
Economic Theory
https://doi.org/10.1007/s00199-024-01576-7

RESEARCH ART ICLE

On the limit points of an infinitely repeated rational
expectations equilibrium

Marialaura Pesce1,3 · Niccolò Urbinati1 · Nicholas C. Yannelis2

Received: 23 October 2023 / Accepted: 12 April 2024
© The Author(s) 2024

Abstract
We study the rational expectations equilibrium (REE) in the framework of a repeated
economy. In each repetition agents observe the sequence of asymmetric REE’s
occurred in the past to update their private information. We show that, in the limit,
agents reach a symmetric information REE which exists universally (and not generi-
cally) and it is Pareto efficient and obviously incentive compatible. We also prove the
converse result, i.e., given a symmetric information REE, we can construct a sequence
of approximate asymmetric REE allocations that converges to the symmetric infor-
mation REE. In view of the above results, the symmetric information REE provides a
rationalization for the asymmetric one.

Keywords Learning · Rational expectations equilibrium · Asymmetric information ·
Robustness

JEL Classification D50 · D82 · D83

1 Introduction

This paper continues the line of pioneering research initiated by Fudenberg and Levine
(1993, 1998) on learning games. The main difference with the work of Fundenberg–
Levine is that we study exchange economies instead of games and, as a consequence,
the equilibriumnotion under asymmetric informationwe adopt (i.e., the rational expec-
tations equilibrium) necessitates a different type ofmodelling and different arguments.
However, our debt to the novel research of Fundenberg–Levine is evident.
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There are three main extensions of the Walrasian model that include uncertainty
and asymmetric information. First, Debreu introduced uncertainty in the standardWal-
rasian general equilibrium model (see for example Chapter 7 of the classical treatise,
“Theory of Value”). This is the so-called “state contingent model”, where agents’
preferences and initial endowments depend on the states of nature and agents make
contracts ex-ante (before the state of nature is realized) contingent on the exogenously
given states of nature. Once the state of nature is realized the previously agreed con-
tract is executed and consumption takes place. The existence and optimality of the
Walrasian equilibrium for this uncertainty model continue to hold.

Second, in a seminal paper Radner (1968) introduced asymmetric information into
the “state contingent model” by allowing each agent to have, in addition to his random
initial endowment and random utility function, a private information set, which is a
partition of the exogenously given state space. By assuming that the net trades are
measurable with respect to the private information of each individual, the asymmetric
information was explicitly introduced in this model of uncertainty. This is an ex-
ante model as trade takes place before any signaling. For a discussion, critique and
extensions of the ex-ante Radner model see Glycopantis and Yannelis (2005).

Third, Kreps (1977), Radner (1979) and Allen (1981) introduced one more notion,
called the rational expectations equilibrium (REE), which is also an extension of the
deterministic Walrasian general equilibrium model that allows for asymmetric infor-
mation. This is an interimmodel as, according to the REE, each individual maximizes
interim expected utility conditioned on his own private information as well as the
information that the equilibrium prices generate. In this paper we will focus only on
the REE.

By now it is well-known that in a finite economy with asymmetric information
a rational expectations equilibrium (REE) may not exist (Kreps 1977), may not be
incentive compatible, may not be fully or ex-post Pareto optimal and may not be
implementable as a perfect Bayesian equilibrium (Glycopantis and Yannelis 2005, p.
31 and also Example 9.1.1 p. 43). Thus, if the intent of the REE notion is to capture
contracts among agents under asymmetric information, then such contracts not only
do not exist universally in well behaving economies (i.e., economies with concave,
continuous, monotone utility functions and strictly positive initial endowments), but
even if they exist they fail to have any normative properties, such as incentive compat-
ibility, Pareto optimality and Bayesian rationality. The main conceptual difficulty that
one encounters with the REE, which creates all the above problems, is the fact that
individuals are supposed to maximize their interim expected utility conditioned not
only on their own private information, but also on the information that the equilibrium
prices generate. Since prices are computed on the basis of agents’ characteristics, then
agents must act as if they knew all the characteristics in the economy, which is rather
difficult to justify. Perhaps a possible interpretation of the REE concept may be as
follows: agents reports all their characteristics to a central planning authority (CPA),
i.e., an auctioneer or government. The CPA has all the information needed to compute
the equilibrium prices and therefore announces them to all the agents once they are
computed. Agents now proceed by maximizing their interim expected utilities based
on their own private information and the information the announced equilibrium prices
have generated. This optimization of interim utilities by each agent results in optimal
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consumption bundles which clear the market for every state of nature, i.e., the sum
of the optimal consumption of each agent is equal to their aggregate initial endow-
ment for each state of nature. One may conjecture that if we repeat this process from
period to period, allowing agents to observe the equilibrium prices and allocations and
to update their private information, then the asymmetric information may disappear
after a large number of repetitions and all agents will have the same information.

One of our main objectives is to provide a rationalization of the REE which is
based on a repeated interim decision making, providing the validity of the above
conjecture. Indeed, we will show that agents, by observing in each period the realized
REE outcome, refine their private information and, as time goes on, they reach the
symmetric information REE. This is the best outcome that agents can reach and may
coincide with the state-contingent Walrasian equilibrium which exists, it is Pareto
optimal and clearly incentive compatible (since there is no asymmetric information in
the limit, there is no incentive compatibility issue).

Furthermore we provide a robustness result. We show that any limit symmetric
information REE can be approximated by a sequence of approximate asymmetric
REE outcomes. In other words, we can always construct a route indicating how agents
reached the symmetric REE. One may view the one shot limit symmetric information
REE as a result of the limit of infinitely many repetitions (trades) of asymmetric REE
outcomes.

The above results enable us to conclude that the REE does make sense in a repeated
framework where agents, by observing the realized REE outcomes and refining their
information, learn how to achieve the limit symmetric information REE. Thus, for
all practical purposes we could use the symmetric REE instead of the asymmetric
information one, as the symmetric REE provides a foundation or rationalization for
the asymmetric one. The advantage of adopting a symmetric REE is that it exists
universally (and not generically), and it is obviously incentive compatible and interim
Pareto optimal, properties that the standard asymmetric information REE fails to have
(see also Qin and Yang 2020).1

The paper proceeds as follows: in Sect. 2 we describe the model. In Sect. 3 we give
examples of howasymmetrically informed agentsmay (ormaynot) learn from theREE
prices and allocations. In Sect. 4 we consider a sequence of repeated economies and
describe the corresponding limit economy. In Sect. 5we show that the sequence ofREE
that emerge in the repetitions approximates a REE in the limit economy. In Sect. 6 we
introduce the non trivial learning conditionwhich guarantees that in the limit economy
there exists a symmetric REE which is efficient and incentive compatible. Under the
same condition we show in Sect. 7 that, in the limit economy, every symmetric REE
that is compatible with the information acquired in the repetitions is the limit of some
sequence of approximated REE that emerge in the repetitions. Finally, we collect in
the “Appendix” some results useful to the discussion.

1 Sun et al. (2012) provide a new model which makes the REE a desirable solution concept. In particular,
they consider an asymmetric information economy with a continuum of agents whose private signals are
independent conditioned on the macro states of nature. For such an economy, agents are allowed to augment
their private information by the available public signals and one proves the existence, incentive compatibility
and efficiency for this new REE concept (see also Sun et al. 2013).
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2 Themodel

The commodity space is an ordered, separable Banach space Y whose positive cone
Y+ has a nonempty interior. There is a finite or countable set � of states of nature,
whose realization is uncertain.

An asymmetric information economy with commodity space Y and states of nature
in � is a family E = {(Fi , Xi , ui , ei , qi ) : i ∈ I } where I is a finite set of agents. For
every i it assumes that:

1. Fi is a σ -algebra on � representing i’s private information;
2. Xi : � → 2Y+ is an Fi -measurable correspondence2 that indicates agent i’s con-

sumption set in each state;
3. for each ω ∈ �, ui (ω, ·) : Xi (ω) → R+ is i’s utility function, which depends on

the states;
4. ei : � → Y+ is an Fi -measurable, summable function specifying for each state

ω ∈ � the initial endowment vector ei (ω) ∈ Xi (ω) of agent i ;
5. qi : � → R++ is the prior of agent i , normalized to

∑
ω qi (ω) = 1.

An allocation for agent i is a summable function x : � → Y+ with the property that
x(ω) ∈ Xi (ω) for every ω ∈ �. We write �Xi for the set of allocations for agent i .
Recall that x is summable if:

‖x‖1 =
∑

ω∈�

‖x(ω)‖ < ∞

and that �1(�,Y ) denotes the set of all summable functions from � to Y . We refer
to “Appendix A” for more on summable functions and related concepts. With this
notation, the set �Xi of allocations for agent i is:

�Xi = {x ∈ �1(�, Y ) : x(ω) ∈ Xi (ω) for every ω ∈ �} .

Notice that the endowment function ei is automatically an allocation for agent i , and
therefore �Xi is always nonempty. Let �X =∏i∈I �Xi . We refer to any element of �X
as an allocation (for the economy) and represent it as a list x = (xi )i of allocations,
one for each agent.

A random price specifies a system of prices for every state of nature. We represent
it as a function p : � → Y ∗ with values in the symplex � = {q ∈ Y ∗+ : q · u = 1

}
,

where u is a vector in the interior of Y+ and Y ∗ is the topological dual of Y . The
interpretation is that p(ω) · y gives the worth of the bundle y ∈ Y+ at the price p,
when the state is ω. We denote by �P the set of random prices, that is:

�P = {p : � → Y ∗+ : p(ω) ∈ � for every ω ∈ �
}
.

2 Given a σ -algebraF on �, a correspondence ϕ : � → 2Y isF -measurable if {ω : ϕ(ω) ∩ F �= ∅} ∈ F
for every closed set F ⊆ Y . Notice that, being � countable, any σ -algebra F on � is purely atomic in the
sense that it is generated by a partition of �. Therefore, a correspondence ϕ is F -measurable if and only
if it is constant on each cell of the partition that generates F . A similar argument holds for F -measurable
functions.
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It is pointed out in the “Appendix” that �P is weak∗-compact.

2.1 Interim expected utility

Let G be a σ -algebra on � representing the information of agent i in the interim, i.e.,
after the publication of the prices and before consumption takes place. For everyω, we
write G(ω) for the smallest element of G that contains ω.3 We assume that, when the
state ω realizes, agent i cannot observe ω but only G(ω). In this case, his conditional
probability on the state of nature being any ω′ is:

qi
(
ω′|G(ω)

) =
⎧
⎨

⎩

0 i f ω′ /∈ G(ω)

qi (ω′)
∑

ω̄∈G(ω) qi (ω̄)
i f ω′ ∈ G(ω).

Therefore, the conditional interimexpected utility of agent i relative to any x : � → Y+
is the function vi (x |G) (·) : � → R given by:

vi (x |G) (ω) =
∑

ω′∈�

ui
(
ω′, x(ω′)

)
qi
(
ω′|G(ω)

)

whenever this is well-defined.4

2.2 Rational expectations equilibrium

A rational expectations equilibrium describes a situation in which agents observe
the prices to update their information and expectations, they maximize their updated
expected utility subject to their budget constraint, and the market clears in every state.

Formally, let σ(p) denote the smallest σ -algebra for which the random price
p : � → � is measurable. For every i ∈ I let Gi = σ(p) ∨ Fi be the join of
the σ -algebras σ(p) and Fi , i.e., the smallest σ -algebra on � that contains both σ(p)
and Fi .5 The following definition is that of Kreps (1977) and Allen (1981).

Definition 2.1 A rational expectations equilibrium (REE) consists of an allocation
x = (xi )i ∈ �X and a random price function p ∈ �P that satisfy the following
conditions for every i ∈ I .

1. The function xi is Gi -measurable;
2. xi (ω) satisfies the budget constraint p(ω) · xi (ω) ≤ p(ω) · ei (ω) for every ω ∈ �;

3 If, with an abuse of notation, G also denotes the partition that generates the σ -algebra G, then G(ω) is the
unique element of the partition that contains ω.
4 In order for vi (x |G) (ω) to be defined, it must be that the function ω′ �→ ui

(
ω′, x(ω′)

)
is summable

when ω′ ranges in G(ω). In the next sections we will introduce additional assumptions under which this
summability condition is always met for every x ∈ �Xi and ω ∈ �. See also Lemma A.6.
5 The σ -algebra of events discernable by every player is the coarse σ -algebra

∧
i∈I Fi , which is the largest

σ -algebra contained in each Fi . At the same time, by pooling their information agents discern the events
in the fine σ -algebra

∨
i∈I Fi , which denotes the smallest σ -algebra containing all Fi .
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3. for every Gi -measurable y : � → Y+ and every ω ∈ �:

vi (y|Gi ) (ω) > vi (xi |Gi ) (ω) ⇒ p(ω) · y(ω) > p(ω) · ei (ω);
4.
∑

j∈I x j (ω) =∑ j∈I e j (ω) for every ω ∈ �.

The set of rational expectations equilibria in the economy E is denoted by R(E).

The REE is an interim concept, since agents maximize their conditional expected
utility based on their own private information, as well as on the information disclosed
by the equilibrium random price. A REE is: (i) full revealing if σ(p) = 2�, (ii) non-
revealing if σ(p) = {∅,�}, and (iii) partially revealing if {∅,�} ⊂ σ(p) ⊂ 2�,
where 2� denotes the power set of � which is the finest σ -algebra on �.

It is by now well known that a REE may only exist in a generic but not universal
sense. Moreover, a REE may fail to be fully Pareto optimal and incentive compatible,
and it may not be implementable as a perfect Bayesian equilibrium; see Glycopantis
and Yannelis (2005) and Glycopantis et al. (2009). The most problematic aspect of the
notion ofREE is that it requires that agentsmaximize their interim expected utility con-
ditioned also on the information that the equilibrium prices generate, and the resulting
equilibrium allocations are measurable with respect to the private information of each
individual and with respect to the information generated by the equilibrium prices.
Kreps (1977)’s example demonstrates that the private information measurability con-
dition on allocations creates the non-existence of the REE equilibrium (see De Castro
et al. 2020 for an elaboration of this point6).

3 Examples

This section presents some examples that explain how agents can learn from a rational
expectations equilibrium if they are involved in a dynamic learning setting. In each
case we assume that agents reach a specific equilibrium, and then we ask the following
question: if agents could repeat the trades taking into consideration the new information
they acquired, how would they behave? Basically, after the realization of a rational
expectations equilibrium (REE) we allow agents to refine their private information
by observing the REE prices and allocations. In a subsequent period, agents repeat
the trades with their refined information and reach another (possibly different) REE
equilibrium.The same trading situationkeeps repeating, but the information that agents
have in each period keeps track of the past REE equilibria.

The first example shows a REE in which prices are full revealing, meaning that
agents become fully informed in the interim stage. The equilibrium allocation is risk-
sharing and represents the best outcome possible. If agents could learn from this
equilibrium and had the chance to trade again in the same situation, they would reach
the same equilibrium. This is because the learning process stops already in the second
period when agents become fully informed and nothing else can be learnt.

6 Recently, De Castro et al. (2020) introduced a new notion of REE by allowing for ambiguity in agents’
consumption choices without imposing that optimal allocations fulfill the private information measurability
condition. See also Bhowmik et al. (2014), Bhowmik and Cao (2016), Liu (2016) and Guo and Yannelis
(2022) among others for further extensions.
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Example 3.1 Consider an asymmetric information economy with two agents i = 1, 2,
three states � = {a, b, c} and two goods. For every i ∈ I and ω ∈ �, we set
Xi (ω) = R

2+ and qi (ω) = 1
3 . The private information of each agent in period t is:

F t
1 = σ

(
�t

1

)
with �t

1 = {{a, b}, {c}} and F t
2 = σ

(
�t

2

)
with �t

2 = {{a, c}, {b}}.

The endowments of agents i = 1, 2 in period t are the functions eti (ω) defined as
follows:

et1 = (et1(a), et1(b), e
t
1(c)
) = ((1, 3), (1, 3), (2, 2)) ,

et2 = (et2(a), et2(b), e
t
2(c)
) = ((3, 1), (2, 2), (3, 1)) .

Both agents have the same utility function u(ω, x, y) = √
xy for each ω ∈ �, where

x, y denote the amounts of the two goods assigned to the agent in the state ω.
In this example the information disclosed by the price is the algebra generated by

one of the partitions {�}, �t
1, �t

2 or �. Computations show that the only possible
REE corresponds to price p that is full revealing, i.e., such that σ(p) = 2�, given by:

pt = (pt (a), pt (b), pt (c)
) =
(
pty(a)

ptx (a)
,
pty(b)

ptx (b)
,
pty(c)

ptx (c)

)

=
(

1,
3

5
,
5

3

)

,

where ptx (ω) (resp. pty(ω)) is the price of the first (resp. the second) good in state ω,
and pt (ω) is the relative price of the second good with respect to first one in state ω.
At these prices, the REE allocation xt = (xt1, xt2

)
is:

xt1 = (xt1(a), xt1(b), x
t
1(c)
) =
(

(2, 2),

(
7

5
,
7

3

)

,

(
8

3
,
8

5

))

,

xt2 = (xt2(a), xt2(b), x
t
2(c)
) =
(

(2, 2),

(
8

5
,
8

3

)

,

(
7

3
,
7

5

))

,

where xti (ω) is the allocation for agent i in state ω.
Suppose now that agents were to trade again in the same economy, only that now

they have observed the REE
(
pt , xt
)
and have learned from it. Being pt fully reveal-

ing, agents are now fully informed and their updated private information algebra is
the whole power set 2�. This new situation is described as a repeated asymmetric

information economy E t+1 =
{(

F t+1
i , Xi , ui , e

t+1
i , qi

)
: i ∈ I

}
, where superscript

t + 1 refers to the subsequent period.

F t+1
i = F t

i ∨ σ
(
pt , xt1, x

t
2

) = 2�

for every i ∈ I . Here, σ
(
pt , xt1, x

t
2

)
denotes the smallest σ -algebra on � making

each function pt , x1t and xt2 measurable. We ask what REE emerges in this second
economy.
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If we assume that agents’ initial endowment has not changed, i.e., that et+1
i = eti ,

then the only equilibrium in the repeated economy is exactly the one they obtained
in the original one, i.e.,

(
pt+1, xt+1

) = (pt , xt), which is Pareto-optimal. With the
same argument, in any further repetition of the economy, if agents endowments do not
change then the only possible REE is

(
pt , xt
)
.

Suppose, instead, that the endowment of each agent changes in each repetition,
and that it evolves as a martingale. For example, assume that the endowments in the
repeated economy are:

et+1
1 = ((0, 4), (2, 2), (2, 2)), et+1

2 = ((4, 0), (2, 2), (2, 2)).

The interpretation is that the finer information that agents have in period t + 1 allows
them to learn more about their true endowment. In this case, there is only one REE(
pt+1, xt+1

)
which is given by:

pt+1
y (ω)

pt+1
x (ω)

= 1, xt+1
1 (ω) = (2, 2), xt+1

2 (ω) = (2, 2)

for every state ω ∈ �. In this REE, agents receive a higher ex-ante utility than in that
of the first period.

Notice that this secondREE is non-revealing in the sense that the algebra it generates
is the trivial one. In symbols: σ(pt+1, xt+1

1 , xt+1
2 ) = {∅,�} ⊂ 2� = σ(pt , xt1, x

t
2).

The first equilibrium is therefore more informative than the second one. We conclude
that repeating the interaction with more information does not imply that agents can
learn more from the new REE than from the old ones.

The second example below is similar to the first one, in that agents become fully
informed after observing the rational expectations equilibrium. However, while in the
first example agents acquire all information in the interim stage by looking at the
prices, in this example prices are non-revealing and agents learn how to discern the
states only by looking at the equilibrium allocation.

Example 3.2 Consider an asymmetric information economy with three agents i =
1, 2, 3, three states of nature � = {a, b, c} and two goods. For every i and ω, we set
Xi (ω) = R

2+ and qi (ω) = 1
3 . The initial endowment and the private information of

each agent are given by:

e1 = (e1(a), e1(b), e1(c)) = ((2, 1), (2, 1), (3, 1)) , and F1 = σ ({{a, b}, {c}}) ,

e2 = (e2(a), e2(b), e2(c)) = ((1, 2), (2, 2), (1, 2)) , and F2 = σ ({{a, c}, {b}}) ,

e3 = (e3(a), e3(b), e3(c)) = ((3, 1), (2, 1), (2, 1)) , and F3 = σ ({{a}, {b, c}}) .

The utility that agent i receives in stateωwhen consuming an amount x of the first com-
modity and an amount y of the second commodity is given by the function ui (ω, x, y),
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defined as follows:

u1(a, x, y) = √
xy, u1(b, x, y) = log (xy) , u1(c, x, y) = √

xy,
u2(a, x, y) = log (xy) , u2(b, x, y) = √

xy, u2(c, x, y) = √
xy,

u3(a, x, y) = √
xy u3(b, x, y) = √

xy u3(c, x, y) = log (xy) .

A REE in this economy is given by:

(px (a), py(a)) =
(
1, 3

2

)
x1(a) =

(
7
4 , 7

6

)
x2(a) =

(
2, 4

3

)
x3(a) =

(
9
4 , 3

2

)

(px (b), py(b)) =
(
1, 3

2

)
x1(b) =

(
7
4 , 7

6

)
x2(b) =

(
5
2 , 5

3

)
x3(b) =

(
7
4 , 7

6

)

(px (c), py(c)) =
(
1, 3

2

)
x1(c) =

(
9
4 , 3

2

)
x2(c) =

(
2, 4

3

)
x3(c) =

(
7
4 , 7

6

)
,

where px (ω), py(ω) are respectively the prices of the first and second commodity in
state ω, and xi (ω) denotes the allocation of agent i in state ω.

The equilibrium price p = (px , py) is constant across the states, and so it is non-
revealing (in symbols, σ(p) = {∅,�}). This implies that in the interim stage agents
do not acquire any new information and Gi = Fi ∨ σ(p) = Fi . At the same time,
the algebra σ(x) on � generated by the allocation x = (xi )i is the power set 2�,
meaning that x reveals the finest information possible. We conclude that, after having
observed the equilibrium (p, x), agents become immediately fully informed in any
repetition of the economy. Thus, in this example agents learned nothing by observing
the equilibrium prices, but they became fully informed by observing the equilibrium
allocation.

The last example describes a situation in which the REE is constant across the states
of nature, meaning that neither the price nor the allocation reveal any new information.
In this case agents do not learn and remain partially and asymmetrically informed in
every repetition of the economy.

Example 3.3 Consider an asymmetric information economy with three agents i =
1, 2, 3, three states of nature � = {a, b, c} and two commodities. For every i and ω,
we set Xi (ω) = R

2+ andqi (ω) = 1
3 .Agents have the sameutility functionu(ω, x, y) =√

xy for any ω ∈ � and x, y ≥ 0. Their endowments and information algebras are
given by:

(e1(a), e1(b), e1(c)) = ((1, 3), (2, 2), (1, 3)), and F1 = σ ({{a, c}, {b}}) ,

(e2(a), e2(b), e2(c)) = ((3, 1), (2, 2), (3, 1)), and F2 = σ ({{a, c}, {b}}) ,

(e3(a), e3(b), e3(c)) = ((2, 2), (2, 2), (2, 2)), and F3 = σ ({{a, b, c}}) .

Notice that for each i ∈ I ,Fi = σ(ei , Xi ). The allocation xi (ω) = (2, 2) for all i ∈ I
and all ω ∈ � is a REE allocation with respect to the price system (px (ω), py(ω)) =
(1, 1) for all ω ∈ �. Then, σ(p, x) = {∅,�}.

The equilibrium (p, x) does not reveal any new information to the agents, whose
private information algebras strictly contain all the events disclosed by the equilibrium.
Any repetition of the economy would then generate the same REE, since agents do
not acquire any new information from the previous equilibria and so they remain
asymmetrically informed.
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In Sect. 6 we consider a condition, called non trivial learning, which implies that in
at least one of the repetitions there is an agent who learns something from the REE.
Clearly, this example violates the non trivial learning condition.

4 Infinitely repeated rational expectations equilibria

This section considers an asymmetric information economy in a dynamic setting.
Agents engage repeatedly in the same trading situation and, each time they reach
a REE, they observe the equilibrium price and allocation and update their private
information. This process generates a sequence of repeated economies, one per period,
and a corresponding sequence of REE’s.

Time is discrete and indexed by the set T of positive integers. Let E1 ={(F1
i , Xi , ui , e1i , qi

) : i ∈ I
}
denote the initial asymmetric information economy in

period 1, and let
(
p1, x1
)
be a REE in E1. We define recursively the sequence of

economies and REE’s generated from E1. Suppose you have defined the economy
E t = {(F t

i , Xi , ui , eti , qi
) : i ∈ I

}
at time t and that

(
pt , xt
)
is a REE in E t . In the

next period, the economy is E t+1 =
{(

F t+1
i , Xi , ui , e

t+1
i , qi

)
: i ∈ I

}
, where F t+1

i

is defined recursively as:

F t+1
i = F t

i ∨ σ
(
pt , xt
)

and σ
(
pt , xt
)
is the σ -algebra generated by the REE in the previous period. F t

i ∨
σ
(
pt , xt
)
is the join (i.e., the coarsest σ -algebra containing both F t

i and σ
(
pt , xt
)
)

and represents the information that i held in the previous step, updated with that
revealed by the random price pt and the allocation xt . Even the endowment functions
eti change from period to period.We assume that, for every i ∈ I , there is an allocation
êi ∈ �Xi (not necessarily measurable with respect toFi ) such that eti is the expectation
of êi conditional on the information available at time t , i.e., the algebraF t

i . In formulas:

eti = E
[
êi
∣
∣F t

i

]
, for every t ∈ T . (1)

The interpretation is that agents update their initial endowments as the repeti-
tions reveal new information.7 Once the economy E t+1 is defined, we take a REE(
pt+1, xt+1

)
in E t+1.

7 When the underlying measure space is finite, the existence of a vector êi for which Eq. (1) holds is
equivalent to asking that {eti : t ∈ T } is a martingale, i.e., that eti = E

[
esi
∣
∣F t

i

]
for every s ≥ t in T

(see Diestel and Uhl 1977, Corollary V.2.2). In the literature it is common to assume that the eti ’s evolve as
martingales, which in turn implies that each eti is defined as the conditional expectation of êi , as we assume
here. See, for example, Koutsougeras and Yannelis (1999) where similar results have been obtained for
cooperative solution concepts (the core and the value).
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The limit full information economy is E∗ = {(F∗
i , Xi , ui , e∗

i , qi
) : i ∈ I

}
, where

agent i’s limit information algebra is:

F∗
i =

∞∨

k=1

Fk
i .

The limit endowment of agent i is the function e∗
i = E

[
êi
∣
∣F∗

i

]
. Notice that the

sequence {eti : t ∈ T } evolves as a martingale and it converges in norm to e∗
i (see

Lemma A.4 in the “Appendix”).
We refer to any REE (p∗, x∗) in E∗ as a limit rational expectations equilibrium.

Definition 4.1 Let
{E t : t ∈ T

}
be a sequence of repeated economies. A limit rational

expectations equilibrium consists of an allocation x∗ and a randomprice p∗ that satisfy
the following conditions for every i ∈ I .

1. The consumption bundle x∗
i is G∗

i -measurable, where G∗
i denotes the interim infor-

mation algebra F∗
i ∨ σ (p∗) of agent i ;

2. x∗
i (ω) satisfies the budget constraint p∗(ω) · x∗

i (ω) ≤ p∗(ω) · e∗
i (ω) for every

ω ∈ �;
3. for every G∗

i -measurable y : � → Y+ and every ω ∈ �:

vi
(
y|G∗

i

)
(ω) > vi

(
x∗
i |G∗

i

)
(ω) ⇒ p∗(ω) · y(ω) > p∗(ω) · e∗

i (ω);

4.
∑

j∈I x∗
j (ω) =∑ j∈I e∗

j (ω) for every ω ∈ �.

A few comments are in order. The first one is that each repetition E t differs from the
initial economy only in the endowments and in the private information of agents, and
hence in their interim expected utility functions. In particular, for every i and period
t we have:

F t
i ⊆ F t+1

i ⊆ F t+2
i ⊆ · · · ⊆ F∗

i

which we interpret as a learning process for agent i . In particular, if Gt
i denotes the

interim information algebra of agent i in the period t (i.e., the algebra F t
i ∨ σ

(
pt
)
)

then it must be that F t
i ⊆ Gt

i ⊆ F t+1
i for each t . This does not mean that equilibria

becomemore andmore informative, for it is possible that σ
(
pt , xt
) ⊃ σ

(
pt+1, xt+1

)

in some period t . This eventuality is described in Example 3.1.
Our second observation is that we can write the information of an agent i in period

t in the form:

F t
i = F1

i ∨
(
t−1∨

k=1

σ
(
pk, xk

)
)

where each
(
pk, xk

)
is the equilibrium realized in the k-th repetition of the economy.

This means that the private information of agent i has two components: the first is his
initial information F1

i , which is private and contributes to the information asymmetry
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in E t ; the second one is generated by all the REE’s obtained in the previous steps and it
is common to all agents (because they all observe and remember every past equilibria).

Last, we stress that the expression “full information” does not mean “complete
information”. In the limit full information economy, in fact, agents may still have
partial and differential information. This happens, for instance, when the sequence of
REE’s does not reveal any new information to the agents, i.e., when σ

(
pt , xt
) ⊂ F1

i
for every i and every t . In this situation agents do not learn from the process and
the limit economy E∗ coincides with the initial one E1.8 This is precisely the case in
Example 3.3. In this paper, we refer to E∗ as the limit “full” information economy
simply because the F∗

i =∨∞
k=1 Fk

i represents everything that agent i can learn in the
specific process

{E t : t ∈ T
}
by observing the corresponding sequence of REE’s.

In the followingwe fix a sequence of economies
{E t : t ∈ T

}
generated through the

infinite repetition process described here. We refer to this as a sequence of repeated
economies and write E∗ for the corresponding limit full information economy. For
every agent i , we let F t

i denote his information at time t and F∗
i his information in

the limit full information economy. A sequence
{(
pt , xt
) : t ∈ T

}
of price-allocation

pairs generates the sequence of repeated economies if, for every t , the pair
(
pt , xt
)
is

the REE in E t that generates E t+1, i.e., if F t+1
i = F t

i ∨ σ
(
pt , xt
)
for every i .

5 The convergence of the rational expectations equilibria

This section studies the asymptotic behavior of the REE’s obtained in a sequence of
repeated economies. The main result provides conditions under which a subsequence
of the REE’s converges to an equilibrium in the limit full information economy.

We impose the following assumptions on the initial economy.

Assumption 5.1 For each i ∈ I , the correspondence Xi : � → 2Y+ is such that:

(i) Xi (ω) is a nonempty, convex, norm compact set for every ω ∈ �;
(ii) it is summably bounded in the sense that there exists f ∈ �1(�) such that

‖x‖ ≤ f (ω) for every ω ∈ � and x ∈ Xi (ω).

Assumption 5.2 For each i ∈ I , the utility function ui is such that

(i) for each ω ∈ �, ui (ω, ·) : Xi (ω) → R is continuous;
(ii) ui is uniformly summably bounded on allocations, in the sense that there exists

g ∈ �1(�) such that |ui (ω, x)| ≤ g(ω) for every ω ∈ � and x ∈ Xi (ω);
(iii) for each ω ∈ �, ui (ω, ·) : Xi (ω) → R is monotone in the sense that x � y ⇒

ui (ω, x) > ui (ω, y);
(iv) for each ω ∈ �, ui (ω, ·) : Xi (ω) → R is concave.

Assumption 5.3 For each i ∈ I , the endowment ei is such that the set
{
z ∈ Xi (ω) :

q · z < q · e1i (ω)
}
is nonempty for every ω ∈ � and q ∈ �.

8 When there are infinitely many states, it is also possible that every REE reveals new information to the
agents, and still the asymmetry of information does not vanish in the limit. This is because one can define a
sequence

{F t} of σ -algebras on�, each strictly larger than the former, with the property that
∨

t F t �= 2�.
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Assumption 5.3 requires that an agent’s endowment is never the cheapest bundle in
his budget set, regardless of the price system. This “survival assumption” is needed
to prove that any weakly optimal bundle in agents’ budget set is strongly optimal. We
use this argument explicitly in the proof of Theorem1 (Lemma 5.7) and implicitly in
Theorem 2, where we apply a Theorem from Khan and Yannelis (1991) that requires
this condition.

Theorem 1 Suppose that the sequence
{E t : t ∈ T

}
of repeated economies satisfies

Assumptions 5.1, 5.2(i)–(ii) and 5.3. Let
{(
pt , xt
) : t ∈ T

}
be the REE in each econ-

omy E t . Then we can extract a subsequence
{(
ptn , xtn

) : n = 1, 2, . . .
}
of REE’s with

the following properties:

1. xtni converges to some x∗
i ∈ �Xi in norm, for every i;

2. ptn converges to some p∗ ∈ �P in the weak∗ topology;
3. (p∗, x∗) is a limit REE in the limit economy E∗.

In addition, x∗
i is measurable with respect to F∗

i =∨∞
k=1 Fk

i for every i ∈ I .

The convergence of the subsequence of REE’s suggests that, after sufficiently many
repetitions, acquiring additional information does not change drastically the equilib-
rium outcomes of the subsequence. The failure of this result would have significant
implications on the robustness of the equilibrium concept, for it would imply that
small perturbations of the information structure would have profound effects on the
REE outcome.

The last claim of the Theorem states that the limit equilibrium x∗ is measurable
with respect to all the information accumulated in the repetitions. This ensures that
the price p∗ does not disclose any new information that is relevant to the realization
of x∗ in the limit full information economy.

5.1 Proof of Theorem 1

The proof consists of several steps. First we consider the sets �P of all random prices
and �X of all allocations for the economy, then we show that the set �p × �X of all
price-allocations pairs is compact. We use this result to find a subsequence of the
REE’s that converges to some (p∗, x∗). Second, we show that x∗

i is F∗
i -measurable

for every i . Last we prove that each x∗
i maximizes the interim expected utility of agent

i subject to the measurability and budget constraint imposed by p∗. This will show
that (p∗, x∗) is a REE and conclude the proof.

We split the proof in lemmata.

Lemma 5.4 There exist a subsequence
{(
ptn , xtn

) : n = 1, 2, . . .
}
and a (p∗, x∗) ∈

�p×�X such that ptn → p∗ in the weak∗ topology and xtn → x∗ in the norm topology.

Proof First we show that the set �p × �X is a compact set when �p is endowed with
the weak∗ topology and �Xi with the norm topology. The set �p, seen as a subset of
[�1(�,Y )]∗, is weak∗-closed and bounded, and so it is weak∗-compact by Alaoglu’s
Theorem. We show that �Xi is norm-compact for every i . This, in fact, will imply that
�X is compact too.
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Every function x : � → Y+ such that x(ω) ∈ Xi (ω) is dominated by a f ∈ �1(�)

(Assumption 5.1, (ii)) and so it is summable and it belongs to �Xi . It follows that the set
�Xi is closed, it is bounded and has equismall tails (because it is summably bounded,
see “Appendix A”), and it is such that {x(ω) : x ∈ �Xi } coincides with the compact
set Xi (ω). An application of Ascoli–Arzelà Theorem for summable functions gives
that �Xi is a compact set (see Fact A.3, or Leonard 1976, Theorem 5.1).

We conclude that
{(
pt , xt
) : t ∈ T

}
is a sequence in the compact space �p × �X

and so it has a subsequence converging to a (p∗, x∗). ��
The next lemma proves that (p∗, x∗) satisfies condition (1) of Definition 2.1.

Lemma 5.5 For every i ∈ I , the allocation x∗
i is measurable with respect to F∗

i .

Proof Fix an agent i and consider the sequence
{
xti : t ∈ T

}
. By assumption, xti is

the allocation that i receives in equilibrium in period t , and so it is measurable with
respect to the interim information algebra Gt

i = F t
i ∨ σ
(
pt
)
. This, in turn, is a subset

of F∗
i . It follows that every xti is an element in the set:

�∗
Xi

= {x ∈ �1(�,Y ) : x is F∗
i -measurable and x(ω) ∈ Xi (ω) for every ω ∈ �

}

which is closed in the norm topology. But x∗
i is a limit point of the sequence{

xti : t ∈ T
}
, and so it belongs to �∗

Xi
as well. ��

We now prove that (p∗, x∗) satisfies conditions (2) and (4) of Definition 2.1.

Lemma 5.6 Let ω ∈ �. Then
∑

j∈I x∗
j (ω) = ∑ j∈I e∗

j (ω), and p∗(ω) · x∗
i (ω) ≤

p∗(ω) · e∗
i (ω) for every i ∈ I .

Proof Since ptn → p∗ in the weak∗ topology and xtn → x∗, etni → e∗
i in the norm

topology, it must be that
∑

j x
tn
j (ω) →∑ j x

∗
j (ω) and

∑
j e

tn (ω) →∑ j e
∗
j (ω), and

that ptn (ω) · xtni (ω) → p∗(ω) · x∗
i (ω) and ptn (ω) · etni (ω) → p∗(ω) · e∗

i (ω) for every
i ∈ I (Aliprantis and Border 2005, Theorem 6.40). The claim follows from the fact
that, for every n, the pair

(
ptn , xtn

)
is a REE in the economy E tn and so it satisfies

∑
j x

tn
j (ω) =∑ j e

tn
j (ω) and ptn (ω) · xtni (ω) ≤ ptn (ω) · etni (ω) for every i ∈ I . ��

Our last lemma proves that (p∗, x∗) satisfies condition (3) in Definition 2.1, from
which we conclude that it is a REE. To this end, recall that, for every i ∈ I , Gt

i =
F t
i ∨ σ
(
pt
)
for every t ∈ T , and G∗

i = F∗
i ∨ σ (p∗).

Lemma 5.7 Suppose that, for i ∈ I , y ∈ �Xi is a G∗
i -measurable function such that

vi
(
y|G∗

i

)
(ω) > vi

(
x∗
i |G∗

i

)
(ω) for some ω ∈ �. Then p∗(ω) · y(ω) > p∗(ω) · e∗

i (ω).

Proof For every t ∈ T , define yt = E
[
y
∣
∣Gt

i

]
. Since y is measurable with respect to

G∗
i , Lemma A.4 gives that yt → y in norm. We can therefore apply Lemma A.7 to

the sequences of the yt ’s and of the Gt ’s and obtain that:

lim
t

vi
(
yt |Gt

i

)
(ω) = vi

(
y|G∗

i

)
(ω). (2)
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Similarly, applying Lemma A.7 to the xtni ’s gives:

lim
t

vi
(
xtni |Gtn

i

)
(ω) = vi

(
x∗
i |G∗

i

)
(ω). (3)

Equations (2) and (3), combined with the fact that vi
(
y|G∗

i

)
(ω) > vi

(
x∗
i |G∗

i

)
(ω)

by assumption, imply that vi
(
ytn |Gtn

i

)
(ω) > vi

(
xtni |Gtn

i

)
(ω) for n sufficiently large.

But then ytn is an allocation Gtn
i -measurable, that gives an interim expected utility

higher than the equilibrium allocation xtni , and so it must be that ptn (ω) · ytn (ω) >

ptn (ω) · etni (ω). Taking it to the limit, we must have that:

p∗(ω) · y(ω) ≥ p∗(ω) · e∗
i (ω).

We show that it cannot be that p∗(ω) · y(ω) = p∗(ω) · e∗
i (ω). Let z ∈ �Xi be such that

p∗(ω′) · z < p∗(ω′) · e∗
i (ω

′) for every ω′ ∈ � (such z exists because of Assumption
5.3). For every n, set zn = 2−n y + (1 − 2−n

)
z and observe that: zn ∈ �Xi (because

�Xi is convex by Assumption 5.1(i)); p∗(ω) · zn(ω) < p∗(ω) · y(ω); and zn converges
to y in norm. Therefore, vi

(
zn|G∗

i

)
(ω) converges to vi

(
y|G∗

i

)
(ω). For n sufficiently

large it must be that:

vi
(
zn|G∗

i

)
(ω) > vi

(
x∗
i |G∗

i

)
(ω).

Apply the same argument above, replacing y with zn . We obtain that p∗(ω) · zn(ω) ≥
p∗(ω)·e∗

i (ω). But since p∗(ω)·y(ω) > p∗(ω)·zn(ω), we conclude that p∗(ω)·y(ω) >

p∗(ω) · e∗
i (ω). ��

6 The limit symmetric information REE

In Sect. 4 it was noted that in the sequence of repeated economies it is possible that the
progression of equilibrium prices and allocations may not reveal all the information
privately held by agents. In these situations, the learning process fails and agents
remain incompletely and asymmetrically informed even in the limit full information
economy. This is the case of Example 3.3, in which agents learn nothing from the
REE’s and so they maintain the same initial private information in every repetition, as
well as in the limit economy.

This section focuses on those situations in which the learning process is effective
and resolves the asymmetry of information in the limit economy. This requires that at
least an agent learns something in at least one period, and that in the limit the public
information revealed by the equilibria prevails over individuals’ private information.
We refer to this condition as non trivial learning and formalize it as follows:

(NT L) F1
i ⊆ G∞ =

∞∨

k=1

σ
(
pk, xk

)
for all i ∈ I .
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The NTL condition states that, in the limit economy, the pooled information generated
by all the past equilibria is at least as fine as the initial private information of any agent.
The sequence of REE’s gradually reveals the information held privately by the agents
to the point that, in the limit full information economy, no agent knows something that
is not disclosed in some repetition. The NTL condition is violated in Example 3.3.

Notice that the NTL is a condition on the whole sequence of repetitions, and not
on the single economies. The condition, in fact, depends on agents characteristics as
well as on the specific sequence of equilibria that emerge in each repetition. It is only
in the limit full information economy, when all past equilibria are observable, that we
can certainly tell whether the NTL condition is met or not.

Under the NTL condition, in the limit full information economy every agent has the
same information algebra G∞, which corresponds to what one can learn by looking
at the REE’s that emerged in each repetition.9 The asymmetry in the information
disappears, and so any limit symmetric information REE is immediately incentive
compatible and implementable as a perfect Bayesian equilibrium. In addition to that,
our next theorem shows that the limit symmetric information REE exists (universally
and not generically) and is efficient.

Theorem 2 Let
{E t : t ∈ T

}
be a sequence of repeated economies that satisfies the

NTL condition, and Assumptions 5.1, 5.2 and 5.3. Then there exists a limit symmetric
REE (p∗, x∗) in E∗ such that:

1. p∗ is measurable with respect to F∗
i for every i ∈ I ;

2. there do not exist y = (yi )i and ω ∈ � such that
∑

j∈I y j (ω) =∑ j∈I e∗
j (ω) and,

for every i ∈ I , yi is F∗
i -measurable and vi

(
yi |F∗

i

)
(ω) ≥ vi

(
x∗
i |F∗

i

)
(ω), with

a strict inequality for at least a i ∈ I .

Condition (1) ensures that the equilibriumprice p∗ does not reveal anynew information
to agents, who maintain in the interim stage the same private information they had
ex-ante. This implies that each equilibrium allocation x∗

i is itself measurable with
respect to F∗

i , and so it is compatible with the information that agents accumulate
through the repetitions. This condition is consistent with Theorem 1, which shows
that the limit REE’s have the same property. Condition (2) corresponds to a form of
state-wise efficiency of the REE allocation x∗ in the interim stage.

6.1 Proof of Theorem 2

By the NTL condition, in the limit full information economy every agent has the same
private information, which coincides with the σ -algebraG∞. Let {An : n = 1, 2, . . . }
be the family of atoms that generate the algebra G∞. The idea of the proof is to define
for every n an auxiliary exchange economy E∗

n that captures agents’ behaviour when
they learn that a state in An has realized, but they still do not know which one. Fix a

9 Observe that agent i’s information algebra in the limit has two components: his initial private information
F1
i and the (public) information G∞ =∨ σ(pk , xk ) that he acquires from the sequence of all REE’s, that

is, F∗
i = F1

i ∨ G∞. It follows that F∗
i always contains G∞ and that, under the NTL condition, G∞

contains F∗
i .
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n and a generic ωn ∈ An . The economy E∗
n is given by:

E∗
n = {(Xn

i , e
n
i ,U

n
i

)
i : i ∈ I

}

and has Y as the commodity space and I as the set of agents. For every i ∈ I ,
Xn
i = Xi (ω

n) is agent’s consumption set, eni = e∗
i (ω

n) is his initial endowment. The
utility that i receives from consuming a x ∈ Xn

i is Un
i (x) = vi

(
x̂ |G∞) (ωn), where

x̂ : � → Y is the constant function equal to x . Notice that E∗
n is indifferent on how

one chooses ωn in An .
Each E∗

n is an economy that satisfies the assumptions of the Auxiliary Theorem
in Khan and Yannelis (1991, p. 239), and so there exists a Walrasian equilibrium10

(pn, xn) in E∗
n . For every ω ∈ �, define:

p∗(ω) = pn, x∗
i (ω) = xni

where n is the only number such that ω ∈ An . We claim that (p∗, x∗) is the desired
REE in E∗.

First observe that p∗ and x∗ are constant on each atom in the algebra G∞, and so
they are measurable with respect to it. This implies that F∗

i ∨ σ (p∗) = G∞ for every
i and so the measurability of the equilibrium allocations is satisfied. Second, notice
that in every state ω the allocation x∗

i maximizes the interim expected utility of agent i
conditional on G∞ subject to the budget constraint imposed by p∗(ω), and the market
clears. We conclude that (p∗, x∗) is a REE in E∗.

We show that the REE (p∗, x∗) satisfies the conditions (1) and (2) in the claim. The
measurability condition (1) follows immediately from the way p∗ was constructed.
We focus only on condition (2). Fix aω and let y ∈ �X be aG∞-measurable allocation
such that

∑
j∈I y j (ω) =∑ j∈I e∗

j (ω). If An is the atom that contains ω, then yi (ω′) is
constantly equal to some ỹi ∈ Y on An , and ỹ = (ỹi )i is a feasible allocation in the aux-
iliary economy E∗

n . By contradiction, assume that vi (yi |G∞) (ω) ≥ vi (xi |G∞) (ω)

for every i ∈ I , with a strict inequality for at least one i . It follows that:

Un
i (ỹi ) = vi

(
yi |G∞) (ω) ≥ vi

(
xi |G∞) (ω) = Un

i

(
xni
)

for every i ∈ I , with a strict inequality for at least one i . But this implies that ỹ, seen as
an allocation in the auxiliary economy E∗

n , Pareto dominates the Walrasian allocation
xn , violating the first welfare Theorem.

7 The robustness of limit rational expectations equilibria

This section considers a sequence of repeated economies and studies the robustness of
the REE’s in the corresponding limit economy. Precisely, it asks when an equilibrium

10 A Walrasian equilibrium in E∗
n consists of a p ∈ � and a list x = (xi ) with xi ∈ Xn

i for every i , with
the property that, for every i ∈ I : (i) p · xi ≤ p · eni , (ii) if Un

i (y) > Un
i (xi ) for some y ∈ Xn

i then
p · y > p · eni , (iii)

∑
j∈I x j =∑ j∈I enj .
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in the limit can be approximated with the REE’s that emerge in the repetitions. We
provide an answer to this question in terms of approximated REE outcomes.

An approximate (or ε-) REE describes a situation similar to that of a standard REE,
if not that agents maximize their interim conditional expected utility within a small
error ε > 0 in every state, with few exceptions. The interpretation is that agents have
bounded rationality.

Definition 7.1 Given ε > 0, an ε-rational expectations equilibrium (ε-REE) consists
of an allocation x = (xi ) and a random price function p that satisfy the following
conditions for every i ∈ I .

1. The consumption bundle xi is Gi -measurable, where Gi = Fi ∨ σ(p);
2. There exists a Bi ⊆ � such that:

(i)
∑

ω∈Bi qi (ω) ≥ 1 − ε;
(ii) for every ω ∈ Bi , xi (ω) meets the approximated budget constraint p(ω) ·

xi (ω) ≤ p(ω) · ei (ω) + ε;
(iii) for every Gi -measurable y : � → Y and every ω ∈ Bi ;

vi (y|Gi ) (ω) > vi (xi |Gi ) (ω) + ε ⇒ p(ω) · y(ω) > p(ω) · ei (ω);

3.
∑

j∈I x j (ω) =∑ j∈I e j (ω) for every ω ∈ �.

The set of ε-rational expectations equilibria in the economy E is denoted by Rε(E).

It is clear that the standard definition of REE coincides with that of ε-REEwhen ε = 0.
The main result of this section proves that, under mild conditions, if one takes a

sequence of repeated economies and selects a REE (p∗, x∗) in the limit economy, then
there exists a sequence of approximated REE outcomes, one for each repetition, that
converges to (p∗, x∗). This result, in a way, constitutes a partial converse to Theorem
1, which shows that there exists a REE in the limit economy to which the sequence of
repeated REE’s converges.

The result requires the additional assumption that every agent has the same informa-
tion about the total endowment vector, i.e., about the sum of everyone’s endowments.
We write

∧
i∈I Fi to denote their meet, which is the largest σ -algebra on � contained

in each Fi .

Assumption 7.2 The endowment vector e(·) =∑i∈I ei (·) is measurable with respect
to
∧

i∈I Fi .

The Assumption 7.2 ensures that the total endowment evolves as a martingale with
respect to the sequence of common information algebras, a condition that is necessary
to prove the feasibility of a special sequence of ε-REE’s in Theorem 3 (Lemma 7.4).
Notice that the assumption is always satisfied when agents’ endowments are constant
across the states.

Theorem 3 Let
{E t : t ∈ T

}
be a sequence of repeated economies that satisfies the

NTL condition, and Assumptions 5.1, 5.2(i)–(ii) and 7.2. Let (p∗, x∗) be a limit REE
in E∗ such that x∗ is measurable with respect to F∗

i for every i . Then for every ε > 0
there exists a sequence of allocations {zt : t ∈ T } such that:
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1. zt → x∗ in norm,
2. for t ∈ T sufficiently large,

(
p∗, zt
)
is a ε-REE in E t .

Theorem 3 states that the sequence of repeated economies allows to describe every
REE in the limit economy by means of a converging sequence of approximated equi-
libria. Therefore, no equilibrium in the limit economy is extraneous to the learning
process. The only restriction on the limit REE is on the measurability of the equi-
librium allocation x∗ with respect to agents limit information algebras. Notice that
Theorem 1 proves that all the equilibria that are obtained as the limit of the generating
REE’s satisfy this measurability requirement, and so do the REE’s whose existence is
proved in Theorem 2.

7.1 Proof of Theorem 3

Fix a ε > 0. For every t ∈ T let F t
I = ∧i∈I F t

i denote the common knowledge
information at time t and let zt = (zti ) be the allocation defined by:

zti = E
[
x∗
i

∣
∣F t

I

]
.

Each zti is the expectation of x∗
i conditional on the algebra F t

I , i.e., the common
knowledge information on x∗

i that is available at time t . We claim that the sequence{
zt : t ∈ T

}
satisfies the two conditions of the Theorem, which we prove separately.

Lemma 7.3 For every i ∈ I , the sequence zti converges to x∗
i in norm.

Proof By the NTL condition, F∗
i coincides with the common knowlodge information

algebra F∗
I = ∨t∈T F t

I . Being the allocation x∗
i measurable with respect to F∗

i by
assumption, it must be that x∗

i = E
[
x∗
i

∣
∣F∗

I

]
. We apply Lemma A.4 and obtain

limt zt = limt E
[
xti
∣
∣F t

I

] = E
[
x∗
i

∣
∣F∗

I

] = x∗
i . ��

We now prove that
(
p∗, zt
)
is a ε-REE in E t for all but a finite number of periods

t . We divide this part in steps, the first of which proves that the allocations zt meet the
measurability and feasibility requirements.

Lemma 7.4 For every t ∈ T and i ∈ I the allocation zti is measurable with respect to
Ht

i = F t
i ∨ σ (p∗). Furthermore,

∑
j∈I ztj (ω) =∑ j∈I etj (ω).

Proof The first part of the claim follows directly from the definition of the zti ’s. For
the second part, observe that:

∑

j∈I
ztj =
∑

j∈I
E
[
x∗
j

∣
∣
∣F t

I

]
= E

⎡

⎣
∑

j∈I
x∗
j

∣
∣
∣
∣
∣
∣
F t

I

⎤

⎦ = E

⎡

⎣
∑

j∈I
etj

∣
∣
∣
∣
∣
∣
F t

I

⎤

⎦ =
∑

j∈I
etj

where the last equivalence follows from Assumption 7.2. ��
We are only left to show that

(
p∗, zt
)
satisfies condition 2 in Definition 7.1 when t

is sufficiently large. This requires that, in all but a “small” set of states, the allocations
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zt eventually solve the approximated utility maximization problems subject to the
budget constraints imposed by p∗. We do it in three steps.

Thefirst lemma considers the setCt
i of all states inwhich z

t
i violates the approximate

budget constraint in period t , then it shows thatCt
i is “small” for all but a finite number

of periods.

Lemma 7.5 For every i ∈ I and t ∈ T , let Ct
i ⊂ � be the set:

Ct
i = {ω ∈ � : p∗(ω) · zti (ω) > p∗(ω) · eti (ω) + ε

}
.

Then
∑

ω∈Ct
i
qi (ω) < ε/2 for all but a finite number of periods t .

Proof Suppose that this was not the case, and that
∑

ω∈Ct
i
qi (ω) > ε/2 for infinitely

many t’s. Since
∑

ω∈� qi (ω) = 1, this implies that the set:

C∗
i =
⋂

t∈T

⋃

s≥t

Cs
i

is nonempty. Notice that C∗
i consists of all the ω ∈ � for which there are infinitely

many values of t such that zti (ω) violates the approximate budget constraint.
Let ω ∈ C∗

i . Without loss of generality, we may assume that ω ∈ Ct
i for every

t ∈ T (if this is not the case, just replace the t’s with a subsequence for which the
condition holds). This means that:

p∗(ω) · zti (ω) > p∗(ω) · eti (ω) + ε for every t ∈ T .

But the zti ’s and the eti ’s converge in norm respectively to x∗
i and e∗

i , and so they
converge pointwise. This implies that:

lim
t

p∗(ω) · zti (ω) = p∗(ω) · x∗
i (ω) ≤ p∗(ω) · e∗

i (ω) = lim
t

p∗(ω) · eti (ω)

which is a contradiction. ��
The second lemma considers the set Dt

i of states in which zti is not approximately
maximal in the budget set of period t , then it shows that Dt

i is “small” for all but a
finite number of periods.

Lemma 7.6 For every i ∈ I and t ∈ T , let Dt
i ⊂ � be the set:

Dt
i = {ω ∈ � : ∃y ∈ �Xi with vi

(
y|Ht

i

)
(ω) > vi

(
zti |Ht

i

)
(ω)

+ε and p∗(ω) · y(ω) ≤ p∗(ω) · eti (ω)
}

where Ht
i = F t

i ∨ σ (p∗). Then
∑

ω∈Dt
i
qi (ω) < ε/2 for all but a finite number of

periods t .

123



On the limit points of an infinitely repeated rational…

Proof Suppose that this was not the case, and that
∑

ω∈Dt
i
qi (ω) > ε/2 for infinitely

many t’s. By the same argument used in Lemma 7.5 the set:

D∗
i =
⋂

t∈T

⋃

s≥t

Ds
i

is nonempty. Take a ω ∈ D∗
i and assume, without loss of generality, that ω ∈ Dt

i for
every t . This means that for every t ∈ T there is a yt ∈ �Xi such that p

∗(ω) · yt (ω) ≤
p∗(ω) · ei (ω) and:

vi
(
yt |Ht

i

)
(ω) > vi

(
zti |Ht

i

)
(ω) + ε. (4)

The sequence {yt : t ∈ T } ranges in the compact set �Xi , and so it has subsequence
(which we do not relabel) that converges in norm (and hence pointwise) to a y∗ ∈ �Xi .

The sequence
{
yt : t ∈ T

}
converges to y∗ in �Xi , while

{Ht
i : t ∈ T

}
is an increas-

ing sequence of σ -algebras converging (in the order) toF∗
i ∨σ (p∗). By the continuity

of the interim expected utility (see Lemma A.7) we have that:

lim
t

vi
(
yt |Ht

i

)
(ω) = vi

(
y∗|F∗

i ∨ σ
(
p∗)) (ω).

As the zti converge to x∗
i (Lemma 7.3) the same argument gives that:

lim
t

vi
(
zti |Ht

i

)
(ω) = vi

(
x∗|F∗

i ∨ σ
(
p∗)) (ω).

Combining these two equations with Eq. (4), it must be that:

vi
(
y∗|F∗

i ∨ σ
(
p∗)) (ω) ≥ vi

(
x∗|F∗

i ∨ σ
(
p∗)) (ω) + ε. (5)

We show that this is a contradiction. We know that yt (ω) → y∗(ω), and so p∗(ω) ·
yt (ω) → p∗(ω) · y∗(ω). As every yt (ω) satisfies the budget constraint imposed by
p∗(ω), even y∗(ω) must do so. However, being (p∗, x∗) a REE in the limit economy,
the fact that y∗(ω) is in the budget implies that:

vi
(
y∗|F∗ ∨ σ

(
p∗)) (ω) ≤ vi

(
x∗|F∗

i ∨ σ
(
p∗)) (ω)

in contradiction with Eq. (5). ��
To conclude the proof define, for every i ∈ I and t ∈ T , the set:

Bt
i = � \ (Ct

i ∪ Dt
i

)
.

By Lemmas 7.5 and 7.6, for all but a finite number of t the set Bt
i is such that∑

ω∈Bt
i
qi (ω) ≥ 1 − ε. Furthermore, for every ω ∈ Bt

i one has: (i) p∗(ω) · zti (ω) ≤
p∗(ω) · e∗

i (ω) + ε (because ω /∈ Ct
i ) and (i i) if vi

(
y|Ht

i

)
(ω) > vi

(
zti |Ht

i

)
(ω) + ε

for some y, then p∗(ω) · y(ω) > p∗(ω) · e∗
i (ω) (because ω /∈ Dt

i ). We conclude that,
for t sufficiently large, every zti is a ε-REE in E t .

123



M. Pesce et al.

8 Conclusions

Our analysis starts from some common arguments against the notion of REE in asym-
metric information economies, which include the fact that it may not exist universally
and it may not be efficient and incentive compatible. We argue that, despite these non-
attractive features, the asymmetric REE can be rationalized by a symmetric one which
has nice properties. Thus, for all practical purposes one can focus on the Bayesian
symmetric REE that we know it exists and it is efficient.

Our conclusions are driven by the fact that iterated repetitions of the same trading
situation may reduce the information asymmetry to the point that it vanishes in the
limit.When this is the case, the asymmetric REE that emerge in the iterated repetitions
converge to a symmetricREE in the limit (Theorem1)which exists, it is Pareto efficient
and it is obviously incentive compatible (Theorem 2). Therefore, the repeated REE
become asymptotically similar to a well-behaving symmetric REE in the limit. We
also show a partial inverse to this result: given a symmetric well-behaving REE in the
limit we can always construct a sequence of asymmetric approximated REE in the
repeated economies that converge to it (Theorem 3).

A feature of our model is that agents maximize their instantaneous utility from
period to period. They act myopically in the sense that they do not consider their
future consumption in their choices. Our main theorems, however, might be extended
to the model with non-myopic agents, on the line of Serfes and Yannelis (1998) and
Serfes (2001). In this case, one assumes that agents plan their present and future
consumption so as to maximize some total discounted conditional expected utility.

Other variations of our model may consider alternative learning processes. For
example, one may ask that not all the equilibrium allocation is publicly observable,
or that agents acquire new information from other sources (such as public indexes,
governmental policies etc.). This requires that any agent i observes a public signal
st (possibly different from xt ) and updates his private information to F t+1

i = F t
i ∨

σ(pt , st ). With the necessary adaptations of the non-trivial learning condition, all our
main theorems hold.

De Castro et al. (2020) showed that an asymmetric REE under ambiguity exists uni-
versally, it is Pareto optimal and it is incentive compatible contrary to the asymmetric
Bayesian REE concept of Kreps (1977), Radner (1979) and Allen (1981) examined
in this paper. Similar results with the ones obtained here, can also be proved for the
asymmetric REE under ambiguity and show that it can be rationalized by a symmetric
ambiguous REE. Thus, not only the Bayesian asymmetric REE that can be rationalized
by a symmetric one but the same holds true if we allow for ambiguity, i.e., we replace
the interim Bayesian utility with the Wald interim maxmin utility.

Throughout the paper the set of agents is finite. It is not obvious how one can extend
the current results to a continuum of agents (e.g. Sun and Yannelis 2007) in order to
capture the idea of perfect competition. At this stage this seems to be an open problem.
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A Appendix

A.1 Notation and general results

Let Y be a Banach space. We write Y ∗ for the topological dual of Y , i.e., the space
of all continuous, linear functionals on Y . For x ∈ Y and p ∈ Y ∗ we use both the
notations p · x or 〈x, p〉 to denote the value of x at p (the context will make it clear).
Seen as a function on Y × Y ∗, the evaluation map 〈·, ·〉 is jointly continuous when
both Y and Y ∗ are considered with their norms (Aliprantis and Border 2005, Theorem
6.37). If B ⊂ Y ∗ is a norm-bounded set, then 〈·, ·〉 is jointly continuous on Y × B
when Y is considered with its norm and Y ∗ with the weak∗ topology (Aliprantis and
Border 2005, Theorem 6.40).

The following result is known as Alaoglu’s Theorem.

Fact A.1 (Aliprantis and Border 2005, Theorem 6.10) A subset K of the dual space Y ∗
is compact in the weak∗ topology if and only if it is weak∗-closed and norm-bounded.

Let � = {ωn}n be a finite or countable set. We write �1(�,Y ) for the set of all
functions x : � → Y that are summable in the sense that

‖x‖1 =
∑

ω∈�

‖x(ω)‖ < ∞

Endowed with the norm ‖ · ‖1, �1(�, Y ) is a Banach space. Notice that �1(�,Y )

coincides with the space of L1(μ, Y ) of μ-Bochner integrable functions with values
in Y when μ denotes the counting measure on �. When Y = R we also write �1(�)

instead of �1(�,R).
The set �∞(�,Y ) denotes the collection of all functions x : � → Y that are

bounded. Endowedwith the norm ‖x‖∞ = supω ‖x(ω)‖, the set �∞(�,Y ) is aBanach
space. In particular, if Y ∗ is the topological dual of Y then �∞(�,Y ∗) is the dual of
�1(�,Y ), see (Leonard, 1976, p. 246). The corresponding duality evaluation map is
given by:

〈x, y〉 =
∑

ω∈�

x(ω) · y(ω), for x ∈ �1(�, Y ) and y ∈ �∞(�,Y ).

A random price is a function p : � → Y ∗ with values in the symplex � ={
q ∈ Y ∗+ : q · u = 1

}
, where u is a vector in the interior of Y+. We write �P for

the set of random prices, i.e.,

�P = {p : � → Y ∗+ : p(ω) ∈ � for every ω ∈ �
}
.

It follows fromAlaoglu’sTheorem(seeFactA.1, or Jameson1970,Theorem3.8.6) that
� is a weak∗-compact set. Therefore, every p ∈ �P belongs to the space �∞(�,Y ∗)
of bounded functions from � to Y ∗, and can be seen as an element in the dual of
�1(�,Y ) (see Leonard 1976, p. 246). The set �P is then a closed and bounded subset
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of a dual space, and so it is weak∗-compact by Alaoglu’s Theorem.

A subset K of �1(�, Y ) is summably dominated if there exists a g ∈ �1(�) such that
‖x(ω)‖ ≤ g(ω) for every x ∈ K and ω ∈ �. The following version of the dominated
convergence Theorem holds.

Lemma A.2 Let
{
xt : t ∈ T

}
be a sequence in �1(�,Y ) and x∗ : � → Y a function

such that: (i) xt (ω) → x∗(ω) for every ω ∈ �; and (i i)
{
xt : t ∈ T

}
is summably

dominated. Then x∗ ∈ �1(�, Y ) and limt x t = x∗ in the �1-norm.

Proof The sequence of summable, scalar functions
{‖xt (·)‖ : t ∈ T

}
converges point-

wise to the function ‖x∗(·)‖ and it is dominated by a g ∈ �1(�). The scalar version of
the dominated convergence Theorem applies (see Aliprantis and Border 2005, Theo-
rem 11.21), proving that ‖x∗(·)‖ (and hence x∗) is summable and that ‖xt‖1 → ‖x∗‖1.
Then the claim follows from Theorem 2.1 in Leonard (1976). ��

Notice that a summably bounded set K is automatically bounded, and has equismall
tails in the following sense: for every ε > 0 there is a finite Jε ⊆ � (depending only
on ε) such that

∑
ω/∈Jω ‖x(ω)‖ < ε for every x ∈ K . The following result is a version

of Ascoli-Arzelà’s Theorem for summable functions.

Fact A.3 (Leonard 1976, Theorem 5.1) A set K ⊆ �1(�,Y ) is compact if and only
if: (i) it is closed and bounded, (i i) it has equismall tails, and (i i i) it is such that
{x(ω) : x ∈ K } is compact for every ω ∈ �.

If
{Gt : t ∈ T

}
is a sequence of σ -algebras on �, the join

∨
t∈T Gt is the smallest

σ -algebra on � that contains all the Gt ’s. The meet
∧

t∈T Gt is the intersection of the
Gt ’s. Given a σ -algebra G, for every ω ∈ � we write G(ω) for the smallest element of
G that contains ω. The expectation of a summable function x conditional on G is the
function E [x |G ] defined by:

E [x |G ] (ω) =
{ 1

|G(ω)|
∑

ω̄∈G(ω) x(ω̄) if G(ω) is finite,
0 otherwise.

where |G(ω)| denotes the cardinality of G(ω).

Lemma A.4 Let
{Gt : t ∈ T

}
be an increasing sequence of σ -algebras on �, and let

G∗ =∨t Gt . Then limt E
[
x
∣
∣Gt
] = E

[
x |G∗ ] for every x ∈ �1(�,Y ).

Proof By construction,
{
E
[
x
∣
∣Gt
] : t ∈ T

}
is a sequence that converges to E

[
x |G∗ ]

pointwise and that is summably dominated by g(ω) = ‖x(ω)‖. The claim follows the
Theorem of dominated convergence (Lemma A.2). ��

A.2 Joint continuity of the interim expected utility

This “Appendix” shows that the conditional interim expected utility function
vi (x |G) (ω) is, in a sense, jointly continuous with respect to x and G. Precisely, it
shows that: if ω is fixed, if xt converges (topologically) to a x∗ and if Gt converges
(in the order sense) to a G∗, then vi

(
xt |Gt
)
(ω) converges to vi (x∗|G∗) (ω).

Some preliminary lemmas are needed.
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Lemma A.5 Let
{Gt : t ∈ T

}
be an increasing sequence of σ -algebras on �, and let

G∗ =∨t Gt . Then, for every i ∈ I and ω ∈ �, one has that qi
(· |Gt (ω)

)
is a function

in �∞(�), and:

lim
t
qi
(· |Gt (ω)

) = qi
(· |G∗(ω)

)

in the �∞-norm.

Proof The relation qi (F) =∑ω∈F qi (ω) defines a σ -additive probability measure on
2�, the power set of �. As qi (G∗(ω)) is strictly positive and finite for every ω ∈ �,
and qi is summable (and hence bounded), qi

(· |Gt (ω)
)
is itself a bounded function.

Let us fix a ω̂ ∈ �. Since G∗ =∨t Gt , Gt (ω̂) is a decreasing sequence of sets with
G∗(ω̂) = ⋂t Gt (ω̂), and so qi

(G∗(ω̂)
) = inf t qi

(Gt (ω̂)
)
. Therefore, for every ε > 0

there is a t ∈ T such that:

∣
∣qi
(Gs(ω̂)

)− qi
(G∗(ω̂)

)∣
∣ = qi

[Gs(ω̂) \ G∗(ω̂)
]

< ε, for every s > t .

Take a s > t . To conclude the proof it is enough to show that
∣
∣qi
(
ω|Gt (ω̂)

)−
qi
(
ω|G∗(ω̂)

)∣
∣ < ε

qi(G∗(ω̂))
2 for every ω ∈ �. We prove this by cases.

Ifω /∈ Gs(ω̂), then qi
(
ω|Gs(ω̂)

) = qi
(
ω|G∗(ω̂)

) = 0 and the condition is satisfied.
If ω ∈ Gs(ω̂)\G∗(ω̂), then qi (ω) ≤ qi

[Gs(ω̂)\G∗(ω̂)
]

< ε and qi
(
ω|G∗(ω̂)

) = 0.
But then:

∣
∣qi
(
ω|Gt (ω̂)

)− qi
(
ω|G∗(ω̂)

)∣
∣ = qi (ω)

qi
(G∗(ω̂)

) <
ε

qi
(G∗(ω̂)

) ≤ ε

qi
(G∗(ω̂)

)2

where the last inequality follows the fact that qi (F) ≤ 1 for every F ⊆ �. Last, if
ω ∈ G∗(ω̂) then:

∣
∣qi
(
ω|Gt (ω̂)

)− qi
(
ω|G∗(ω̂)

)∣
∣ =
(

qi (ω)

qi
(G∗(ω̂)

) − qi (ω)

qi
(Gs(ω̂)

)

)

<
ε

qi
(G∗(ω̂)

)2 .

��
Lemma A.6 Under Assumptions 5.1(ii) and 5.2(ii), let x : � → Y be such that x(ω) ∈
Xi (ω) for every ω ∈ �. Then:

1. the function x is summable;
2. the function ui (·, x(·)) is summable;
3. vi (x |G) (ω̂) is well defined for every σ -algebra G on � and every ω̂ ∈ �. Fur-

thermore:

vi (x |G) (ω̂) = 〈ui (·, x(·)) , qi (· |G) (ω̂)
〉

where 〈·, ·〉 denotes the dual evaluation map between �1(�) and �∞(�).
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Proof To prove point (1) recall that, by Assumption 5.1(ii), there exists a f ∈ �1(�)

such that ‖x(ω)‖ ≤ f (ω) for everyω ∈ �. Therefore, x is summable by the dominated
convergence Theorem (Lemma A.2).

Consider now the function ui (·, x(·)). Assumption 5.2(ii) gives that there is a
g ∈ �1(�) such that |ui (ω, x(ω)) | ≤ g(ω) for every ω ∈ �. But then, the dominated
convergence Theorem (Lemma A.2) gives that u(·, x(·)) is summable.

For the last point, fix a ω̂ ∈ � and observe that vi (x |G) (ω̂) corresponds to the
result of evaluating the function ui (·, x(·)) (as a function in �1(�)) at qi

(· |G(ω̂)
)
(as

a function in �1(�)) via the standard duality map. In fact:

vi (x |G) (ω̂) =
∑

ω

ui (ω, x(ω)) qi
(
ω|G(ω̂)

) = 〈ui (·, x(·)) , qi
(· |G(ω̂)

)〉
.

where 〈·, ·〉 is the standard duality map between �1(�) and �∞(�). ��
Lemma A.7 Under Assumptions 5.1(ii) and 5.2(i)–(ii), suppose that:

• {xt : t ∈ T
}
is a sequence in �Xi that converges to a x∗ ∈ �Xi in norm,

• {Gt : t ∈ T
}
is an increasing sequence of σ -algebras on �, and G∗ =∨t∈T Gt .

Then
{
vi
(
xt |Gt
)
(·) : t ∈ T

}
converges to vi (x∗|G∗) (·) pointwise.

Proof Fix a ω̂ ∈ �. By point (3) in Lemma A.6, we may write vi
(
xt |Gt
)
(ω̂) and

vi (x∗|G∗) (ω̂) in the form:

vi
(
xt |Gt) (ω̂) = 〈ui

(·, xt (·)) , qi
(· |Gt) (ω̂)

〉
,

vi
(
x∗|G∗) (ω̂) = 〈ui

(·, x∗(·)) , qi
(· |G∗) (ω̂)

〉
(6)

where 〈·, ·〉 denotes the dual evaluation map between �1(�) and �∞(�). We already
know that qi

(· |Gt (ω)
) → qi (· |G∗(ω)) in �∞(�) (Lemma A.6). If we knew that

ui
(·, xt (·))→ ui (·, x∗(·)) in �1(�), then Eq. (6) would give:

lim
t

vi
(
xt |Gt) (ω̂) = lim

t

〈
ui
(·, xt (·)) , qi

(·|Gt)〉

= 〈ui
(·, x∗(·)) , qi

(·|G∗)〉 = vi
(
x∗|G∗) (ω̂)

by the joint continuity of the map 〈·, ·〉.
So we only have to prove that

{
ui
(·, xt (·)) : t ∈ T

}
converges to ui (·, x∗(·))

in �1(�). By assumption, xt → x∗ in norm, and hence pointwise. Being
ui (ω, ·) continuous for every ω ∈ � (Assumption 5.2(i)), it must be that
ui
(
ω, xt (ω)

)→ ui (ω, x∗(ω)). The sequence
{
ui
(·, xt (·)) : t ∈ T

}
converges point-

wise to ui (·, x∗(·)), and it is dominated by a summable g ∈ �1(�) by Assumption
5.2(iii). An application of the Theorem of dominated convergence (Lemma A.2) gives
that ui (·, x∗(·)) is summable and that it is the limit of

{
ui
(·, xt (·)) : t ∈ T

}
in the

�1-norm. This concludes the proof. ��
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