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Inquiries on the Applications of
Multidimensional Stochastic Processes
to Financial Investments

Elio Canestrelli and Sebastiano Pontini
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Abstract: This paper presents a selection model for investments
in financial securities whose prices follow an It6 multidimensional
stochastic process. The optimal investment shares are obtained by
maximizing the expected utility of consumption at one future date,
subject to the level of attained wealth. This problem is solved by
applying dynamic programming techniques and requires solving a
non linear partial differential equation in order to obtain the opti-
mal shares in explicit form. We formulate this equation for more
general processes than as in Merton (1973), and then we study
possible methods to reach its solution for some special cases. In
these situations, we show some simple examples, verify the empiri-
cal applicability of the model, and discuss upon the methodology of
empirical applications.

Keywords: Portfolio Management, Investment, Stochastic Con-
trol, Merton Model, Italian Stock Market.



1 Introduction

This work presents a model for investment in financial activities following
the definition given by Merton [7][8]. In his articles he suggests some rules
for allocating wealth between current consumption and financial invest-
ment. Such models are explicitly solved for a special type of stochastic
process concerning the price of financial activities: the geometric Brow-
nian motion. For more general processes, the possibility of obtaining
solutions depends on the ability to solve, either analytically or numeri-
cally, the partial differential equation (PDE) associated to the Bellman
equation of the underlying problem of stochastic optimal control.

In Section. 2, the above mentioned Bellman equation will be proposed
for a very general stochastic process concerning security prices and for a
subgroup of HARA utility functions. Section. 3, instead, will show, for
specific cases of the process describing the motion of security prices, how
the assumption of zero consumption (joined to the selected particular
utility function) can make it possible to obtain solutions starting from a
first-order differential equation system rather than from a partial differ-
ential equation. In the cases examined the system will, then, be solved in
order to reach the analytical solutions of the original investment problem.

In the following Sections the theoretical models illustrated will be
applied to the study of some securities of the Italian stock market, in
order to reach two main objectives:

I - to give examples of the solution of investment problems through
the suggested models;

IT - by applying more general models to verify if it is possible to obtain
investment performances superior to the classical geometrical Brownian
motion (at least for the considered securities and the chosen period).

2 Model formulation

We make the following assumptions:
perfect markets: no transaction costs and taxes, freely available in-



formation, perfect divisibility of securities, trading in continuous time,
identical borrowing and lending rate, no short-sale restrictions;

n risky and one (n + 1)-st. riskless securities;

the investor is interested in consumption only at the end of the time
horizon;

price dynamics for securities is described by the following system of
stochastic differential equations (SDEs)

dP = Pu (P, X,t)dt + PS (P, X, ) dz
dPn+1 = Pn+1Tdt (1)
dX = f(X,t)dt + G (X, 1) dg

dP, u(P, X,t) and dz are vectors in R" corresponding respectively to
the instantaneous price differential, the expected return in the time unit
and to the differential of n-dimensional standard Brownian motion;

P and S are n-dimensional diagonal matrices, corresponding to the
security prices and the standard deviation of returns in the time unit;

r is the instantaneous rate of return of the riskless security;

X is a vector of R™ containing factors influencing the vector p and
the matrix S;

f(X,t) is a vector of R™ expressing the expected variation of the X
process in the time unit;

G (X,1) is a diagonal matrix whose m values are the standard devia-
tions in the above-said processes;

dq is a vector in R™ corresponding to the differential of m-dimensional
standard Brownian motion.

Also:

(2 is an n-dimensional not singular square matrix; s; are the elements
of the diagonal of S; Q = [s; p;j s;] with 4,7 = 1,...,n and p;; dt = dz; dz;;

V' is an m-dimensional not singular square matrix, g; are the elements
of the diagonal of G; V' = [g; v;j g5 with 4,5 = 1,...,m and v;; dt =
dq; dqj;

I'is a m x n full rank matrix; T' = [g;m; 5;] with i =1,...,m; j =
1,...,n and n;; dt = dg; dz;;



Q) is the variance-covariance matrix among the security return rates,
V' the instantaneous variance-covariance matrix of the variations between
the variables of X and I' expresses the instantaneous covariances between
the variations of X and the security return rates.

Assuming that the decision maker’s wealth derives only from invest-
ment in the n+1 securities, its evolution can be expressed by the following
stochastic differential equation [7]

dW = Ww" (u—rl)dt + rWdt + Ww’ Sdz (2)

with initial condition W (0) = W,

where W is the wealth, 1 the vector with all elements equal to one,
and w is a vector of R™ containing the weights of the investment in
the n risky securities. The weight of the riskless security, (n + 1)-st.,

is computed residually being Y¥""'w; = 1. We introduce the objective
function[3][6][8]:

)

T
J(Wg, PO,X(),O) = maXEO [/ U (CS, S) ds + B (WT,T) (3)
w 0

with the constraint (2), and where the utility functions U and B are
supposed to be concave and not decreasing.

Since we are concerned with investment, rather than consumption
problems, we set Cy = 0 on [0,T[. It follows that Cr = Wr and U = B,
i.e. the wealth is cumulated to be completely consumed at the final time.

(3) can so be reformulated:

J (WO, P(), X(), 0) = IIluE]lX EO (U (CT, T)) (4)

By applying Bellman’s dynamic programming method [1][5][7] we can
obtain the following functional ®, whose maximum with respect to the
vector w must be equal to zero:

max (@ (W, P, X,t,w)] =0, (5)

where



® = Jyw W' (u— r1)+Jw rW+Je+Jb Put+Jx f+5Tww W2l Qu+
J‘?VPWPQW + WJX?VXFW + % (PJPP) ©) (QP) + %JXX oV + (PJP)() ¢) FT

and where the subscripts in function .J denote the variables with
respect to which the partial derivation is carried out and the symbol ”0o”
indicates the sum of the componentwise product of the two matrices.
By setting the first-order conditions on ®, we obtain:

1 1

Jwp —

QY (u—rl)—
e T W T

QT Jwx. (6)

Since Hessian (®) = JywW?Q, where Q is positive definite by hypoth-
esis, then the condition Jyy < 0 assures the strictly concavity of ¢ and
it is a sufficient condition for the existence of only one maximum point.

As before said the utility function chosen for the final consumption is
a HARA function and, precisely, of iso-elastic type: U (C') = C7/~. For
these utility functions J can be expressed as the product of two functions
[3119]:

T(W,P,X,1) = Q (P, X, 1) W7/ ™)
Using this remark and substituting (6) in (5), we obtain:

1 1
Qi+ Qry+ QuPu+ Q% f + 3 dz"'SPTQpp PSdz + §quGQXXG dq+

+d=" PSQpx G dg - ﬁQEP(u ~rl) - %Qﬁm‘l(u —r1)-

QYT PQp — QLPOPQp-

_Tr b
Qly—1) 2Q(y - 1)
v T rO-17T QY
200 - DO T o0 T
with final condition Q(P, X, T) = 1.
After obtaining the function @, it will be possible to reach explicit
solutions by substituting @ in (7) e consequently J in (6).

(n—r)TQ (p—r1) =0 (8)



The existence of solutions of (8) depends on qualification of system
(1), that is, on the type of stochastic process adopted for security prices
and on the parameter v of the utility function. As concerns the cases
examined, conditions will be discussed presently.

3 Alternative formulations for the stochas-
tic prices modelling process

3.1 Geometric Brownian motion (model 1)

In the case considered here the parameters of the system of differen-
tial equation describing the prices dynamic, i.e. p and S, are constant
13][6][7][9]. The optimal weights are therefore constant with respect to

wealth and time: .
= — QY u—r1). 9
0= =) ©

3.2 Ornstein-Uhlenbeck process for the riskless rate
of return r (model 2)

In this first example we assume that r is not constant, but is a stochastic
process satisfying the equation dr = 3(§ — r)dt + gdgq .
Therefore the (n + 1)-st. security is only locally riskless [8]. The
prices system is
dP = Pudt + PSdz
dP,, 1 = P, rdt (10)
dr = (£ — r)dt + gdq

(8) is in our case:

Qt + [77“ + ﬁ (T2A11 — 2TA12 + A13)] Q+ (11)



Y A3(Qr)
(1-7) @

with final condition Q(r,7) = 1 and where (I is in our case an n-
dimensional vector)

2
1
+ 5(5—7“)—1‘&(1422—7“1423) Qr+2 +§92er:0

Ap =17071; Ap=p"Q7M; A = 0"O
A22 = MTQ_IF; A23 = ]_TQ_IF;
A3 = FTgilF .

We look for a solution of (11) among functions of the kind
Q(r,t) = exp (A(r) +rB(7) + r*C (7))

where 7 = T — t and the functions A, B and C' € C*.
Then (11) is equivalent to the following first-order system of differen-
tial equations:

{ A(r) = B B+ 3aBA(r) + ¢°C(r)
B'(r) = d+0bB(r)+2kC(1) 4+ 2aB(1)C(1) (12)
C'(t) = c+2bC(1) + 2aC?*(7)

with initial condition A(0) = B(0) = C'(0) = 0, where

A A A
573-1—92; E_B_V 23;05A;
I 1—v 2(1-7)
YA v As vA13
d=v———; k=pE+ ; h = )
1—v 1—vy 2(1—7)

Equation (6) expressing the optimal investment solutions can be re-
formulated as follows, considering the form selected for function @ (r,t):

w:LQ_I(u—rl)—i—B(T)jLQTC(T)

Q7T 1
1—v 1—7 (13)




From (7) we obtain that the sufficient condition for the existence
of only one maximum point, Jyyw < 0, is met, for the functions @
considered, if v < 1; which restrains our analysis only to risk-averse
investors, as we have set U(C) = C7/~.

To spot the optimal investment, it is therefore sufficient to obtain the
functions B (1) and C (7) resulting from the system given by the two last
equations in (12), being these independent from the first one.

The last equation of system (12) is a Riccati equation with constant
coefficients, its particular solution being the constant y dependent on
the values of the parameters of the stochastic process and on the value
7 chosen for the utility function. The explicit solution for function C' ()
is:

C(r) = —y (2ay + b)
ay + (b + ay) exp [—2 (2ay + b

If we reconsider the second equation of system (12) and substitute
the solution (14) obtained for C (7), we obtain a linear non-homogeneous
differential equation whose solution is:

V7] +y. (14)

B exp[—(2ay + b)7] .
B0 = s epens 2oy T

day — 2fay® — 2fby
. 9 11
20y £ {exp[(2ay + b)7] — 1}

VI D el ay + 07 - 1} (19

By substituting the functions thus obtained in (13), we can reach the
explicit optimal solutions for the n + 1 securities.

3.3 Affine dependence of expected return of risky
securities on an external variable (model 3)

We assume that the vector of the expected returns affinely depends on
an external variable X, i. e., p = aX + A, and that the matrix S is



constant. If X follows an Ornstein-Uhlenbeck process, the price system
is:

dPn+1 = Pn+17"dt (16)
X = B(E — X)dt + gdq

(8) consequently becomes

{ dP = P (aX + \) dt + PSdz

Q: + [77” + ﬁ (X2A11 +2X A5+ A13)] Q+

|
As Q)% 1
P 1) S
21-7) Q@ 2
with final condition @ (X,T) = 1, and where

" [ﬂ(& ~X) 4 (XA + A23>] Oxt

QZQXX =0 (17)

All = OKTQ_IOK; A12 = O!TQ_I ()\ — 7"1) 3 A13 = ()\ — 7"1)T Q_l ()\ — Tl) ;
A22 = O[TQ_IF; A23 = ()\ — Tl)TQ_lF; A3 = FTQ_IF .

Proceeding in the same way as in the previous section and choosing
a solution of (17) among functions of the kind

Q(X, 1) = exp [A(r) + X B(7) + X*C(7)]

where 7 = T — t; we reach a new formulation of the system (12), where
the parameters a, ¢, d are defined as above, while b, k, h are as follows:
YA13
2(1—-7)
Let us consider again equation (6) expressing the optimal values of
the weights of investments and whose form is:

w:—l Q_l(aX+)\—r1)+B(T)+2XC(T)
1—x 11—

=-—p-

A A
AY22;I€EB§—|—M;h,Ew"—l—
11— 1—7

Q7'r. (1)




Here, too, it will be sufficient to find the solutions B (1) and C (1) to
analytically solve our investment problem. Such functions have formally
identical solutions to the ones obtained in the previous section.

3.4 Applicability conditions

The possibility of solving system (12) depends on the possibility of solv-
ing the last equation of the system, namely the Riccati equation with
constant coefficients.

The necessary condition for the solution is that the discriminant of
the quadratic polynomial associated with the equation be positive, which,
in the parameter terms of the system, means

b? — 2ac > 0 (19)

where a, b, ¢ , let us remember it, are functions of the parameters char-
acterizing the initial system (10) and of the parameter  of the utility
function.

Assuming the parameters of system (10) as known, the values of v
must satisfy the following inequality:

v (A§3 — Ay Ay — 2BAgs + g* A + BZ) +
+ (25A23 — g* Ay — 252) +32 > 0. (20)

The equation thus found corresponds to that of a parabola in 7, and it
will be fully determined when the parameters of the stochastic differential
equation system (10) are defined. So it will be possible to find the class
of investors for which the problem can be solved. Given the analogy in
the problem formalization, (20) is valid both for model 2 and for model
3.

3.5 Optimal weights and mutual funds

The equation describing the optimal weights (13) puts into evidence an
inverse-ratio relation between the fraction of wealth invested by a decision



maker in risky securities and his relating risk-aversion. In fact, we can see
that, for the chosen utility function, the measure of relating Arrow-Pratt
risk-aversion is strictly positive for the considered class of investors.

For models 2 and 3 we can extend the mutual-fund theorem intro-
duced in Merton [7]. In fact, the equation (13) can be reformulated as

w=ar (1) [ () +an (,r,7)h (21)
where
ap (v,r,7) = 1TQ_11 (_Nﬂy— rl) an (v,1,7) = B (1) + 271“0_(;)] 170-1T
_ Q! (,U — Tl) B O-lr
f(r)= 70 (= 1) h= T

and where f(r)"i = h'i = 1, and consequently w, 1 = 1 — ap(y,r) —
ag(y,r,T).

In a similar way to what has been discussed in Merton, it can be said
that the optimal choice, among the n+ 1 original securities, is equivalent
to the choice among three mutual funds. The portfolios are made up of
the n+ 1 dimensional vectors (22), whose weights are independent of the
investor’s preferences and consequently defined only with respect to the
parameters of system (10):

vl = {f(r)io] vy = [hTio} vy = {051] (22)

where v3 invests only in the riskless security, while v; and v, invest
only in risky securities.

If F and H are the unit price of v; and vy respectively, then we obtain
that their differentials are:

dF = F,,(r)dt+ F,,(r)dzp, dH=H,,dt+ H,, dzyg (23)



where

pr(r) = f(r)p pp = hlp
o(r) = f )TQf() o = hTQh
dZF = f(T)ZSdZ dZH = hq;_%.

The weights of fund v; vary following the interest rate; this fund has
the function of guaranteeing a diversification of the investment. The
price F'is not lognormally distributed like the price of the initial secu-
rities (unlike in Merton [7] [9]), its drift and diffusion coefficients being
dependent on r.

The price H of fund v, follows a geometric Brownian motion as di-
rect consequence of the constant volatility hypothesis of the process dr,
which makes constant the variance-covariance matrix [' between the rate
variations and the security returns.

The function of this portfolio is to guarantee a hedging against the
effects of the variations of the interest rate level. The return of this port-
folio has its maximum correlation with the variations of rate » among all
the returns of the portfolios that can be built with the n risky activities.

Reconsidering the investment weights in each fund — «ap(y,r) and
ay(y,r,7), we write the partial derivatives with respect to the rate r

dap(y,r) 17O 11

o = 5 <0 (24)
dag(y,r,7)  2C(1)1"Q7'1
or N 1—v

In the first weight we can observe an inverse relation between the
return rate of the security n + 1 and the weight of the fund v;, while the
behaviour of the second weight is not to be determined a priori, its sign
not being univocally determined. However, the following relation:

’lrlir(l] Op (’77 T, T) =0 (25)

is valid, that is, the necessity of hedging against the variations of the
rate r disappears as the application period draws to its end.



4 Parameters estimation

To apply the models we have presented it is necessary to obtain, in a
preliminary way, an estimation of the parameters that the model assumes
as known, namely the parameters characterizing the initial SDE system.
More precisely, it is necessary to obtain, for the n risky securities, the
estimation of the vector p and the matrix S; as well as the estimation of
the parameters (3, £ and ¢ relating to process 7 in the case of model 2,
and process X in the case of model 3.
For this purpose, consider the following general linear SDE system of
the first order
dY =0Y(t)dt+ Vdt+ Sdz (26)

where the parameters are expressed by the square matrix ©, the vec-
tor ¥ and the diagonal matrix S. By integration of system (26) between
t — At and t we obtain

t t

/dY: / oY (0) db + / Wdh + /t S dz(9). (27)

t—At t—At t—At t—At

which, if At is sufficiently small, can be approximated using the trape-
zoidal rule, here exposed for the general function 6(¢):

[ ss)ds = %At [8(1) + 8(t — At)]. (28)

t t

Relation (27) can be re-written as
Y(t) = Y(t— At) = %At@ V(1) =Y (i — A+ WAL +er)  (29)

with €(t) ~ N(0,XAt), where ¥ is the variance-covariance matrix of
the processes Y, and zero correlation for time increments different from
At.

In this way we obtain a SDE system not difficult to estimate. So, in
the case that the SDE system utilized with the model hypotheses can be



brought back to (26), the described procedure can be utilized to obtain
the estimation of the parameters®.

As an example, we refer to the system (16) used for model 3, with
the assumption of the existence of only one risky security (n = 1)

dP, = Pi(aX +)\)dt+ Pysdz
AP, = Pyrdt (30)
dX = B(E—X)dt+ gdg

and perform the transformation

Y1 = In(P)
Yo = In(B) (31)
X = X

The differential of process (31) is, according to the It6 lemma, the
following
Ay, = (A—1s?)dt+aXdt+sdz
dY, = rdt (32)
dX = p&dt —pXdt+ gdq

which is of the type (26).
Approximating system (32) in accordance with what explained, after
some steps, we reach

(o) — et mXO+ XMl 00)
X))+ X(t—At) = i X(t—At) +ny + v(t)

where, from estimation of 7,...ny, var(¢), var(v), cov(¢,v) it is pos-
sible to obtain the parameters «, A, s, (3, &, g, cov(dz, dq) of the original
model (30).

Tt would be possible to obtain estimations of the parameters starting from finite
difference systems ”stochastically equivalent” to continuous ones, as the former are
satisfied by every set of equal width observations generated by the latter. However
the suggested approximation limits the error to a term of the third order with respect
to At [2] [11][12].



5 An application the some Italian securi-
ties

5.1 Preliminary statement

The model is continuous, so, in order to be coherent with the used
method, any time interval here considered has to be very small with
respect to the time unit, which in our case is one year, whether such
interval is the one used for the parameters estimation or the one regard-
ing the time interval of portfolio revision. Generally it is easy to collect
daily data, and the daily interval is sufficiently small with respect to
the year. Unfortunately the daily interval is not advisable for revision
purposes because of the very great incidence of transaction costs. In
this case an acceptable compromise may be to choose a weekly interval,
which appears to be a good trade-off between theoretical requirements
and practical feasibility.

5.2 The application

In this section we compare the performances of the above models using
weekly data of three Italian securities: SIP, BANCA COMMERCIALE
ITALIANA (BCI) and MEDIOBANCA (MDB), starting from October,
12th 1990 and applying the models to the year 1993.

We assume to rebalance weekly the portfolio, which is made up of
one of the above securities and a riskless security with a yearly rate of
return equal to 12% in models 1 and 3. The risk-aversion parameter
in the utility function () is fixed to —0.8, and the initial wealth to 1.
Whereas in model 2 we use for r the three-month time series of Italian
BOT. In model 3 we identify the variable X with the rate of return of
the Comit index of Milan stock exchange.

The graphs and table report the weekly courses of the historical series
used and some standard statistics on the stocks (Figures 1, 2 and 3).

The following graphs (Figure 4) show the weekly weights of the SIP
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Figure 1: Sip and BCI prices

security in the year 1993 resulting from the three models considered and
the wealth obtained from the investment in that security and in the
locally riskless security. Taking again into consideration (21), we can
see that the difference between the optimal investment weights in the
two models is given by the existence, in model 2, of the edging fund A,
generated in consequence of the randomness of the rate r (in the case of
an investment in only one risky security, h is equal to f(r), that is to
the fund that guarantees the optimal diversification of the investment,
because both funds contain only the risky security). The presence of
the fund h involves, in model 2, a shifting of wealth from the riskless
security towards the risky one, which makes it possible to better exploit
the positive behaviour of the security in the first periods of application.

IMediohanea
17000 SIP B MDB
15000 Average (vear) 042 009 0.117
13000 Variance (vear) 0122 0114 0153
110 Normality test 13324 13.426 109058
2000 Antocar. test (D.W)|1.854 1846 1981

7000 -+ t t t t t t t
0 20 40 &0 B0 100 120 140

Figure 2: MDB prices and stock statistics



In the case of model 3, we have assumed that the added variable X
directly bears on the return and consequently on the weight invested in
fund f. The greater volatility of X goes together with a much more
variable behaviour of the invested quota than for the other two models,
and this is obviously reflected on the state of the accumulated wealth.

The evolution of the wealth is satisfactory enough, but in the last
weeks, it shows a sharp decrease, only later recovered, with a consistent
loss of the previous gain. This fact suggests to introduce a stop loss rule,
in order to suspend the model in case the return should go below a fixed
level.

The return of the risky security, at the initial time, is positive and
higher than the one of rate r. This fact involves, for model 1 and 2,
a positive exposure on that security (see equation (9) and (13)), which
brings the wealth onto a good level, owing to the rising trend during
most of the period. This situation is quite favourable to the use of these
models, but it is also very particular.

3 months BOT COMIT Index returns

00E—+—

t t t t t t —t] = t i t t t t t
0 20 40 &0 =20 100120140 0 20 40 =50 20 100120 140

Figure 3: BOT and COMIT Index returns

Also, the weights conform but slowly to the changed trend conditions,
even if an overlapping technique? is applied to the estimation sample
data. This observation acquires greater significance if the models are

2This technique consists in inserting the new data as they become available into
the sampling used for estimations, while eliminating the oldest ones. By so doing, the
sample length remains unchanged. It must be noticed that the use of this technique



applied to short periods, for instance a year. As a matter of fact, if, in
the long run, it may appear less arbitrary to accept a stability assumption
of the expected return for some asset, and this is a requirement of the
geometric Brownian motion, for shorter periods it is convenient to let
the weights conform to external signals (i.e. the variable X) that give
information about trend changing.

SIP weights
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Figure 4: SIP weights and wealth

One may wonder, then, why model 3 shows a less positive perfor-
mance. First of all we can see that the greater variability of the weights

would be in contrast with a correct application of the Merton model (model 1), since
the geometric Brownian motion hypothesis implies a return expectation stability in
the long run.



is not favourable in periods of regular courses, i. e., in a time when the
security course largely reflects the one assumed by the geometric Brow-
nian motion, the greater stability of the weights it suggests is a sure
advantage. Let us also analyze the mean values (remember the use of
the data overlapping) of the regression coefficients of the system used for
parameters estimation in model 3:

In[P(t)/P(t — At)] = 0.00784 4 0.0052 [ X (¢) + X (t — At)] + st. noise
X(t)+ X(t—At) = —0.000148 + 1.1064 X (t — At) + st. noise (34)

We can anticipate that the coefficient which depends on the explica-
tive variable in the first equation of system (34), is very low if compared
with the one obtained for the other two considered securities. The first
addendum in the right side of the equation (18) (which, in model 3, is not
constant but dependent on the explicative variable) will not bring a high
differential advantage in the computation of the weights with respect to
the two first models. However the weights will differentiate themselves
as it occurs in model 2, because of the second addendum of the equations
(13) and (18).

As to the other two risky securities, which the models have been
applied to (Figure. 5 and Figure 6), the said slowness in conforming of
the weights and the up-and-down behaviour of the risky security return
involves a less satisfactory remuneration of the invested capital than for
the first security. Model 2, moreover, being more exposed in the risky
security, owing to the previously discussed hedging necessity, achieves an
even inferior performance.

The case is different for model 3, which, though showing a high vari-
ability of its weights, ensures interesting capital gains, more regular for
the Comit security.

As anticipated, we report the results of the linear regression used in
the model 3:

Banca Commerciale Italiana
In[P(t)/P(t — At)] = 0.0019 + 0.1163 [X (¢) + X (t — At)] + st. noise
X(t)+ X(t—At) = —0.000148 4 1.1064 X (t — At) + st. noise (35)
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Mediobanca
In[P(t)/P(t — At)] = 0.0026 + 0.17 [X () + X (t — At)] + st. noise
X(t)+ X(t—At) = —0.000148 4 1.1064 X (t — At) + st. noise(36)

Notice that, with respect to the Sip security, there is a net increase of
the parameter dependent on X in the first equation of the systems (34)
(36). This fact suggests a relation between the results of the application
and the dependence of the price process on the chosen external variable.
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6 Some conclusions

In the first part of this paper we have given analytical solutions to invest-
ment problems for models in which the evolution in time of the prices
of the considered securities can be referred back to stochastic dynamic
processes different from the classic geometric Brownian motion.

In the remaining sections we have proposed some explanations of the
results achieved and we have illustrated a method for the estimations
of the parameters of the stochastic process utilized, that being the first
indispensable step to proceed to the practical application of the mod-
els. Also,we have undertaken to verify if, with respect to the traditional
model, the models we used can ensure advantages in the return obtain-
able from the investment.

So we have wanted to conclude this work with a rapid presentation
of the results of a simplified implementation of the models taken into
consideration, in order mainly to conclude this ideal applicative itinerary
of the general model proposed in section 2. All that has led us to reach
analytical solutions for two stochastic processes different from the GBM
(which is far, anyway, from exhausting the possible hypotheses on price
processes) and to discuss some empirical evidence attained by the prac-
tical implementation of the models.

The specification of the two stochastic processes different from the
GBM and the formulation of explicit solutions aim at exemplifying the
way of utilizing the general model. These developments are consequently
not intended to present models necessarily more performing with respect
to the GBM.

The short discussion of the application has been done on the com-
parison of the performances of the models, those being, in our opinion,
the main index for evaluating the correctness of the hypotheses intro-
duced. However, we have not neglected to link those results with the
variability of the investment quotas and consequently with the incidence
of transaction costs on the portfolio revision frequency.

For the selected securities and the used time period, advantages have
been evident only for the model admitting a dependence of the expected



value on a given variable, though the use of such a model is not free from
criticisms; investment weights with a volatility as great as that recorded
here appear to hardly be acceptable in practice.

For securities that exhibit a non-negligible dependence on the chosen
explicative variable, we have, however, reached interesting results, that
should motivate more extensive applications, with reference to the return
obtained also during periods when the trend of returns deviates from past
history.

Finally we can conclude saying that, although the main purpose of
this article was to propose an exemplification of the practical applicability
of the general model suggested, these first empirical evidences allow us to
affirm that also simple extensions of the basic stochastic process (GBM)
consent to increase the possibility of remunerating the invested capital
in a promising way.
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