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Confidence predictive distributions: an application to temperature
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Abstract. Post-processing techniques are nowadays frequently used in order to reduce the impact of

errors in ensemble forecasts of meteorological variables. Ensemble model output statistics (EMOS)

are a widely spread post-processing approach built on a heteroscedastic linear regression model. Af-

ter replacing unknown parameters with suitable estimates, an estimative EMOS distribution function

for prediction is obtained. However, it is well known that forecasts based on estimative EMOS may

lack calibration, particularly when the number of ensembles is large compared to the number of his-

torical observations. Here, we suggest overcoming this drawback by applying in the EMOS context

a predictive approach based on the concept of confidence distribution. The result is a new predictive

distribution that takes the form of a variance correction of the classical estimative EMOS distribution.

The performance of the confidence EMOS distribution is tested on a real-data application for tempera-

ture forecasting. It can be seen that our proposal performs better than the classical estimative EMOS,

both in terms of coverage probabilities and log-score.

Keywords. Confidence distribution; Coverage probabilities; EMOS.

1 Introduction

Forecasting the weather is an essential component of support to decision making in many different sit-

uations. Forecasts have gradually improved over the past few decades, in part as a consequence of

advancements in numerical weather prediction (NWP) ([1]). The forecasts produced by physics-based

models, which are typically provided as forecast ensembles, still exhibit systematic bias and are fre-

quently under-dispersive despite these advances ([2]). Today, it is common practice to further refine,

enhance, and calibrate NWPs using statistical post-processing techniques. One of the most widely used

methods for post-processing ensemble forecasts is ensemble model output statistics (EMOS, [4]).

Classic EMOS is nothing but a linear heteroscedastic regression model with Gaussian errors, where

the ensembles play the role of explanatory variables and their sample variance contributes to the variance

component. Unknown parameters are estimated on the basis of past observations by minimising some

suitable scoring rules. After substituting parameter estimates in the Gaussian distribution function of

the variable of interest, a so-called estimative distribution is obtained. Estimative EMOS distribution

functions are commonly used to forecast the variable of interest and, in particular, to obtain prediction
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intervals or limits with the desired level of confidence. Unfortunately, even if this procedure is able to

correct for bias and under-dispersion of the ensemble, it is not fully calibrated, and the actual coverage

of its quantiles may consistently differ from the nominal one.

Ad-hoc techniques, useful for modelling specific datasets, have been proposed in the literature to

overcome this problem. A method that can be applied in the general context of EMOS, as well as with

distributions that differ from the normal case, is considered in [5], where an easy bootstrap procedure

is used for calibrating estimative EMOS distributions. Here, we consider the approach to prediction

based on confidence distributions, presented by [6], and capable to include frequentist, Bayesian, and

fiducial predictive inference within a unique framework. With this method, unknown parameters are

eliminated by integration with respect to a so-called confidence distribution. Depending on the features

of the model and of the chosen confidence distribution, the resulting confidence predictive distribution

is, at least approximately, well-calibrated, giving quantiles with the correct coverage probability.

This work is a seminal attempt to use confidence predictive distributions in the context of EMOS.

Using data about maximum daily temperatures in the Veneto region, north of Italy, we show the poten-

tiality of this method for improving the usual estimative approach. In the next section, we present some

basic concepts on EMOS and confidence-based prediction and obtain the confidence EMOS predictive

distribution. In the last section, we apply the result to the problem of forecasting temperatures in the

Veneto region. In particular, we use data regarding Cavallino-Treporti station, located in the Venice la-

goon. We show the superiority of the new predictive distribution on the usual estimative distribution,

both with respect to the log-score and the coverage of predictive quantiles.

2 EMOS prediction with confidence

The simplest version of EMOS is just a regular linear regression model with heteroscedastic normal

errors. The ensemble members are combined linearly to form the EMOS mean, with the contribution

of ensemble members to the relevant weather variable represented by unknown coefficients. The EMOS

variance, which considers the spread relationship, is a linear function of the ensemble variance. To set

the notation, consider that {Yi}i≥1 is a sequence of independent continuous random variables. Y n =
(Y1, . . . ,Yn), n > 1, is observable while Z = Yn+1 is a future or not yet observed variable. In the classic

EMOS all the Yi’s, i ≥ 1, are normally distributed with mean and variance depending on m ensemble

members. Let Xn+1 = (1,X1,n+1, . . . ,Xm,n+1)
T include 1 for the intercept of the model and the ensembles

associated with the future variable Z, and let S2
n+1 be the variance of the ensembles (X1,n+1, . . . ,Xm,n+1).

The full distribution of Z is given by

Z | X1,n+1, . . . ,Xm,n+1 ∼ Φ

(
z−µn+1

σn+1

)
, (1)

where Φ(·) denotes the standard normal distribution function and µn+1 = β0+β1X1,n+1+ . . .+βmXm,n+1 =
βXn+1 and σ2

n+1 = γ0 + γ1S2
n+1, see [4]. The parameters β = (β0, . . . ,βm), γ0 and γ1 are non-negative un-

known coefficients. Log-score and CRPS are two appropriate scoring rules that are typically minimised

in order to estimate unknown EMOS parameters. An estimative distribution for the future weather quan-

tity Z is obtained by substituting the estimated parameters in the full distribution of Z:

Φ

(
z− µ̂n+1

σ̂n+1

)
, (2)

with µ̂n+1 = β̂Xn+1, and σ̂2
n+1 = γ̂0+ γ̂1S2

n+1, where β̂ = (β̂0, β̂1, . . . , β̂m), γ̂0, and γ̂1 are suitable estimates

of β, γ0, and γ1, respectively, based on an observed sample from Y n, yn = (y1, . . . ,yn).

GRASPA 2023 Workshop 2
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Unfortunately, estimative distributions occasionally exhibit poor performance, particularly when

there are few historical observations in comparison to the size of the ensemble. In order to improve

the estimative EMOS (2) we consider the method proposed in [6] based on the concept of confidence

distribution. According to [6] a whole predictive distribution function for the variable Z can be obtained

by integrating (1) with respect to a confidence distribution for the unknown parameters. The properties

of the resulting predictive distribution for Z are strictly related to those of the used confidence distribu-

tion. Let X be the n× (m+ 1) design matrix, namely, X = [X1, . . . ,Xn]T with X i = (1,X1,i, . . . ,Xm,i)
T

for i = 1, . . . ,n. Following [6], we choose a confidence distribution for β derived from the asymptotic

distribution of β̂:

Φm+1

((
XT Σ−1X

)1/2
(β̂−β)

)
, (3)

where Φm+1 denotes a (m+1)−dimensional normal distribution with zero mean vector and unit covari-

ance matrix, Σ = diag(γ0 + γ1S2) with S2 = (S2
1, . . . ,S

2
n), S2

i =
1

m−1 ∑m
j=1(Xi j − X̄i)

2 denoting the variance

of the i-th observation of the ensemble and X̄i =
1
m ∑m

j=1 Xi j its mean, i = 1, . . . ,n.

By integrating (1) with respect to (3) and replacing Σ with Σ̂ = diag(̂γ0+ γ̂1S2) and σ2
n+1 with σ̂2

n+1 =
γ̂0 + γ̂1S2

n+1 we obtain the corresponding confidence predictive distribution:

Q(z;yn) = Φ




z− µ̂n+1√
σ̂2

n+1 +(Xn+1)T
(

XT Σ̂−1X
)−1

Xn+1


 . (4)

The new confidence predictive distribution (4) is nothing but a variance adjustment of the estimative

EMOS distribution (2). It corresponds to the exact predictive distribution in heteroscedastic regression

models, for the case when the variance-covariance matrix of the errors is known, see for instance [3].

Indeed, our procedure accounts for the additional uncertainty in the estimates of the regression parame-

ters but not in the estimate of the variance component. Thus, the resulting predictive distribution is not

fully calibrated. Nonetheless, as shown in the next section, it provides prediction limits with a coverage

probability very close to the nominal one.

3 Real case study

In this study, we focus on forecasts for the maximum daily temperatures at stations located in the

Veneto region, northern Italy. We have a three-year period of interest that runs from August 16, 2009,

to August 17, 2012. The dataset was previously analysed in [5] by using the classical EMOS and a

bootstrap calibrated modification of it. Historical maximum daily temperature forecasts are available

from http://www.scia.isprambiente.it/. While the ensemble forecasts are provided by the World Climate

Research Programme. We examine the maximum daily temperatures for the Venetian lagoon station

Cavallino-Treporti (Longitude: 12.48642, Latitude: 45.45805). In accordance with [4], we use a sliding

window of 50 observations as our training set and the remaining 1039 days as our test set. Estimates

of the EMOS parameters are obtained by optimizing the log-score (namely, minus the log-likelihood)

over the sliding training period. Then, we consider the estimative EMOS in (2), the bootstrap predictive

distribution obtained in [5], as well as the predictive distribution (4) produced by the suggested method-

ology. We compare the performances of the three distributions for each of the 1039 observations in terms

of coverage probability and log-score. The mean and standard deviation of the log-score for the three

predictive models are summarised in Table 1. Note that the confidence predictive distribution improves

GRASPA 2023 Workshop 3
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on the estimative distribution, since the lower the score the better the method. We have also obtained

coverage probabilities and mean lengths of level 66.7% central intervals to properly assess the calibration

and concentration of the various predictive models (Table 2). It can be seen that the confidence predictive

distribution performs much better than the bootstrap predictive distribution in terms of coverage prob-

ability of the central prediction interval. The increased length of the interval is in fact justified by the

higher and more precise coverage. Additionally, the coverage probabilities of the upper prediction limits

of 90%, 95%, and 99% are derived and represented in Figure 1. In relation to the estimative distributions,

it should be noted that the coverage probabilities obtained from the proposed predictive distribution are

closer to nominal levels, and to those of the Bootstrap predictive distribution. The PIT histograms for

the three considered predictive models are finally shown in Figure 2. We can see that the histogram pro-

duced by the suggested methodology is very similar to the uniform one, indicating good calibration. The

excessive under-dispersion of the estimative EMOS distribution gives the PIT histogram its particular U

shape.

As we have seen, in terms of all the considered measures, the confidence predictive distribution

performs similar to the Bootstrap predictive distribution discussed in [5], but it has the advantage of not

requiring any time-consuming computational process like the bootstrap itself.

Est Boot Conf

Log-score 2.98 2.51 2.55

(0.08) (0.03) (0.03)

Table 1: Log-score values of the three predictive distributions. Est denotes the estimative EMOS, Boot

the Bootstrap predictive distribution obtained in [5], while Conf denotes the confidence predictive distri-

bution in (4).

Est Boot Conf

mean length 3.53 5.42 6.18

(0.02) (0.04) (0.05)

coverage 0.451 0.641 0.692

(0.015) (0.015) (0.014)

Table 2: Coverage probabilities and mean lengths of the central prediction interval of level 0.67 for the

three predictive distributions. Est denotes the estimative EMOS, Boot the Bootstrap predictive distribu-

tion obtained in [5], while Conf denotes the confidence predictive distribution in (4). Standard errors in

brackets.

References

[1] Bauer, P., Thorpe, A., Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature,525,

47–55.

[2] Buizza, R. (1997). Potential forecast skill of ensemble prediction and spread and skill distributions of the

ECMWF ensemble prediction system. Montly Weather Review, 125, 99–119.

[3] Faraway, J.J. (2005). Linear Models with R. Chapman & Hall.

GRASPA 2023 Workshop 4



Giummolè and Mameli Confidence predictive distributions

α = 0.9

●

●

●

Est Boot Conf

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

α = 0.95

●

●

●

Est Boot Conf

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

α = 0.99

●

● ●

Est Boot Conf

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

Figure 1: Coverage probabilities of upper prediction limits for the three predictive distributions. Left
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