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In queueing networks, product-form solutions are of fundamental importance to efficiently compute perfor-

mance metrics in complex models of computer systems. The product-form property entails that the steady-

state probabilities of the joint stochastic process underlying the network can be expressed as the normalized

product of functions that only depend on the local state of the components. In many relevant cases, product-

forms are the only way to perform exact quantitative analyses of large systems.

In this work, we introduce a novel class of product-form queueing networks where servers are always busy.

Applications include model of systems where successive refinements on jobs improve the processes quality

but are not strictly required to obtain a result. To this aim, we define a job movement policy that admits

instantaneous migrations of jobs from non-empty waiting buffers to empty ones. Thus, the resulting routing

scheme is state-dependent. This class of networks maximizes the system throughput.

This model can be implemented with arbitrary topology, including feedback, and both in an open and

closed setting. As far as closed systems are concerned, we give a convolution algorithm and the corresponding

mean value analysis to compute expected performance indices for closed models.
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1 INTRODUCTION

Product-form models and, specifically, product-form queueing networks, have played a central
role for the community of researchers and practitioners involved in performance evaluation of
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computer and telecommunication systems. Product-forms allow decomposing a model into simple
components each of which is parameterised in such a way that its stationary solution in isolation
can be efficiently obtained. The steady-steady state probabilities of the joint model are then ob-
tained as the normalized product of these isolated solutions on all the ergodic joint states. In this
way, the state space explosion problem can be tackled efficiently.

In this work, we present a novel product-form stochastic network model in which servers are
never idle as they steal jobs from other stations when the queues of the latter are empty. To il-
lustrate an application example, consider a distributed system for image processing that applies
several filters in cascade to the input. Let the system be composed by K > 1 application servers;
each filter is applied to the image processing job by a different server, S1, . . . , SK . If each job is
processed sequentially, we can model the system as a tandem of queues where arrivals occur at S1,
with rate λ, and completions at SK . Let the expected service time at server Si be μ−1

i . The underly-
ing queueing model of such a system is represented in Figure 1 and corresponds to a traditional
Jackson network. Accordingly, the maximum system throughput is bounded by μmin � mini {μi }.

For a system of this kind we can maximize throughput to μmax � maxi {μi } as follows: suppose
we order the servers by increasing speed, that is, μi ≤ μi+1 for all i = 1, . . . ,K−1. Upon finishing its
work on a job, server Si sends the job to server Si+1 as usual. However, if Si does not have any job
in its queue, it steals a job from server Si−1 and, if this is also empty, from Si−2 and so forth. If also
server S1 is empty, we take a job from the outside. Under this scheme, some of the jobs have not
passed through all the filtering stages and hence the image quality may be degraded in return for
better performance since the throughput of SK is maximized to μK . In order to further underline
the difference with a Jackson network we will call networks behaving according to the proposed
job stealing policy fetching networks and the underlying queueing model for a tandem topology is
represented in Figure 2.

To give the reader an idea, consider a traditional Jackson queueing network as the one in Figure 1,
but comprising four tandem stations each characterized by specific service rates: μ1 = 3 j/s, μ2 =

4 j/s, μ3 = 5 j/s, and μ4 = 6 j/s . In such a configuration, the system’s maximum throughput is de-
termined by the slowest ship of the convoy, meaning the station with the slowest service rate. In this
particular network, Station 1 can serve a maximum of 3 jobs per second, establishing it as the bottle-
neck for the entire system. Consequently, the overall network throughput cannot exceed this rate,
despite the subsequent stations having higher individual capacities. Now, let us consider the same
tandem stations organized within a fetching network as the one of Figure 2. In this context, an inter-
esting dynamic emerges where, even though Station 1 is constrained to a maximum service rate of
3 j/s , faster stations can steal jobs from the other (slower) stations. This implies that the maximum
achievable throughput for the system is no longer dictated by the slowest station; but rather, by the
fastest one. Accordingly, in this scenario, the maximum achievable throughput for the system is
governed by Station 4 which can serve 6 job per second. Moreover, in the standard tandem system,
as the throughput approaches μmin, the queue length at the bottleneck tends to infinity, while in
our system, we will show that we can reach μmax and maintain finite queue lengths at all queues. Al-
though alternative strategies can be employed to efficiently reuse resources and minimize response
times, it is crucial to highlight that the mechanism of taking a job from the external world plays a piv-
otal role in increasing the expected number of job completions per unit of time. It is also worth not-
ing that, later in this work, in order to formalize these dynamics and prove the product-form result
that underlies this model, we consider the case of one station that is never empty (i.e., a station from
which it is always possible to steal a job), rather than characterizing an exogenous arrival process.

The idea of letting some jobs skip some phases of service is not new and has been first in-
troduced by Pittel in [22] for finite capacity queues. This has been widely used both for study-
ing computer and telecommunication systems and in operations research (see, e.g., [21, 26, 27]).
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Fig. 1. A tandem Jackson network.

Fig. 2. A tandem fetching network.

However, these models express policies for job movements that describe where that job has to be
placed. Conversely, to the best of our knowledge, this is the first policy that defines where the job
has to be fetched from.

The stochastic networks that we analyze admit arbitrary routing that may involve cycles and
they can be either open or closed. Notably, the movement of jobs is governed by probabilistic
policies that are state dependent. In fact, whenever a station needs to steal a job from another
station, the latter is chosen probabilistically, but conditional on having at least one job in the
buffer and no non-empty queues before it.

Another important observation is that the stochastic network is neither reversible nor quasi-
reversible according to Kelly’s notion of quasi reversibility [14] (see Sections 2 and 3.5). Moreover,
the standard argument for proving product-form based on the substitution of the expression in
the global balance equations (GBE) is here made complicated by the presence of absorption
probabilities in the definition of the underlying CTMC.

Our proof overcomes this issue using the multi-way extension of the Reversed Compound

Agent Theorem (RCAT) presented in [12]. The intrinsic compositionality of RCAT allows us
to present the result and its proof in an elegant way and without resorting to heavy algebraic
derivations. Nevertheless, for some specific examples, we are going to show how the GBE are
satisfied by the proposed solution to emphasise the difficulties of the traditional approach.

Summing up, the contributions of this article are the following:

— We introduce a novel class of models and their product-form solution for the performance
evaluation of systems with probabilistic routing and job stealing. The proposed model is
defined both for open and closed systems.

— We propose a convolution algorithm and the corresponding mean value analy-

sis (MVA)[23] to study closed systems and derive average performance indices. In general,
throughput is shown to be different from the one obtained by Buzen’s convolution [2] in
closed Gordon-Newell networks.

The article is structured as follows: Section 2 gives an overview of the related work. In Section 3,
we present in detail the open model and its underlying CTMC and prove the main product-form re-
sult. Section 4 generalizes the results to closed models. In Section 5, the relevant average stationary
performance indices are defined and we show how to derive them for open and closed systems in
equilibrium. In Section 6, we further describe how to use MVA to efficiently retrieve performance
indices in closed networks. Finally, Section 7 gives some concluding remarks and suggestions for
future work.
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2 RELATED WORK

The literature on product-form models is very rich. In this section, we analyse the contributions
that, to the best of our knowledge, are the most closely related to ours.

Since Kelly’s work [14], product-form models have been studied in a modular way thanks to the
notion of quasi-reversibility. However, all the models discussed in [14] have pairwise synchroni-
sations, that is, an event depends on and can change the state of at most two components of the
stochastic network. More complicated types of synchronisations in product-form have been firstly
proposed by Gelenbe in the context of G-networks as shown in [7], where an event can change
the state of many G-queues of the system instantaneously. This type of synchronization has been
generalized in [12] with an extension of RCAT [10] and discussed in the context of G-networks
in [16].

In our model, while we still have the case in which at most two stations change their states at a
transition event, these are chosen according to the global state of the network. To the best of our
knowledge, the closest behaviour is proposed by Pittel [22] in networks of finite capacity queues
with independent probabilistic routing. In this model, once a job arrives at a saturated station, it
instantaneously skips to the next one according to the routing matrix. Therefore, a job skips the
service at a station as it happens in our model, although the motivations of this behaviour are quite
different: we aim at maximising the system throughput in infinite capacity stations, while Pittel’s
policy is introduced to handle finite capacity queues. Since its introduction, skipping policy for
finite capacity queues has found numerous applications beyond the analysis of computer systems
(see, e.g., [28] and the references therein). Further insights on the relation between the model we
propose here and Pittel’s queueing networks are given in [20].

To give another example of a situation where our proposed model may apply, let us consider
a cluster where the system workload consists of a series of mandatory and optional tasks to be
processed, such as the real-time and multimedia systems as described in [19]. This system can be
modeled as a group of stations, denoted as Si for i = 0, . . . ,K , where each station is composed of
a warehouse with its corresponding server. A job execution consists of a mandatory task and an
optional task. Warehouse 0, denoted asW0, is responsible for generating and processing optional
tasks, while all other stations are equipped with more advanced processing features (e.g., more
memory, more compute capacity) dedicated to the execution of mandatory tasks. When a station
Si with i > 0 becomes idle, it retrieves either a mandatory task from one of its peers or an optional
task on W0 terminates and a mandatory task commences in its place at station i , based on the
routing probabilities.

As a further example, we can think of a communication line connecting nodes, typically tra-
versed in a predetermined sequence to optimize packet transmission. Each node in the system is
collecting data, and upon reaching a specified timeout, it transmits the accumulated data to a neigh-
bor node. If the timeout expires and a node has no data to transmit, it requests transmission from
a preceding node, continuing this process recursively until a node with pending data is identified.
This process, however, comes at the expense of increased energy consumption, as the transmission
cost rises with the distance the fetching request must travel to receive the transmission.

The model we propose also has a practical application as in the paper of Gates and West-
cott [5, 29]. In these works, the authors devise an interesting stochastic process whose aim is to
optimise the costs associated with the management of the system handling wheel replacement and
restoration on the trains of Queensland Railways. To obtain the expression of the product-form
equilibrium distribution, they introduce the theory of dynamically reversed processes, and show
that, under a proper state renaming function, the process satisfies the conditions for an exact anal-
ysis. In practice, Gates and Wescott’s model is a particular instance of our result (see Section 3.6)
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where the topology is just a tandem of stations. Furthermore, resorting to dynamically reversed
argument is not modular since the entire stochastic process must be considered in a monolithic
way and requires a guess on the state renaming function which is, in general, not trivial. The origi-
nality of the model in the field of product-forms relies also on the fact that its underlying stochastic
process is neither reversible nor quasi-reversible.

Recently, many works have studied job stealing policies both with exact [17] and approximate or
mean-field based techniques (see, e.g., [4, 15, 25]). From the modelling point of view, all mentioned
works study strategies aimed at load balancing and not at throughput maximization, so they do
not rely on the idea of skipping a service stage, but to move a job to a functionally equivalent
server with lower workload. With respect to [4, 15, 25], our product-form result does not require
the assumption of many servers. The result proved in [17] is a product-form in which jobs are
stolen in batches of truncated geometric sizes with the aim of making the load factor of stations
balanced. Therefore, the routing policy is totally different from the one shown here.

3 THE OPEN MODEL

In this section, we formally introduce the model and study its solution for the open case. Section 4
generalizes the results to closed systems.

3.1 Informal Model Description

We consider K warehouses with infinite capacity, indexed 1, . . . ,K , each one associated with a
service room where jobs are processed. In addition, a warehouse denoted by 0, that is always full
is present. We prefer to use the terms warehouse instead of queue for clarity: when we refer to an
empty warehouse, we mean that the station buffer is empty but there is still a job in service, as in
this model service rooms are never idle. In contrast, the notion of empty queue often refers to the
situation in which the server is idle.

The state of the network is a vector n = (n1, . . . ,nK ) ∈ SK describing the occupancy of the
warehouses, where SK = N

K is the state space with K ∈ N,K ≥ 1. Let us denote a K−dimension
vector of zeros with a 1 in position i by ei , where the value of K will be clear from the context.
Finally, we say station i is a provider of station j if the probability of going from i to j is greater
than 0. Each warehouse i > 0 is associated with a server that behaves as follows:

— If warehouse i is not empty (recall that this is always the case for server 0), then, after an
exponentially distributed time with rate μi , it sends to warehouse j > 0 the job it is serving
with probability pi j and then it picks another job from warehouse i . Therefore, the state

changes from n to n − ei + ej . With probability pi0 = 1 −
∑K

j=1 pi j the server removes a job
from its warehouse and disposes it. In this case, the state changes from n to n − ei .

— If warehouse i is empty, at service completion, the server contacts one of its providers and
fetches a job from its warehouse. The provider is chosen probabilistically: server k ≥ 0 is
chosen with probability:

qik =
μkpki∑K

h=0 μhphi

, (1)

which states that the provider is chosen with a probability that is proportional to the intensity
of the stream directed to the empty warehouse that experiences a service completion. If the
contacted warehouse is empty, then its server instantaneously fetches a job from one of its
providers applying the same policy. The process terminates when a non-empty provider is
found (possibly provider 0). If k > 0 is the provider with non-empty warehouse, then the
state changes from n to n− ek + ej . If k = 0, then the state changes form n to n+ ej . In both
cases, the destination warehouse j is chosen, as before, according to the routing probabilities.
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Also in this case, if
∑K

j=1 pi j < 1, then the job departing from server i may be disposed with

probability pi0 = 1 −
∑K

j=1 pi j . Notice that it may be the case that after an exponential time
with rate μi there is no state change because the job served by server i is disposed and the
new one is taken from warehouse 0.

Server 0 fetches jobs from its always full warehouse and, upon a service completion, sends a job to
one of the other K warehouses with rate μ0. The destination warehouse is chosen probabilistically

according to vector P0 = (p01, . . . ,p0K ), with
∑K

k=1 p0K = 1, p0k being the probability of choosing
warehouse k . The scheduling discipline is First-Come First-Served.

3.2 The Provider Choice Probability

In this subsection, we study the probability αi j (n) that server i , upon terminating the work on
a job, fetches a job from warehouse j, with j = 0, . . . ,K given the state of the system is n. We
introduce an intermediate vanishing state m with the purpose of formally specifying the state-
dependent routing. Suppose that the completed job at warehouse i migrates to warehouse k , and
let m = n + ek . If the job leaves the system, then m = n. Then, we have:

αi j (m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if j = i ∧mi > 0 ,∑K

�=0 qi�α�j (m) ifmi = 0 ,

0 if j = i ∧mi = 0 .

where qik has been defined in Equation (1) and m0 > 0. In other words, αi j (m) corresponds to
the probability of absorption in state j starting from state i in a discrete time Markov chain where
the absorbing states correspond to the non-empty warehouses and the transition probabilities
outgoing the non-absorbing states are given by Equation (1). Recall that m is chosen assuming
that the output of warehouse i goes to warehouse k or leaves the system, and this happens with
probability pik or pi0, respectively.

3.3 Underlying Continuous Time Markov Chain

The stochastic process underlying the network presented in Section 3.1 is a CTMC since all the
arrival and service times are independent and exponentially distributed random variables and the
state of the process n ∈ SK is sufficient to describe the system dynamics. Let X (t) be this Markov
process, then its transition rates are:

— From state n to state n+ei−ej , with rate
∑K

k=1 μkpkiαk j (m), 1 ≤ i, j ≤ K and m = n+ei . In this
case, we have a reduction of items in warehouse j and an increment of those in i whenever
one of the servers k that is a provider of i (pki > 0) fetches an item from warehouse j, which
occurs with probability αk j (m). Notice that, in the case of a topology including feedback, it
may happen that i = j and hence no state change actually occurs.

— From state n to state n − ej with rate
∑K

k=1 μkpk0αk j (n), 1 ≤ j ≤ K . This case is similar to
the previous one, but the item that leaves station k is disposed. Henceforth, we use pk0 to

denote 1 −
∑K

h=1 pkh .

— From state n to state n + ei with rate
∑K

k=0 μkpkiαk0(m), 1 ≤ i ≤ K and m = n + ei . In this
case, the number of items of warehouse i increases, but the item is fetched from warehouse
0 which, being always full, is not represented in the process state.

Observation 1 (Irreducibility of X(t)). X (t) is irreducible if the routing matrix, considering

the outside as warehouse 0, is irreducible.

This observation is not surprising and it is analogous to the condition of irreducibility for Jack-
son’s networks. Henceforth, we assume the irreducibility of X (t).
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Theorem 1. Let X (t) be the irreducible CTMC underlying a fetching queueing network, then its

invariant measure has product-form:

π (n) ∝
K∏

i=1

ρni

i , (2)

where:

ρi =

∑K
k=0 μkpki

μipi0 +
∑K

k=1 xik

, (3)

and xik is the solution the linear system of rate equations:

xik =

(
K∑

j=1

xk j + μkpk0

)
μipik∑K

j=0 μ jpjk

. (4)

Proof. In Appendix A, we provide a brief review of the RCAT and its terminology that is inher-
ited from the stochastic process algebra (SPA) domain.

The proof consists of two steps. First, we give the modular representation of the network using
the synchronisations used by RCAT. Then, we show that the general single component satisfies the
three conditions of the theorem and hence we have the product-form solution of Equation (2). We
choose a graphical description of the component, rather than a process algebraic one, to make the
proof easier to read. Notice that, similarly to birth and death processes, the only possible transitions
are between adjacent states, and we call birth transitions those from state n to state n+1 and death
transitions those from state n + 1 to n, with n ≥ 0. From now on we will refer to active and passive

actions according to PEPA [13] notation. An active action is one that has a specific exponential rate
and is initiated by a component within the system. It informally represents a proactive behaviour
where a component actively engages in an event. Conversely, passive actions are not actively
triggered but are typically executed concurrently and/or as a consequence of another action. To
identify passive actions, they are denoted by the symbol � as their action rate, indicating that the
latter depends on another action. These two concepts are fundamental in PEPA for modelling and
analyzing the performance of concurrent systems.

We start by detailing the process of Figure 3 to show that it is an exact representation of the
behaviour of each station described so far.

— Label aji describes arrivals at warehouse i , it is designed as an active action type and it is
performed with rate μ jpji . Since this action describes a new arrival, it will increase by one
the state of the process. Notice that label aji will describe all the possible arrivals at the
warehouse meaning that as far as pji > 0, the corresponding label aji will exist.

— Label aih describes fetching actions from warehouse i , it is designed as a passive action type
with unknown rate �ih . Once the components are studied in isolation, these unknown rates
are then instantiated with xih , corresponding to the constant reversed rate of the synchro-
nising action type. Intuitively, this action type may synchronize with an action describing
server i fetching a new job from its own warehouse, upon job completion, or with a fetching
action, always upon job completion, from a server with an associated empty warehouse for
which warehouse i is a provider. As before, for every pih > 0 an aih label will exists. As
proved in [10], the reversed rate xih is computed as the sum of the rates of the death transi-
tions in the isolated componentWh , distributed amongst the birth transitions in proportion
to their forward transition rates.

— Label ai0 describes departures from the system, a certain process underlying a warehouse i
will have transitions labelled with this particular action type if and only if pi0 > 0, that is, if
from station i a job can be disposed from the system.
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6:8 D. Olliaro et al.

— As far as the loop on state 0 is concerned, we have what follows: label 1. describes a fetching
action from warehouse j, as a matter of fact the action type is labelled aji , and this action
will happen at the rate of the possible completion from the system multiplied by the prob-
ability of choosing exactly warehouse j as provider. The self-loop transition is needed to
describe that the fetched job will go directly in service, consequently the warehouse will re-
main in the same state. Label 2. also describes a fetching action exactly as before. Intuitively,
Wi is receiving a fetching request fromWh which it is not able to fulfill and hence it instan-
taneously propagates the request to provider Wj with probability qi j . Notice that Wj will
recursively behave analogously toWi . This semantics is denoted by→ as in [11]. Studying
the isolated components requires to instantiate the unknown rate �ih with xih as described
before.

We prove that the process underlying component Wi , depicted in Figure 3, fulfills the three
conditions of the RCAT:

(i) If a synchronising type is passive in a component then all states of that component must
have an outgoing transition labelled with that action type; this is true for componentWi as
aih is the only passive synchronising type and we have an outgoing transition labelled aih

for every state of the component.
(ii) If a synchronising type is active in a component then all the states of that component must

have an incoming transition with that type; this holds for component Wi as aji is the only
active synchronising action type and we have an incoming transition labelled aji for every
state of the component as in state 0 we have a self-loop labelled directly with aji if there is
a departure from the system or with a label describing the propagation of a passive action
type as active action type aji .

(iii) All transitions sharing the same active synchronising type must have the same reversed
rate. In station Wi the transitions sharing the same active synchronising type are all the
birth transitions and label 2. of the self-loop on state 0. So, for birth transitions we have the
following reversed rate

x ji =

(
μipi0 +

K∑
h=1

xih

)
·

μ jpji∑K
k=0 μkpki

,

that is, the sum of the rate with which a job possibly departs from the system plus the
sum of the rates with which a job departs from station i to any other possible station. This
sum is then multiplied for the probability of choosing exactly provider j. Now, we anal-
yse the reversed rate, xR

ih
, of the propagating transition of the self-loop on state 0 and we

obtain

xR
ih
= μipi0qi j +

K∑
h=1

xih · qi j

=

(
μipi0 +

K∑
h=1

xih

)
· qi j ,

meaning that the reversed rate of xih is given by the sum of the rate with which a job possibly
leaves the system multiplied by the probability of choosing a particular provider j with the
sum of all the possible rates of action types describing the departure from station i to any
other possible station multiplied for the probability of choosing a particular provider. Notice
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Fig. 3. Generalization of the processes underlying a generic warehouseWi .

Fig. 4. Example of stochastic network. Warehouses are denoted by labels W0, . . . ,W3, recall that W0 is a

special warehouse which always contains at least one job waiting to be served.

that qi j =
μ jpji∑K

k=0 μkpki

, consequently we have

xR
ih
=

(
μipi0 +

K∑
k=1

xik

)
·

μ jpji∑K
k=0 μkpki

= x ji .

Therefore, the three conditions of the RCAT are satisfied and accordingly we are able to compute
the product-form. �

Corollary 1. X (t) is ergodic if and only if it is irreducible and ρi < 1 for all i = 1, . . . ,K .

Corollary 2. If X (t) is ergodic, then its steady-state distribution is:

π (n) =
K∏

i=1

(1 − ρi )ρ
ni

i , (5)

3.4 Example

Let us consider the network of Figure 4. To emphasize the different behaviour of this fetching
network compared to Jackson’s networks, we represent the warehouse on the top of the corre-
sponding server, rather than on its left. Observe that, when Server 2 releases the job in the service
room, it may either dispose it with probability 1 − p or send it to Server 3. If its warehouse W2

is empty, it sends a request either to Server 1 or 3. This probabilistic choice is done in a very
natural way according to the speed of the servers, that is, W1 server is chosen with probability
q21 = μ1/(μ1 + μ3) and W2 server with probability q23 = μ3/(μ1 + μ3). It is worth noticing that if
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Server 2 moves a job toW3 andW2 is empty, the same job may be re-taken by Server 2 because of
the loop between these two stations.

According to the specification we have just given, for this example, we have the following
parameters:

P =

⎡⎢⎢⎢⎢⎣
0 1 0
0 0 p
0 1 0

⎤⎥⎥⎥⎥⎦ P0 = [1 0 0]

In Figure 4, we show the network configuration of this particular study case, then in Figure 5,
we give the graphical representation of the processes, divided in isolated components, underlying
the warehouses of the network. Notice that the only variables xik whose value is different from 0
are those associated with pik > 0. The system of rate equations is:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x12 = (x23 + μ2(1 − p))
μ1

μ1 + μ3

x23 = x32

x32 = (x23 + μ2(1 − p))
μ3

μ1 + μ3

whose solution is:

x12 = (1 − p)μ2 , x23 = x32 =
(1 − p)μ3μ2

μ1
.

Starting from the representation in Figure 5, we check if the structural and rate conditions of the
RCAT are fulfilled.

For structural conditions it is required that if a synchronizing type is active in a component
then all the states of that component must have an incoming transition with that type and if it is
passive then every state should have an outgoing transition labelled with that action type. We can
state that structural conditions are satisfied as follows:

— a01 is passive inW0 and we have an outgoing arc for every state labelled a01;
— a01 is active in W0 and we have an incoming arc for every state labelled a01, thanks to the

propagating transition of the self-loop in state 0;
— a12 is passive inW1 and we have an outgoing arc for every state labelled a12;
— a12 and a32 are active in W2 and we have for each state an incoming arc labelled a12 and

another one labelled a32;
— a23 is passive inW2 and we have for each state an outgoing arc labelled a23;
— a23 is active in W3 and we have for each state an incoming arc labelled a23, thanks to the

propagating transition of the self-loop in state 0;
— a32 is passive inW3 and we have for each state an outgoing arc labelled a32.

As far as rate condition is concerned, RCAT requires that all transitions sharing the same active
synchronizing type must have the same reversed rate. For component W1 we have active action
type a01 whose reversed rate is x12 for every birth transition in this component, this must be equal
to the reversed rate of the propagating transition on the self-loop on state 0 but the reversed rate of
a self-loop is the rate itself that is, x12 in this case. Consequently, the condition is satisfied for com-
ponentW1. The exact same reasoning can be applied to componentW3 as active action type a23 has
reversed rate x32 for every birth transition and this equals the reversed rate of the propagating tran-
sition on the self-loop in state 0. Accordingly, also in this component the rate condition is satisfied.

For component W2 the reasoning is slightly more complex: we must check that the reversed
rates of active action types labelled a12 and a32 are always the same, for all birth transitions this is
true as in each one we have:
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Fig. 5. Graphical representation of the processes underlying the warehouses of Figure 4.

x12 = (μ2(1 − p) + x23)
μ1

μ1 + μ3
,

x32 = (μ2(1 − p) + x23)
μ3

μ1 + μ3
.

These must be equal to the reversed rates of the propagating transitions in the self-loop, this is
proved by summing the rates of the labels sharing the same action type, consequently we have:

x12 =
μ1

μ1 + μ3
x23 + μ2(1 − p)

μ1

μ1 + μ3
= (μ2(1 − p) + x23)

μ1

μ1 + μ3
,

x32 =
μ3

μ1 + μ3
x23 + μ2(1 − p)

μ3

μ1 + μ3
= (μ2(1 − p) + x23)

μ3

μ1 + μ3
,
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respectively. Accordingly we can state that also in component W3 the rate condition is fulfilled
and with this we have proved all the RCAT conditions holds; consequently, we can obtain ρi with
Equation (3):

ρ1 =
μ0

(1 − p)μ2
, ρ2 =

μ1

(1 − p)μ2
, ρ3 =

pμ1

(1 − p)μ3
.

As we can see from the expression of ρ1 above, it may happen that the ρi of a station does not
depend directly from the corresponding service rate μi , as its effect vanishes. Assuming the stability
ρi < 1 for i = 1, 2, 3 we have the steady-state distribution:

π (n1,n2,n3) =

3∏
i=1

(1 − ρi )ρ
ni

i .

3.5 Comparison with Reversibility and Kelly’s Quasi-reversibility

Most product-forms are related to stochastic reversibility of the Markov chain underlying the
model. As far as our model is concerned, it is easy to show a counter-example proving that this
is not the case. Consider to find the example system of Figure 4 in state (1, 1, 1). With rate μ1 the
state moves to (0, 2, 1). However, there exists no transition bringing the system from state (0, 2, 1)
back to state (1, 1, 1) which is a necessary (but not sufficient) condition for stochastic reversibility.

For what concerns the comparison with Kelly’s quasi-reversibility, we observe that the type
of state-dependent routing characterizing our model is different from the one assumed in quasi-
reversible queueing networks. In fact, in the latter case, every transition depends on the state of at
most two components. Let us consider the tandem topology shown in Figure 2, and assume that
warehouse k is empty. With rate μk a job is stolen from a warehouse k ′ < k . In this example, k ′ is
the largest index of the non-empty warehouses in {0, 1, . . . ,k − 1) hence, the transition depends
on all the states of the warehouses with indices lower than k .

3.6 Comparison with the Gates-Westcott Model

In [5, 29], the authors devised a particular Markov process for modelling the process of wheel re-
placement and restoration on the trains of Queensland Railways. In this framework, each different
train requires all its wheels to be of a particular size i and all trains should be operable at any time.
Because of continuous use, train wheels get worn; when the wear becomes excessive the wheel is
removed and replaced from stock, whereas worn wheels get re-profiled by grinding and go into
stock so that they can be used again in trains that need wheels with a smaller diameter. Once a
wheel becomes too small, it is discarded. Notice that re-profiling leads to wheels of various sizes
both on trains and in stock. The aim of [5, 29] was to optimize the management of the system
given the associated costs. In those works, the stock occupation level at time t is a random process
XXX (t) = (x2(t), . . . ,xM (t)), where xi (t), (i = 2, . . . ,M) is the number of size i wheels in stock at time
t > 0. Notice that i = 1 denotes wheels of type 1, which is the type used to represent new wheels.
Moreover, the authors assume to have an unlimited supply of new wheels, which are not held in
stock and this is the reason why the random process describing the stock occupation level is in-
dexed starting from i = 2. Changes of state are caused by the arrival of a train with worn wheels.
The strategy, followed in [5, 29], to obtain the equilibrium distribution, if any, ofXXX (t)was to dynam-
ically reverse the process and to apply a generalization of the classical Kolmogorov cycle. Notice,
however, that the derivation of this product-form is rather complex as it resorts to detailed balance
conditions and Kolmogorov’s criterion. Moreover, transposing this model in the queueing network
context, the system encompasses only feed-forward tandem configurations, as the one of Figure 2.
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In the Discussion Section of [5], the authors provide insights into potential model variants to
be investigated, which may be more realistic in real-world applications. The first variant implies
a fixed number of wheels K as the model population. The latter can be encompassed in the closed
system framework we are going to define in Section 4. In addition, the authors suggest an alter-
native fetching mechanism, enabling one to fetch from different sources according to different
probabilities. This suggestion aligns with our extension of the model to accommodate various net-
work topologies that can also include branches, confluences, and cycles. It is worth mentioning
that the approach used for the solution of the model of our contribution and [5] are very differ-
ent. Indeed, when we allow arbitrary routing matrices, we can ensure the product-form solution
only by imposing the fetching probability on the base of the service rates of the providers. This
constraint in the model becomes relatively easy to derive thanks to the modular analysis provided
here but has probably represented a major difficulty for the monolithic one of [5]. In conclusion,
with respect to [5], in our model arbitrary topologies are allowed, both open and closed, and the
routing can admit feedback.

4 CLOSED SYSTEMS

The proposed model is also applicable in the context of closed systems. Let the system consists
of N + K jobs and K stations, with N > 0,K > 0. With respect to the model studied until now,
we have the following differences: jobs disposal from the system is not allowed and the number
of jobs is constant. In addition, in a closed setting there is no warehouse that is always full, as
it was the case of W0 in the open setting. Moreover, with respect to traditional Gordon-Newell
closed networks, we assume that every station always has a job in service, consequently the sys-
tem state composed of K zeros actually describes a system where every station has a job in ser-
vice and no job is waiting to be served. Accordingly, in this case the only state changes accepted
are:

— n − ei + ej , if warehouse i is not-empty and if server i sends the served job to warehouse j;
— n − ek + ej if warehouse i is empty and its server sends the served job to warehouse j and

retrieves another job to serve from warehousek according to the same provider choice policy
we have described in Section 3.1.

As we already know, in closed networks the queue length distribution of any station i does not cor-
respond to term ρi as for open networks, but it is derived from the joint queue length distribution
π (n) given by the following formula

π (n) =
1

G(N ,K)

K∏
i=1

дi (ni ) . (6)

This requires the computation of functions дi for each station and also of the normalizing constant
G that guarantees

∑
n∈S π (n) = 1, where S is the state space of the system. In our case, we have:

дi (ni ) = ρni

i , (7)

where the term ρi is defined as in Equation (3) and the normalising constant can be computed by
the convolution algorithm [2]. We consider a closed network with N jobs and K stations, for such
a system the normalizing constant using convolution algorithm is computed as follows. LetK1,K2

be a non-trivial partition of the set of stations (K) then we have:

G(N ,K) =
N∑

n=0

G(N − n,K1)G(n,K2) .
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Fig. 6. Example of closed stochastic network. Warehouses are denoted by labelsW1, . . . ,W4.

Using this expression, one may add to the model one station at the time. Now, let πi (n) be the
marginal steady-state probability of observing n jobs in warehouse i . By definition, this probability
is given by the following equation:

πi (n) =
1

G(N ,K)

∑
n∈S:ni=n

K∏
j=1

дj (nj ) =
G(N − n,K \ {i})

G(N ,K)
дi (n) .

This quantity is particularly important as it allows us to compute the probability of fetching, which
is useful to determine the throughput at each queue as we will see in Section 5.

4.1 Example

We consider the model in Figure 6. Accordingly, for this example we have the following parameters:

P =

⎡⎢⎢⎢⎢⎢⎢⎣
0 p 1 − p 0
0 0 0 1
0 0 0 1
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
As in Example 3.4, in Figure 7 we can observe the graphical representation of the processes,

divided in isolated components, underlying the warehouses of the closed network under study.
The system of rate equation is: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x41 = x12 + x13

x12 = x24 = x41
μ2

μ2 + μ3

x13 = x34 = x41
μ3

μ2 + μ3

We know that for closed networks, this system is under-determined and that all the (possibly
infinite) non-trivial solutions will differ by a multiplicative non-zero factor. Therefore, we fix x41

to 1 and obtain solution

x41 = 1, x12 = x24 =
μ2

μ2 + μ3
, x13 = x34 =

μ3

μ2 + μ3
.
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Fig. 7. Graphical representation of the processes underlying the warehouses of Figure 6.

Accordingly, we obtain for Equation (6):

д1(n1) = μn1

4 , д2(n2) =

(
μ1p(μ2 + μ3)

μ2

)n2

,

д3(n3) =

(
μ1(1 − p)(μ2 + μ3)

μ3

)n3

, д4(n4) = (μ2 + μ3)
n4 .

5 AVERAGE STATIONARY PERFORMANCE INDICES

As far as performance indices are concerned, given Equations (5) and (6), it should be clear that
the methods for the derivation of the expected occupancy is similar to the ones used for Jackson
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and Gordon-Newell networks, respectively. This means that for open networks we will have:

N i =
ρi

1 − ρi

,

and in closed networks we observe:

N i =

N∑
n=1

nπi (n) =
N∑

n=1

дi (n)
G(N − n,K)

G(N ,K)
.

It is actually not surprising that the equations to compute the mean number of jobs in each ware-
house do not change with respect to the more traditional models cited above, as the main difference
between these models and our model resides in the fetching policy. However, this mechanism does
not affect the destination warehouse population and this is because fetched jobs go directly in ser-
vice without waiting in the warehouse of the fetching station.

The precise definition of station throughput requires special consideration. It involves identify-
ing two distinct flows originating from a station: one comprising all the jobs traversing that partic-
ular station, independently of whether they actually receive service in that station or not, and the
other consisting of only those jobs that are effectively served in the station. We distinguish these
notions by referring to the former as throughput and to the latter as goodput. In particular, jobs
leave a station for two reasons: either because of job completion (and we identify this amount of
jobs as goodput ) or because they have been fetched by a server with an empty warehouse, and we
denote this flow with Fi . We compute throughput Xi of a particular station i as the sum of these
two quantities. Since servers are always busy, the goodput is μi for station i . Whereas, the direct
computation of Fi is more complicated as we should be able to distinguish among the jobs waiting
to be served in a warehouse i , between the ones that are going to be served in server i and the
ones that are going to be fetched from some other server of the network. In order to do so, we
should sum the probabilities, of each warehouse in the network, of being empty and observing a
job completion in the associated servers. Each one of these probabilities, then should be multiplied
by the probability of fetching a job exactly from warehouse i .

To simplify this computation, we can resort to a work-conservation argument. As a matter of
fact, the total arrival intensity at a warehouse must equal its throughput, hence:

Xi =

K∑
k=0

μkpki + πi (0)μi . (8)

This formula expresses that at each queue the throughput is equal to the sum of the service rates
of every other station in the network multiplied by its own routing probability of sending a job to
station i , the one under analysis, plus the probability of station i of having an empty warehouse
and observing a service completion from its server, situation that will lead server i to fetch a job
from some other warehouse in the system. Notice that for closed systems:

πi (0) =
G(N ,K \ {i})

G(N ,K)
,

and for open networks πi (0) = (1−ρi ). At this point, the estimation of Fi can be done by difference:

Fi = Xi − μi =

K∑
k=1

μkpki − (1 − πi (0))μi . (9)
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6 MEAN VALUE ANALYSIS

MVA is an analysis technique for closed queueing networks [23]. Differently from convolution,
it enables computing average performance indices without the need to compute the normalising
constant. This leads to the definition of a recursive algorithm that is more numerically stable with
respect to convolution, although they share similar asymptotic complexity.

The usual way to introduce MVA is the so called Arrival Theorem [24] but, given the state-
dependent movement of jobs it would be difficult to transpose it in our context. Therefore, we
will follow a different path. First, we introduce a virtual Gordon-Newell queueing network that
contains N − K jobs. Although this network has a different behaviour than the one we wish to
study, its stationary distribution will correspond to the stationary distribution of the number of
jobs in the warehouses of the original model. This virtual network will be solved with the standard
equations of MVA and then we will map the average virtual performance indices into those defined
in Section 4.

6.1 The Virtual Gordon-Newell Network

Suppose we have to solve a network with K stations and N jobs. A closed Gordon-Newell queue-
ing networks consists of stations with exponentially distributed service time and independent
probabilistic routing. At each job completion, jobs move to another station according to the prob-
abilistic routing. The Gordon-Newell theorem states that this network has product-form solu-
tion that resembles Equation (6) where functions д are clearly defined in a different way, that
is, дv

i (ni ) = (e
v
i /μ

v
i )

ni , where ev
i are some constants that depend on the routing and μv

i is the
service rate.

We apply the standard algorithm for MVA, using as service demand дv
i (1) = дi (1) as defined in

Equation (7) for every station i . We also recall that we are interested in the number of jobs in the
warehouses, since we know that one job is always in the service room. Thus, if the original network
servesN+K jobs, the virtual network servesN jobs. Without loss of generality, we consider station

1 as reference station, that is, ev
1 = 1. MVA computes the average number of jobs N

v

i at all stations
of the virtual network and the throughput of the reference station Xv

1 . By definition of the virtual

network, we have N
v

i = N i , for all i .
As for the throughput, the reasoning is not straightforward. The first problem is that of finding

the throughput of station i in the virtual network. By the forced flow law [8], we have:

Xv
i = Xv

1 e
v
i , for i = 1, . . . ,K .

Therefore, we can obtain the utilization of station i , that is, the fraction of time the virtual server
is busy, thanks to the utilisation law [8]:

U v
i =

Xv
i

μv
i

=
Xv

1 e
v
i

μv
i

= Xv
1 д

v
i (1) = Xv

1 дi (1), for i = 1, . . . ,K . (10)

It is interesting to observe that we have obtained the expected occupancy and the utilisation for
station i without defining ev

i explicitly.
Noting that we have πi (0)

v = πi (0) = 1−U v
i , we can obtain the throughput of all stations i with

Equation (8).
Coherently with the theory of MVA, the asymptotic complexity of this solution is O(NK).

6.2 Example

We apply MVA on a traditional Gordon-Newell network and on a closed fetching network with
K = 4 and compare the results as far as mean queue lengths and throughput at each node are
concerned. Both networks share the same topology of the network in Figure 6, with p = 1/7, they
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Fig. 8. Throughput at each station. For fetching networks, goodput and fetching flow are characterised.

Table 1. Comparison of Mean Queue

Lengths in a Closed Fetching Queueing

Network and in a Gordon-Newell Queueing

Network Obtained through MVA

N i Fetching Gordon-Newell

Station 1 2.022 9.190

Station 2 0.070 0.077

Station 3 0.351 0.400

Station 4 3.556 0.333

also have the same service rates that is, μ1 = 1.0, μ2 = 2.0, μ3 = 3.0, μ4 = 4.0, and the same
number of jobs in the network, N = 10.

These results reveal some interesting aspects of this specific model. In particular, in Figure 8, we
can appreciate the advantages obtained by the fetching policy. It becomes evident that, for each
station, throughput is maximized due to the number of jobs that, in Gordon-Newall networks,
only move according to the probabilistic routing, resulting in periods when the service areas of
the stations remain idle. Conversely, this does not happen in fetching networks because as soon as
a service room finds itself idle and with no job waiting to be served in its corresponding warehouse
the fetching mechanism will take place so that servers are never idle.

Furthermore, as shown in Table 1, the fetching policy significantly reduces the queue length at
the first station. This reduction comes at the expense of a slight increase in the queue length at the
fourth station. However, this trade-off is offset by the substantial increase in station throughput.
Additionally, this policy enables a certain level of load distribution among the stations, leading to
an overall expectation of improved waiting times per job.

7 CONCLUSION

In this work, we have introduced a novel class of product-form stochastic queueing network where
server are never idle. This is achieved through a particular load balancing policy that allows the
steal of jobs from other stations by those servers, that upon a service completion and a request for
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a new job from their own buffer, find the latter empty. This possibility of skipping some processing
phases may degrade the quality of the final results, this is why this model suits fairly scenarios in
which successive refinements on jobs improve the processes quality but are not rigorously to still
obtain a sufficient result.

Notice that both in the case of open and close settings we were able to find exact solutions for
these models. As far as the open system is concerned we were able to apply the multi-way exten-
sion of the RCAT and to retrieve accordingly its product-form solution. The latter has then been
useful to retrieve the product-form also for closed systems, to which we were also able to apply
the convolution and MVA algorithms in order to retrieve some important average performance
indices.

As possible future research paths, we foresee the possibility of retrieving geometrical non-
iterative bounds for the closed system, as convolution and MVA being exact methods do not pro-
vide great efficiency. Moreover, we aim to model also multi-class queueing networks applying the
fetching policy we have introduced, as they would probably be more descriptive of and close to
real world scenarios. Finally, looking ahead, future work may also investigate hybrid networks
composed of both queues and warehouses and scenarios where stations are load-dependent.
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APPENDICES

A REVERSED COMPOUND AGENT THEOREM

A.1 Performance Evaluation Process Algebra

PEPA is a SPA. Process algebras [3] were first used as a modelling technique for the functional anal-
ysis of concurrent systems and then they became an established tool for performance and depend-
ability analysis. One of the main attractive features of SPA is compositionality. From a practical
point of view, this means that SPAs allow one to model a system as the interaction of its subsystems.
This principle resulted to be particularly useful because when a system is composed of interacting
components we are now able to model and analyse interactions and components separately.

PEPA is a SPA designed for modelling computer and communication systems by J. Hillston as
presented in [13]. This formalism can be used for studying quantitative and qualitative properties
of the model under analysis. In particular, it provides an elegant syntax for expressing continuous-
time Markov processes in a compositional way. PEPA peculiarity, with respect to other SPAs, con-
sists in the fact that it associates a random variable, that will represent duration, to every action.
These random variables are assumed to be exponentially distributed and this is the connection
between this process algebra and Markov processes.

Syntax. PEPA is based on three main ingredients: components that are the active units within
the system, activities that capture the actions of those units and cooperation that expresses the
interaction between components.

Models are constructed from components which perform activities. Each activity has an action

type α and an activity rate r . Each system action is uniquely typed and there is a countable set
A of all possible types, activities with the same action type are different instances of the same
action performed by the system. Since an exponential distribution is uniquely determined by its
parameter, the duration of an activity is represented by a single real number parameter, the so-
called activity rate. This rate may assume the value of any positive real number or the distinguished
symbol � that has to be read as unspecified. The standard notation is as follows:A is the set of all
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action types (τ included, that denotes the type unknown), R+ is the set of all positive real numbers,
including � and Act = A × R+ is the set of all activities. Therefore, an activity is denoted as

a = (α , r ),

with a ∈ Act ,α ∈ A and r ∈ R+. The combinators of the language allow one to describe the
behaviour of each component via the activities they undertake and the interactions between them.
Consequently, we are able to characterize the behaviour of the whole system. The combinator we
are mostly interested in is Cooperation which is denoted as follows

C = C1 ��
L
C2.

L ⊆ A is the so-called cooperation set and defines the action types on which the components
involved must synchronize. �� assumes that each component proceeds independently with any
activities whose types do not occur in L. Whereas, activities with action types in L require the
simultaneous involvement of both components in an activity of that type (notice that τ � L). From
a practical point of view, cooperation forms a new shared activity with the same action type as
the two cooperating activities and with rate reflecting the rate of the slowest participant. If one
of the two cooperating activities has an unspecified rate in a component, then the component is
said to be passive with respect to that action type. These activities must be shared with another
active component so that the other component can determine the rate of this shared activity. If
more than one activity of a given passive type can be simultaneously enabled by a component,
each unspecified activity rate must be assigned a weight; weights are natural numbers used to
determine the relative probabilities of the possible outcomes of the activities of that action type. If
no weights are assigned we assume that multiple instances have equal probabilities of occurring.

A.2 Reversed Compound Agent Theorem (RCAT)

RCAT is a theorem that gives sufficient conditions for a model to have the equilibrium distribution
in product-form. For the sake of simplicity, consider a model consisting of only two interacting
PEPA components on a set of action types L, as the one in Figure 9. For each action type in L,
where in the particular case of Figure 9, we have L = {b}, one is always active in a component and
always passive in the other one.

The joint model has a well-formed underlying Markov chain because all transitions have their
rates. In principle, the stationary distribution can be obtained by solving the set of GBE of the joint
process and by normalization. Product-form allows us to derive the stationary distribution of the
joint model as normalized product of the distributions of the isolated model. However, the presence
of passive types in the components requires some attention since their rates are unspecified.

Under some conditions, RCAT gives the way to specify the rates of passive types in the isolated
components in such a way that the product-form solution holds. It is worth noticing that these
rates are, in general, different from the synchronizing rates in the joint process.

Informally, RCAT identifies the reversed process of a cooperation in terms of the reversed pro-
cess of its components. Using this result, we are also able to derive the steady-state probabilities of
these interactive components replacing the occurrence of the passive action type transition with
rates that can be algorithmically computed. This is possible thanks to the fact that instantaneous
transition rates of the reversed process are related to those of the forward process through their
stationary distribution, which is the same for both processes.

Upon the verification of the conditions given in Theorem 2, we are also ensured that a product-
form solution exists and that it is the normalized product of the stationary distributions of the
single components involved, in which the unknown rates of the synchronizing actions have been
replaced by the reversed rates of the corresponding synchronizing transitions.
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Fig. 9. Graphical representation of two isolated components (X ) and (Y ) and of their joint model (X ��
{b }

Y ).

More formally, RCAT exploits an abbreviated PEPA syntax. As we have seen in standard PEPA
the shared actions of a cooperation occur at the rate of the slowest component; nevertheless, now,
we require that for each action type in the cooperation set, exactly one agent is passive and con-
cretely its synchronising action has rate � = ∞. This, basically means that the passive agent
actually waits for the other one. The set of actions, which an agent P may next engage in, is called
the set of current actions and when the system is behaving as agent P these are the actions that
are enabled. In addition, the derivation graph, formed by syntactic PEPA terms at the nodes, with
arcs representing the transitions between them, determines the underlying Markov process of an
agent P . The transition rate between two agents, Ci and Cj , denoted q(Ci ,Cj ), is the sum of the
action rates labelling arcs connecting Ci and Cj .

We also need to introduce relabelling, which preserves the semantic but will be useful to define
the reversed process of cooperations: P{x ← y}. describes agent P in which all occurrences of
symbol y have been replaced by x ;y may be an action type or also a rate. Henceforth, we will refer
to all agents as compound if they contain at least one instance of the cooperation combinator, and
as sequential if they do not.

Rates of the Reversed Actions. It is rather simple to find a PEPA agent definition C that has the
derivation graph with arrows in the opposite direction with respect to those of a given agent C .

What it is not trivial is to find the appropriate rates of the reversed actions to make C the actual
reversed process of C as defined by Kelly in [14].

For simple agents, it is possible to directly analyse the state transition graph of the Markov

process and after determining the reversed graph C the procedure is quite straightforward and
detailed in [10].
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Notice that one of the reasons for analysing simple agents is to provide base cases for a compo-
sitional analysis of larger Markov chains. In fact, any continuous Markov chain can be described
using only simple agents, however, the fact that an agent can perform multiple actions leading to
the same derivative causes multiple arcs in the derivation graph and consequently also between
two states in the transition graph of the underlying Markov chain. This does not create any issue
as we can always determine the total reversed rate between any two states with multiple arcs
between them. However, we need to consider multiple actions individually in cooperations.

In the reversed cooperation, the portion of the total reversed rate allocated to each individual
reversed arc is crucial therefore a rule is needed. The rule we use is stated below.

Definition 1 (Reversed Action of Multiple Actions [10]). The reversed actions of multiple actions
(ai , λi ) for 1 ≤ i ≤ n that an agent P can perform, which lead to the same derivative Q , are,
respectively, (

āi ,

(
λi

λ

)
λ̄

)
,

where λ = λ1 + · · · + λn and λ̄ is the reversed rate of the one-step, composite transition with rate
λ in the Markov chain, corresponding to all the arcs between P and Q .

In other words, the total reversed rate is distributed amongst the reversed arcs in proportion to
the forward transition rates.

Compound Agents. Under appropriate conditions, the reversed agent of a cooperation between
two agents P and Q is a cooperation between the reversed agents of P and Q , after some
reparametrisation. Before formally showing the result presented in Theorem 2, we first need to
define some new notation.

The subset of actions types in a set L which are passive with respect to a process P (i.e., are of the
form (a,�) in P ) is denoted by PP (L). The set of the corresponding active action types is denoted
by AP (L) = L \ PP (L).

Last thing to do before considering the following theorem we need to syntactically transform
the agent under analysis so that every occurrence of a passive action (a,�) is relabelled as (a,�a);
this guarantees that every passive action rate is uniquely identified with exactly one action type.

Theorem 2 (Reversed Compound Agent Theorem [10]). Suppose that the cooperation P ��
L
Q

has a derivation graph with an irreducible subgraph G. Given that

(1) every passive action type inPP (L) orPQ (L) is always enabled in P orQ respectively (i.e., enabled

in all states of the transition graph);

(2) every reversed action of an active action type in AP (L) or AQ (L) is always enabled in P or Q ,

respectively;

(3) every occurrence of a reversed action of an active action type in AP (L) (respectively, AQ (L))

has the same rate in P (respectively, Q)

then the reversed agent P ��
L
Q with derivation graph containing the reversed subgraph G, is

R{(ā,pa) ← (ā,�)|a ∈ AP (L)} ��
L
S{(ā,qa) ← (ā,�)|a ∈ AQ (L)},

where

R = P{�a ← xa |a ∈ PP (L)},

S = Q{�a ← xa |a ∈ PQ (L)},
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{xa} are the solutions (for {�a}) of the equations

�a = qa , a ∈ PP (L)

�a = pa , a ∈ PQ (L)

and pa (respectively, qa) is the symbolic rate of action type ā in P (respectively Q)

Notice that after the first definition of this theorem the third condition has been relaxed by
A. Marin and M. G. Vigliotti in [18] to just require that the sum of the reversed rates of all the
incoming transitions with the same active type must be the same in all states.

Consider again the simple model depicted in Figure 9. Component X is completely specified
since it does not have any unknown rate, thus we can compute its marginal distribution πX . This
is:

πX (1) = G ,πX (2) = G
λ

μ1
,πX (3) = G

λ2

μ1μ2
,

whereG is a normalizing constant. The second step is to observe that every state has an incoming
active type b whose reversed rate is, according to [14]:

— State 1: πX (2)/πX (1)μ1 = λ;
— State 2: πX (3)/πX (2)μ2 = λ;
— State 3: πX (3)/πX (3)λ = λ.

Notice that the reversed rate of action type a is constant and equal for all states. Therefore, xb = λ
is the rate that we must use to study Y in isolation, that is, we replace all rates of types b with λ.
Notice that this is not the synchronizing rate! Thus, the stationary distribution of Y is:

πY (A) =
γ

γ + λ
,πY (B) =

λ

γ + λ

At this point, since b is enabled in each state of Y , we conclude that the stationary distribution of
X ��
{b }

Y is in product-form and equal to:

πX ��
{b}

Y (n,m) = GπX (n)πY (m) .

In this case, since the joint process state space is the Cartesian product of the state spaces of the
single components, it is not necessary to renormalize the joint probabilities.

Propagation of Instantaneous Transitions. In [11], the authors have proved that RCAT can be
applied also to models that involve propagating synchronizations. To understand what we mean
we briefly need to discuss the concept of G-network. G-networks [6] are a class of product-form
queueing networks in which both positive and negative customers are allowed; the first ones be-
have as we are used to in traditional queueing networks whether the negative ones at arrival to
a station delete a positive customer, if any is present, or vanishes otherwise. In [7], it was shown
that these negative customers may act as triggers, meaning that they can move a customer from
a non-empty queue to another one. The class of G-networks has been then further investigated
to comprehend chains of instantaneous state changes that can be modelled as the propagation of
instantaneous transition as shown in [1, 9]. Accordingly, we write

P = (a → b,�).Q

to denote a passive action with type a that takes process P to Q and instantaneously synchronizes
as active on type b.
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When studying the components in isolation, the rate at which the transition synchronizes on
type b is the reversed rate of the passive action with type a that, in turns, is the reversed rate of
the active transition with type a.

B RELEVANT GLOBAL BALANCE EQUATIONS

In this section, we show some relevant GBE characterizing the equilibrium distribution of the
CTMC underlying the network represented in Figure 4. As far as this model is concerned, it is of
particular interest to observe which are the probability fluxes characterizing state change transi-
tions from a starting state describing a system including at least one station with an associated
empty warehouse.

π (1, 1, 0)(μ0 + μ1 + μ2) =

= π (0, 1, 0)μ0 + π (2, 0, 0)μ1 + π (1, 2, 0)μ2(1 − p) + π (1, 0, 1)μ3

π (1, 0, 1)

(
μ0 + μ1 + μ3 + μ2(1 − p) + μ2p

μ1

μ1 + μ3

)
=

= π (0, 0, 1)μ0 + π (1, 1, 0)μ2p + π (1, 1, 1)μ2(1 − p) + π (2, 0, 1)μ2(1 − p)
μ1

μ2 + μ3

+ π (2, 0, 0)μ2p
μ1

μ1 + μ3
+ π (1, 0, 2)μ2(1 − p)

μ3

μ1 + μ3

π (0, 1, 1)(μ0 + μ1 + μ2 + μ3) =

= π (0, 0, 1)μ1 + π (0, 2, 0)μ2p + π (1, 0, 1)μ1 + π (0, 0, 2)μ3 + π (0, 2, 1)μ2(1 − p)

π (1, 0, 0)

(
μ0 + μ1 + μ2(1 − p) + μ2p

μ1

μ1 + μ3

)
=

= π (1, 0, 1)μ2(1 − p)
μ1

μ1 + μ3
+ π (0, 0, 0)μ0 + π (2, 0, 0)μ2(1 − p) + π (1, 1, 0)μ2(1 − p)

π (0, 1, 0)(μ0 + μ1 + μ2) =

= π (0, 0, 0)μ1 + π (1, 0, 0)μ1 + π (0, 2, 0)μ2(1 − p) + π (0, 0, 1)μ3

π (0, 0, 0)

(
μ0 + μ1 + μ2

μ1

μ1 + μ3

)
=

π (0, 1, 0)μ2(1 − p) + π (1, 0, 0)μ2(1 − p) + π (0, 0, 1)μ2(1 − p)
μ3

μ1 + μ3

π (0, 0, 1)

(
μ0 + μ1 + μ3 + μ2(1 − p)

μ3

μ1 + μ3
+ μ2p

μ1

μ1 + μ3

)
=

= π (0, 1, 0)μ2p + π (0, 1, 1)μ2(1 − p) + π (1, 0, 1)μ2(1 − p)
μ1

μ1 + μ3
+ π (1, 0, 0)μ2p

μ1

μ1 + μ3

+ π (0, 0, 2)μ2(1 − p)
μ3

μ1 + μ3
+ π (0, 0, 0)μ2p

μ1

μ1 + μ3
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