PPh_3){PPh(OEt)_2}, {P(OEt)_3}_2; Ar = C_6H_5, 4-CH_3C_6H_4] [2]. “Single bent” aryldiazenido complexes usually exhibit an \(\text{N}_1\text{N}_2\text{Ar} \) angle of about 120° and \(\nu(\text{NN}) \) stretching of about 1600–1800 cm\(^{-1} \) [3], but the exceptionally high values of \(\nu(\text{NN}) \) stretching (between 2073 and 2095 cm\(^{-1} \)) in the infrared spectra of [Ru(N=NAr)(Tp)P^0P^00](BF_4)_2 derivatives indicate a rare near-linear arrangement of the Ru-bonded ArN_2 ligand [4,5] (see Fig. 1).

This paper reports the results of DFT calculations on these compounds, which strongly support the above hypothesis. Geometrical optimization of the [Ru(N=NPh)(Tp)P^0P^0](a) and [P(OEt)_3]_2 (b) cations was performed applying restricted DFT B3LYP calculations with the SDD basis set. Initial refinement of the geometries was obtained with semi-empirical PM3 and DFT B3LYP/3-21G* calculations; atomic charges derived from Mulliken population analysis [6]. All calculations were carried out with computers equipped with Intel Pentium 4 Willamette processors operating at 1.8 GHz frequency; software were Gaussian 98 [7] and Spartan 02 [8].

Table 1 shows selected bond lengths and angles for compounds a and b. Calculated data are in agreement with quite linear [Ru]-N=N-Ph groups for both complexes, with the Ru-N_1-N_2 (\(\alpha \)) angle between 173° and 178° and the N_1-N_2-Ph (\(\beta \)) angle between 168° and 171°. \(r(\text{N}_1\text{N}_2) \) bond lengths fall between 1.1576 and...
1.1635 Å, only slightly longer than that obtained with DFT B3LYP/SDD calculations for the free diazonium cation \([\text{N}^\equiv\text{NPh}]^+\) (1.1415 Å) and shorter than that near 1.25 Å observed in the majority of the “single bent” aryldiazenido complexes.

\(r(\text{Ru–N}_1)\) lengths indicate the relatively less strong interaction of the N\(_2\)Ph ligand with the metal centre [3].

Bond lengths are also similar to those obtained from X-ray structure of the dicationic \([\text{Ru}(\text{N}^\equiv\text{NC}_6\text{H}_4\text{OMe})(\text{Cp})(\text{PPh}_3)_2]^{2+}\) compound [4], which has a quite linear \([\text{Ru}]\text{–N}^\equiv\text{N–Ar} \) group (\(\alpha = 175.4^\circ\) 158.9\(^\circ\)). In this complex, \(r(\text{Ru–N}_1)\) is 1.8561 Å and \(r(\text{N}_1–\text{N}_2)\) is 1.1463 Å (see Fig. 2).

The structure of the aryldiazenido fragment in complexes \(a\) and \(b\) does not significantly depend on the bulk of the other ligands, since in both complexes the smaller distance between the atoms of the aryldiazenido ligand and of the other ancillary ligands is about 3 Å. Also, the structure of the \([\text{Ru}(\text{N}^\equiv\text{NPh})(\text{Tp})(\text{PPh}_3)]^{2+}\) \{\(\text{P}(\text{OEt})_3\)_2\} cation obtained from geometrical optimization with the constraint \(\beta = 120^\circ\) does not show any particular interaction of the N\(_2\)Ph fragment with other parts of the molecule. As described by Sutton et al. [4], one explanation for the data in Table 1 comes from the \(\pi\)-acidity of aryldiazenido ligands; \(\pi\) back-donation from the metal centre weakens the \(\text{N}_1–\text{N}_2\) bond and reduces the \(\beta\) angle but, because of the dicat-ionic charge of complexes like \([\text{Ru}(\text{N}^\equiv\text{NPh})(\text{Tp})\text{P}^\pi\text{P}^\pi\)](BF\(_4\))\(_2\) [1], \([\text{Ru}(\text{N}^\equiv\text{NC}_6\text{H}_4\text{OMe})(\text{Cp})(\text{PR}_3)_2]^{2+}\)BF\(_4\))\(_2\) [4] or \([\text{Ru}(\text{N}^\equiv\text{NAr})(\text{Cl})(\text{bpy})_2]^{2+}\)PF\(_6\))\(_2\) [5], \(\pi\) back-donation from ruthenium to the aryldiazenido ligand is quite low and the \([\text{Ru}]\text{–N}^\equiv\text{N–Ar} \) fragment is near-linear (see Fig. 3).

The dependency of bond lengths and angles on the nature of phosphine shown in Table 1 supports this hypothesis: the \([\text{Ru}]\text{–N}^\equiv\text{N–Ph} \) group in complex \(b\) is more linear than in complex \(a\) and the bond lengths show that the interaction between ruthenium and aryldiazenido ligand is stronger for complex \(a\), whereas the \(\text{N}_1–\text{N}_2\) bond is shorter in complex \(b\). Substitution of \(\text{PPh}_3\) for the more \(\pi\)-acceptor \(\text{P}(\text{OEt})_3\) still reduces back-donation to \(\pi^*\) orbitals of the aryldiazenido ligand, weakening the Ru–N\(_1\) bond and increasing \(\text{N}_1–\text{N}_2\) bond strength. The greater strength of the bond between the two nitrogen atoms in complex \(b\) is shown by the experimental \(\nu(\text{NN})\) stretching frequency, which is 2079 cm\(^{-1}\) for \([\text{Ru}(\text{N}^\equiv\text{NPh})(\text{Tp})(\text{P}(\text{OEt})_3)_2]^{2+}\) \(a\) and 2087 cm\(^{-1}\) for \([\text{Ru}(\text{N}^\equiv\text{NPh})(\text{Tp})\text{P}(\text{OEt})_3]^{2+}\) \(b\).

[Ru(N\equivNAr)(TP)P\piP\pi]**+ compounds easily react with hydride sources like Li[BHEt\(_3\)], leading to the formation of aryldiazene derivatives [Ru(NH\equivNAr)\(\text{P}^\pi\text{P}^\pi\)]\(^+\). Results show that the lowest unoccupied molecular orbital (LUMO) of aryldiazenido complexes

![Fig. 1. Aryldiazenido complexes of Ru(II) with tris(pyrazolyl)borate.](image1)

![Fig. 2. \(\alpha\) and \(\beta\) angles.](image2)

![Fig. 3. \(\pi\) back-donation strong \(\pi\) back-donation](image3)

![Fig. 4. Location of the LUMO.](image4)
is concentrated on the nitrogen atoms of the [Ru]-N=N-Ph fragment, supporting the electrophilic nature of the aryldiazenido group. The dipolar moment vector is oriented approximately along the aryldiazenido group towards the metal centre, with values between about 4.8 and 6.9 Debye, so that electrostatic interaction favours the approach of negative-charged molecules to the aryldiazenido ligand. As shown in Table 2, the Mulliken charge is more positive on N2 than on N1: values for N1 fall between −0.018 and 0.028, whereas the N2 charge falls between 0.106 and 0.109 (see Fig. 4).

One explanation for both charge distribution and reactivity of [Ru(N=NAr)(Tp)P0P00]2+ complexes towards hydride sources is an initial attack of the hydride on the N2 atom, followed by a proton shift from N2 to N1, which leads to the final aryldiazene derivatives, as shown in Fig. 5. This hypothesis fits low-temperature NMR observations for the reaction between [Ru(N=N=C6H4OMe)(Cp)(PPh3)2](BF4)2 and NaBH4 [4].

DFT B3LYP/6-311+G** calculations on NH=NPh and N=NHPH free molecules show that the former is thermodynamically more stable, its total energy being 22 kcal/mol lower than that of N=NHPH. This energy difference fits the proton shift shown in Fig. 5.

Acknowledgement

References

[8] Spartan’02, Wavefunction, Inc. Irvine, CA. We thank Prof. S. Cossu for the use of his software package.