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A B S T R A C T   

We analyze the paradox of cooperation, as established by Barrett (1994), and later reiterated by 
many others, in a more general framework. That is, we show that stable coalitions are either small 
or if they are large, the potential gains from cooperation are small. First, we argue that the 
extension to a mitigation-adaptation game is a generalization of Barrett’s pure mitigation game. 
Second, we consider for this extension not only the Nash-Cournot scenario, as in Bayramoglu 
et al. (2018), but also the Stackelberg scenario. Third, we show generally that if mitigation levels 
in different countries are strategic substitutes, stable coalitions are larger in the Stackelberg than 
in the Nash-Cournot scenario. Fourth, this is reversed if mitigation levels are strategic comple-
ments, which is possible if the strategic interaction between mitigation and adaptation is suffi-
ciently strong. Fifth, for all possible combination of assumptions, we demonstrate that the 
paradox of cooperation is robust, except if mitigation and adaptation were strategic complements, 
which we argue is an assumption not supported by empirical evidence.   

1. Introduction 

Mitigation and adaptation are two strategies to combat climate change. Mitigation directly targets at solving the cause of the 
problem, reducing greenhouse gas emissions, causing global warming. In contrast, adaptation aims at ameliorating the negative 
consequence of global warming. Whereas mitigation is typically viewed as a pure public good, adaptation is seen as a private good 
(reducing only damages of the party conducting adaptation). Addressing global warming requires international cooperation: isolated 
actions will not make a big difference if other countries do not follow suit. However, the signature and ratification of effective in-
ternational climate agreements have proved to be difficult in the past. There is a widespread consensus that the Kyoto Protocol has not 
been able to curb the increase of greenhouse gases in the past, and also most scholars have doubts about the effectiveness of the Paris 
Accord signed in 2015, as highlighted by the latest IPCC 1.5◦ report (IPCC et al., 2018). As the effects of global warming become more 
and more visible, adaptation becomes increasingly important as a policy option. This is not only evident by the increasing literature on 
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the costs and effectiveness of adaptation as well as about the practical and technical obstacles of implementation, in particular, in 
developing countries (IEG 2013 and World Bank 2010), but adaptation is also an integral part of almost all recent climate change 
negotiations (UNFCCC 2014 and 2016). The main obstacle of addressing the cause of global warming is the public good nature of 
mitigation. Reducing emissions comes at a cost that is borne by individual countries, but the benefits are enjoyed by all countries 
worldwide. 

International climate negotiation failures have been largely explained by game-theoretic models of international environmental 
agreements (IEAs).1 In the standard workhorse model with only mitigation and symmetric players, only small agreements are stable if 
signatories and non-signatories choose their mitigation levels simultaneously, which has been called the Nash-Cournot scenario.2 For 
Stackelberg leadership of signatories, more optimistic results have been obtained in terms of the size of stable agreements (Barrett 
1994; Diamantoudi and Sartzetakis 2006; Rubio and Ulph 2006). However, as Barrett (1994) coined it, the paradox of cooperation 
persists: stable coalitions are either small or if they are large, the potential gains from cooperation are small. Recently, Bayramoglu 
et al. (2018) argued for the Nash-Cournot scenario that more optimistic results may be obtained if countries have a second strategy at 
their avail, namely adaptation, which they coined the mitigation-adaptation game. They show that if the cross effect between miti-
gation and adaptation is sufficiently large, reaction functions in mitigation space may become upward sloping, associated with large 
stable agreements, including the grand coalition. This result does not depend on whether mitigation and adaptation are assumed to be 
substitutes (as commonly believed) or complements (as an unlikely possibility), but only that the rate of substitution or comple-
mentarity is large in absolute terms. However, Bayramoglu et al. (2018) neither measure the effectiveness of stable agreements nor do 
they consider Stackelberg leadership as an alternative assumption. 

We acknowledge in this paper that the mitigation-adaptation game is a generalization of Barrett’s pure mitigation game for which 
we want to find out whether the paradox of cooperation is still a robust conclusion. We consider for this generalization not only the 
Nash-Cournot scenario, as in Bayramoglu et al. (2018), but also the Stackelberg scenario, as proposed by Eisenack and Kähler (2016) 
and Marrouch and Chaudhuri (2011). We show generally (neither resorting to specific payoff functions nor simulations) that if 
mitigation levels in different countries are strategic substitutes, stable coalitions are larger in the Stackelberg than in the Nash-Cournot 
scenario. This is reversed if mitigation levels are strategic complements, which is possible if the strategic interaction between miti-
gation and adaptation is sufficiently strong. For all possible combination of assumptions, we demonstrate that the paradox of coop-
eration is robust, except if mitigation and adaptation were strategic complements, which we argue is an assumption that lacks 
empirical support. 

In what follows, we lay out the model in section 2, derive our general analytical results in section 3 and those for a specific payoff 
function in section 4. Section 5 evaluates the efficacy of stable agreements via extensive simulations and section 6 concludes with some 
hints about future research. All proofs are contained in the Appendix with further details provided in an Online Appendix. 

2. The model 

2.1. Payoff function 

We consider n symmetric countries i = 1, 2, ...,n, with N the set of all countries. Following Bayramoglu et al. (2018), the payoff 
function of every country i is given by: 

Wi(M,mi, ai)=Bi(M, ai) − Ci(mi) − Di(ai). (1) 

The individual payoff comprises benefits Bi, which are a function of total mitigation, M =
∑n

i=1mi, and individual adaptation, ai, 
minus the costs of mitigation Ci, which are a function of individual mitigation mi and minus the costs of adaptation, Di, which are a 
function of individual adaptation ai. Benefits are a function of both strategies, total mitigation M and individual adaptation ai. Both, 
mitigation, the pure public good, as well as adaptation, the pure private good, contribute to benefits.3 

The strategy space of country i is given by mi ∈ [0,mi] and ai ∈ [0,ai]. If we set ai = 0 and assume Wi(M,mi,ai = 0) = Wi(M,mi), the 
pure mitigation game without adaptation can be retrieved. Thus, the mitigation-adaptation game can be viewed as a generalization of 
the mitigation game. 

We assume that all countries have the same payoff function, i.e., all countries are assumed to be ex-ante symmetric. Hence, we can 
drop index i, whenever no misunderstanding is possible. However, as will become clear below, countries may nevertheless be ex-post 
asymmetric, as in our model countries endogenously choose whether they join an agreement and become signatories (S) or remain 

1 The first models go back to Barrett (1994), Carraro and Siniscalco (1993) and Hoel (1992). This literature on IEAs has grown substantially over 
recent years. The most influential articles has been collected in a volume in Finus and Caparrós (2015). In this volume, various extensions of the 
standard model are included for which in some cases more positive results are obtained. The importance of this topic is also highlighted by some 
recent papers, e.g., Battaglini and Harstad (2016) and Harstad (2012).  

2 An exception is Karp and Simon (2013) who consider non-standard mitigation cost functions.  
3 It is generally known that the public good provision game can be alternatively framed as an emission game; they are dual problems. In the 

context of mitigation and adaptation, this is evident by comparing Bayramoglu et al. (2018) and Rubio (2018). In the emission game, the equivalent 
to the benefit function in the public good game is the damage function with aggregate emissions and adaptation being the arguments in this 
function. The importance of a correct conversion of mitigation into emission games, including possible problems, is discussed in Diamantoudi and 
Sartzetakis (2006) and Rubio and Ulph (2006), though without adaptation. 
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outside and become non-signatories (NS), and these groups choose different mitigation levels. If we want to stress this difference, we 
use subscript S and NS, respectively. 

All welfare functions, as well as their first and second derivatives, are assumed to be continuous. Following Bayramoglu et al. (2018), 
we introduce the following assumptions where we denote for instance BM = ∂B/∂M, BMM = ∂2B/∂2M and BMa = BaM = ∂2B/∂M∂ai

. 

General Assumptions.  

a) BM > 0, BMM < 0, Cm > 0, Cmm > 0.  
b) lim

M→0
BM > lim

m→0
Cm > 0.  

c) Ba > 0, Baa ≤ 0, Da > 0, Daa ≥ 0. 

If Baa = 0, then Daa > 0 and vice versa: if Daa = 0, then Baa < 0.  

d) lim
a→0

Ba > lim
a→0

Da > 0.

e) i) BaM = BMa < 0 or ii) BaM = BMa > 0. 

These assumptions and their implications are discussed in Bayramoglu et al. (2018) where assumptions b) and d) are necessary 
conditions for an interior solution to which we confine ourselves in this paper. Mitigation and adaptation are substitutes, as commonly 
assumed for assumption e) i), and would be complements for assumption e) ii).4 (See subsection 2.5 for a discussion.) It will become 
apparent that for almost all results the sign of the cross derivative does not matter, though the absolute value of this derivative will turn 
out to be important. In order to reduce the complexity of some of the subsequent proofs, we assume that third derivatives are equal to 
zero, which implies linear reaction functions. In the Appendix, we mention this assumption whenever we use it, but it will no longer be 
mentioned in the text. 

2.2. The coalition formation game 

We consider the workhorse model of international environmental agreements, which is a two-stage cartel formation game. In the 
first stage, countries decide on their membership. Those countries, which join coalition P, P⊆N, are called signatories and those which 
remain outside are called non-signatories. In the second stage, signatories act as a single player, choosing their economic strategies by 
maximizing the aggregate payoff over all signatories. Non-signatories act as single players, maximizing their own payoff. The solution 
of the second stage leads to an economic strategy vector for every coalition P of size p, 1 ≤ p ≤ n. If this strategy vector is unique, 
notation simplifies and we can write W∗

i (p). As we will see below, as all signatories i ∈ P choose the same strategy vector and the same 
applies to all non-signatories j ∕∈ P (though signatories and non-signatories will choose different strategy vectors) we can also write 
W∗

S(p) and W∗
NS(p), with the understanding that W∗

NS(p) does not exist if p = n and W∗
S(p) = W∗

NS(p) if p = 1.5 In Appendix 1, we provide 
a sufficient condition, which guarantees the existence and uniqueness of interior second stage equilibria. 

For the second stage, we need to distinguish between the Nash-Cournot (NC) and the Stackelberg (ST) scenario. Under the NC- 
scenario, signatories and non-signatories choose their economic strategies simultaneously, and under the ST-scenario they do so 
sequentially, with signatories being the Stackelberg leader and non-signatories the followers, in line with the assumptions in the 
literature on IEAs (e.g., Barrett 1994; Rubio and Ulph 2006). 

Generally, if coalition P is empty (p = 0) or, which is equivalent, if it consists of only one player (p = 1), the equilibrium economic 
strategy vector will be the same as in the Nash equilibrium in games without coalition formation. This also means that we assume 
signatories can only assume Stackelberg leadership if n > p > 1 (but not if p = 1).6 Conversely, if coalition p = n, i.e., the grand 
coalition has formed, this corresponds to the social optimum. There are no leaders and followers; hence, the NC- and ST-scenario 
coincide. Hence, the difference in equilibrium strategies between the two scenarios in the second stage arises when there is partial 
cooperation, i.e., 1 < p < n. 

In the first stage, making already use of the symmetry assumption and the simplified notation because of a unique economic 
strategy vector for every coalition of size p, 1 ≤ p ≤ n, a coalition of size p is stable if it is internally and externally stable. 

Internal stability : W∗
S (p) ≥ W∗

NS(p − 1)
External stability : W∗

NS(p) ≥ W∗
S (p + 1).

(2) 

Internal stability requires that a signatory has no incentive to leave a coalition of size p. External stability requires that a non- 
signatory has no incentive to join a coalition of size p. A coalition which is internally and externally stable is called stable and the 
size of such a coalition is denoted by p∗. It is important to note that despite second stage equilibria for p = 1 and p = n are the same for 

4 In the following, we rule out the uninteresting and special case of BMa = 0.  
5 Strictly speaking, p = 0 and p = 1 imply the same coalition structure. For notational simplicity, we assume 1 ≤ p ≤ n. W∗

S(p) = W∗
NS(p) if p = 1 

for the Stackelberg scenario is explained below.  
6 The alternative assumption of Stackelberg leadership also for p = 1 would only make a difference for stability at p = 2 which is anyway not very 

interesting for our subsequent analysis. 
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the NC-and ST-scenario, internal stability for p = n and external stability for p = 1 will be different. 

2.3. First order conditions and slopes of the reaction functions in mitigation space and mitigation-adaptation space 

Under the NC-scenario, we assume in line with Bayramoglu et al. (2018) that all countries choose their mitigation and adaptation 
levels simultaneously. As shown by Bayramoglu et al. (2018), this is equivalent to all countries choosing first their mitigation levels 
and then all countries choosing their adaptation levels. 

Under the ST-scenario, we assume that signatories simultaneously choose first their two economic strategies as leaders and then 
non-signatories do the same as followers. This is equivalent to any alternative sequence as long as signatories choose their mitigation 
levels first and each group does not choose adaptation before mitigation.7 

In Table 1, we list the first order conditions in an interior equilibrium in the two alternative scenarios. (Second order conditions are 
provided in Appendix 1.) Consider first the NC-scenario. Signatories internalize the externality among its p members whereas non- 
signatories just maximize their own payoff. Hence, (3.a) and (3.b) imply Cm(m∗

S)

p = Cm(m∗
NS) and therefore m∗

S > m∗
NS due to the strict 

convexity of the mitigation cost function, where an asterisk indicates equilibrium values. According to (4), signatories and non- 
signatories will choose the same adaptation level in equilibrium, i.e., a∗

i = a∗
S = a∗

NS, as adaptation is a private good. Hence, 
W∗

S(p) < W∗
NS(p) for any p, 1 < p < n (as all players have the same benefits and adaptation costs, but signatories have higher mitigation 

costs than non-signatories). Moreover, note that equilibrium adaptation only depends on total mitigation, i.e., a∗
i (M), which is evident 

from (4). 
Let us now consider the ST-scenario. First, compared to the NC-scenario, it is evident from Table 1 that only the first order con-

ditions of signatories regarding mitigation have changed. Second, again, a∗
i = a∗

S = a∗
NS and a∗

i (M). Third, we notice that the Stack-
elberg leaders choose their economic strategies such as to find the point on the followers’ reaction function associated with the highest 
possible welfare for the leaders. That is, signatories as leaders take into consideration how non-signatories will react. Fourth, if we let 
mNS = rNS(M− j) be the best-response of a non-signatory j, given the mitigation level of all other players except player j, M− j, and using 
the symmetry assumption, which implies that all non-signatories de facto behave the same, we can define an aggregate best-response 
function of all non-signatories MNS = RNS(MS) with MNS being the aggregate mitigation level of all non-signatories and MS the 
aggregate mitigation level of all signatories. (Hence, M = MS + MNS.) Accordingly, r′NS(M− j) and R′

NS(MS) are the respective slopes of 
these best-response or reaction functions. Similarly, we can derive the slopes of individual and aggregate best-response functions of 
signatories, r′

S(M− i) and R′

S(MNS), with M− i the total mitigation of all players except signatory i. See Bayramoglu et al. (2018), 
Proposition 2. 

r
′

S(M− i∈P)=
p ·Ψ

Cmm(mS) − p ·Ψ
,R

′

S(MNS) =
p2 ·Ψ

Cmm(mS) − p2 ·Ψ
, (7)  

r′

NS

(
M− j∕∈P

)
=

Ψ
Cmm(mNS) − Ψ

,R′

NS(MS)=
(n − p) ·Ψ

Cmm(mNS) − (n − p) ·Ψ
. (8)  

with Ψ = BMM +
(BaM)

2

Daa − Baa
. 

In the mitigation-adaptation space, a country’s reaction function is given by ai = h(M), with the associated slope given by 

h′

(M)=
∂ai

∂M
=

BaM

Daa − Baa
. (9) 

In mitigation space, reaction functions are downward sloping if Ψ < 0 and are upward sloping if Ψ > 0 (because the denominator of 
these slopes is positive if the second order conditions for a maximum hold, see Appendix 1). In mitigation-adaptation space, reaction 
functions are downward sloping if BaM < 0 and upward sloping if BaM > 0.8 

Hence, reaction functions in mitigation space do not have to be downward sloping (as this would be the case in a game without 
adaptation) but can be upward sloping if adaptation is available as an additional strategy to mitigation. Thus, the leakage effect in 
terms of mitigation, due to mitigation levels in different countries being strategic substitutes, may turn into an anti-leakage effect such 
that mitigation levels become strategic complements. The latter possibility arises if Ψ > 0. An extensive discussion of this possibility is 
provided in the next two subsections. Important at this stage is to note that all our subsequent results only depend on the sign of Ψ , i.e., 
whether reaction functions in mitigation space are downward (Ψ < 0) or upward (Ψ > 0) sloping, but do not depend on whether 
mitigation and adaptation are substitutes or complements (i.e., the sign of h′

(M) does not matter). 
With reference to Table 1, under the ST-scenario, comparing the first order conditions of signatories and non-signatories with 

respect to mitigation ((5.a) and (5.b)), we have Cm(m∗
S)

p ·(1+R′

NS)
= Cm(m∗

NS). Hence, if R′

NS > 0, we conclude m∗
S(p) > m∗

NS(p), given the con-

vexity of the mitigation cost function and, because equilibrium adaptation levels of signatories and non-signatories are the same, 

7 If adaptation was chosen before mitigation, the strategic role of adaptation would change and would lead to different outcomes (see Breton and 
Sbragia 2019; Eisenack and Kähler 2016; Zehaie 2009).  

8 We rule out the uninteresting and special case of Ψ = 0 and BMa = 0. 
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W∗
S(p) < W∗

NS(p) for any p, 1 < p < n, follows. In contrast, if R′

NS < 0, m∗
S(p) < m∗

NS(p) and, hence, W∗
S(p) > W∗

NS(p) is possible if p is 
small and/or if reaction functions are steep. For larger p and/or flat reaction functions, the reverse may hold: m∗

S(p) > m∗
NS(p) and 

W∗
S(p) < W∗

NS(p). 

2.4. Technical aspects of the slopes of the reaction functions in mitigation space and mitigation-adaptation space 

If Ψ = BMM +
(BaM)

2

Daa − Baa
< 0 reaction functions in mitigation space are downward sloping and if Ψ = BMM +

(BaM)
2

Daa − Baa
> 0 they are upward 

sloping. We call BMM < 0 the “direct effect” and (BaM)
2

Daa − Baa
> 0 the “indirect effect”, where the latter effect could also be called the “cross 

effect”. The indirect effect is always positive because Daa − Baa > 0 from our general assumptions and the sign of BaM does not matter 
because it is squared.9 In a game without adaptation, the indirect effect does not exist and because BMM < 0 from our General As-

sumptions, Ψ < 0 always holds. In a game with adaptation, Ψ > 0 is possible if |BMM| <
(BaM)

2

Daa − Baa
. That is, the “direct effect” must be 

smaller than the “indirect effect”. In the terminology of Ebert and Welsch (2012, p.54), the indirect effect is the “adaptation capacity” 
of a country, with a high capacity favouring large values of Ψ . Apart from a strong interaction of mitigation and adaptation on the 
benefit side (i.e., large absolute values of BaM), a large adaptation capacity is favoured by small values of Daa − Baa. Small values of Daa 
imply a flat marginal adaptation cost function and small values of Baa imply a “small extent by which the effectiveness of adaptation 
diminishes”. 

In order to understand the technical role of Ψ better, we adopt the concept of “minimized total costs” of Rubio (2018) for our 
purposes, which we call “optimally adapted net benefits”, which are given by Bi(M, ai(M)) − Di(ai(M)). That is, we consider that 
equilibrium adaptation is a function of total mitigation in the benefit function, correcting for the cost of adaptation. Differentiating the 
optimally adapted net benefit function with respect to mitigation M twice, gives Ψ . Hence, the optimally adapted net benefit function is 
concave if Ψ < 0 and convex if Ψ > 0. However, as we show in Appendix 1, even if Ψ > 0, the optimization problem of the entire payoff 
function is still concave if the second order condition for a maximum hold. For instance, for p = 1, the second order condition is given 
by Ψ − Cmm(mi) < 0. Thus, if Ψ > 0, we need Ψ < Cmm(mi) for this condition to be satisfied.10,11 

In order to illustrate the relation between mitigation and adaptation, let all mitigation cost functions be multiplied by a cost 
parameter c such that costs are given by c ·C(mi). Then from the first order conditions for mitigation, it is clear that ∂m∗

i
/

∂c < 0 for all 

players and, hence, ∂M∗
/∂c < 0. This drop in total mitigation will transmit into a change of equilibrium adaptation through h′

(M) = ∂ai
∂M, 

which implies that equilibrium adaptation will increase if mitigation and adaptation are substitutes and will decrease if they are 
complements. Thus, for upward sloping reaction functions in mitigation space, we either need a large rate of substitution or a large rate 
of complementarity between mitigation and adaptation. 

Finally, let us ask the questions whether there could be any reason why mitigation and adaptation are complements, despite we 
adhere to the standard assumption of BaM < 0. Clearly, in our model, BaM < 0 implies h′

(M) = ∂ai
∂M < 0. In Ingham et al. (2013) this is 

confirmed for most model versions which the authors consider. Nevertheless, they point to one exception, namely if adaptation costs 
depend on the level of mitigation in a particular form. Let D(a,M). Then it is straightforward to show that h′

(M) = ∂ai
∂M = BaM − DaM

Daa − Baa
. Now if 

BaM < 0, h′

(M) > 0 requires DaM < 0 and |BaM| < |DaM|. That is, mitigation reduces the marginal cost of adaptation and the cross effect 
on the cost function is larger than on the benefit function. The argument for DaM < 0 could be that by reducing emissions, the pro-
duction capacity of adaptation is enhanced. Even if one buys into this argument, it is likely that this does not hold for all levels of 
emissions, but only for very high levels of emissions above some threshold. That is, in our context, DaM < 0 may hold for low levels of M 

Table 1 
First order conditions under the NC- and ST-Scenarioa.   

NC-scenario ST-scenario 

Signatories p ·BM(M, ai) = Cm(mS) (3.a)  p ·[BM(M, ai)(1+R′

NS)] = Cm(mS) (5.a)  
Non-Signatories BM(M, ai) = Cm(mNS) (3.b)  BM(M, ai) = Cm(mNS) (5.b)  
Both Ba(M, ai) = Da(ai) (4)  Ba(M, ai) = Da(ai) (6)   

a Let MNS = RNS(MS). Then, R′

NS = ∂MNS/∂MS 
with MS = p ·mS and MNS = (n − p) ·mNS. For further details on R′

NS see the dis-

cussion in the text, in particular equation (8). 

9 The indirect effect can be broken down such that (BaM)
2

Daa − Baa
= BaM · ∂ai

∂M > 0. The indirect effect is always positive because BaM and h′

(M) = ∂ai
∂M have 

always the same sign), namely either BaM < 0 and ∂ai
∂M < 0 if mitigation and adaptation are substitutes, as commonly believed, or BaM > 0 and ∂ai

∂M > 0 
if mitigation and adaptation are complements, which is normally seen as an unrealistic assumption (see subsection 2.5). Therefore, for the sign of the 
slopes of the reaction functions in mitigation space, the sign of BaM and ∂ai

∂M does not matter. Only the absolute value of the indirect effect matters and 
for Ψ > 0, this indirect must be sufficiently strong compared to the direct effect. See Appendix 1 for further explanations.  
10 Non-convexity of damages in the context of multiple externalities has already been treated for instance in Baumol and Bradford (1972) and 

Starrett (1972).  
11 Further technical aspects are discussed in Appendix 1. 

M. Finus et al.                                                                                                                                                                                                          



Journal of Environmental Economics and Management 109 (2021) 102461

6

but not for higher levels of M. Moreover, one may argue that if input markets are not perfectly competitive, then DaM > 0 (as well as 
Cma > 0) is a more reasonable assumption. 

2.5. Empirical aspects of the slopes of the reaction functions in mitigation and mitigation-adaptation space 

Empirical evidence about the slope of reaction functions in mitigation space is difficult to obtain. One could be inclined to look for 
empirical estimates from climate models, Computable General Equilibrium models (CGE) or Integrated Assessment Models (IAM). 
However, these models typically do not capture the strategic interaction between regions in a game-theoretic sense and even if they do, 
to the best of our knowledge, we have not found estimates about the slopes of the reaction functions. Moreover, the estimation of 
leakage effects as a proxy is also not very useful as simulations typically assume only a unilateral policy intervention. 

There are quite some papers which econometrically test for the strategic interaction between countries or regions for different 
environmental problems (e.g., Fredriksson and Millimet, 2002a, b, Grubb et al., 2002, Murdoch et al., 1997 and Perkins and Neu-
mayer, 2008, 2009; see Brueckner 2003 for an overview) of which some find a positive correlation between environmental standards 
in different countries/regions. Of course, not all of those studies are related to climate change and, even more important, adaptation 
does not play a role. Positive correlations in those papers are mainly driven by political and technological spillovers as well as trade. 
Political spillovers put pressure on neighboring political institutions to follow suit; technological spillovers reduce abatement costs in 
other regions and, hence, encourage the implementation of higher environmental standards; imports of advanced technology improve 
environmental standards as a by-product, in particular, in developing countries. 

From an extensive screening of the literature about the relation between mitigation and adaptation, we have found only one 
instance, namely Yohe and Strzepek (2007), who claim to have found a complementary relationship for flood prevention measures 
along the Brahmaputra and Ganges rivers in India. The argument seems to be along the lines which we have presented in subsection 
2.4: adaptation increases the productivity of mitigation and vice versa via a reduction of mitigation and adaptation costs. However, we 
need to point out that the bulk of the empirical literature on adaptation only focuses on the benefits and costs of adaptation, point to the 
fact that mitigation will not be sufficient to address the climate change problem, but does not investigate the rate of substitution or 
complementarity between mitigation and adaptation. 

3. General results 

In the following analysis, we focus on comparing the size and success of stable agreements under the NC- and ST-scenario. In this 
section, we derive some results based on the general payoff function (1). The derivation of equilibrium coalition sizes is dealt with in 
section 4, as this requires the assumption of a specific payoff function. Only finally, when it comes to the evaluation of the efficacy of 
stable coalitions, do we need to resort to simulations on which we report in section 5. 

3.1. Definitions 

In order to explain differences between the NC- and ST-scenario, it will be helpful to consider some general properties of the 
coalition formation game. 

Definition 1. Positive Externality, Positive Internalisation, Superadditivity and Cohesiveness 

Let n ≥ p ≥ 2.  

i) PEP: The expansion of coalition p − 1 to p exhibits a positive (negative) externality to non-signatories if: 

W∗
NS(p) > (< )W∗

NS(p − 1).

If this holds for all p, n ≥ p ≥ 2, the game is a positive (negative) externality game.  

ii) PIP: The expansion of coalition p − 1 to p exhibits a positive (negative) internalisation to signatories if: 

W∗
S (p) > (< )W∗

S (p − 1).

If this holds for all p, n ≥ p ≥ 2, the game is a positive (negative) internalisation game.  

iii) SAD: The expansion of coalition p − 1 to p is superadditive if: 

p ·W∗
S (p)> [p − 1] ·W∗

S (p − 1) + W∗
NS(p − 1).

If this holds for all p, n ≥ p ≥ 2, the game is superadditive.  

iv) WCOH: The expansion of coalition p − 1 to p is welfare cohesive if: 

p ·W∗
S (p)+ [n − p] ·W∗

NS(p)> [p − 1] ·W∗
S (p − 1)+ [n − p+ 1] ·W∗

NS(p − 1)

If this holds for all p, n ≥ p ≥ 2, the game is welfare cohesive. 
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v) MCOH: The expansion of coalition p − 1 to p is mitigation cohesive if: 

p ·M∗
S(p)+ [n − p] ·M∗

NS(p)> [p − 1] ·M∗
S(p − 1)+ [n − p+ 1] ·M∗

NS(p − 1)

If this holds for all p, n ≥ p ≥ 2, the game is mitigation cohesive. 
The first three properties may be viewed as positive properties in that they help to explain whether stable coalitions will be small or 

large. A positive externality makes it attractive to stay outside a coalition whereas for a negative externality just the opposite holds. 
Positive internalisation and superadditivity may be viewed as necessary conditions to make joining a coalition attractive. In a 
superadditive and negative externality game, the grand coalition is the unique stable agreement (Weikard 2009). Thus, cooperation 
does not pose a problem. In contrast, in positive externality games, stable coalitions are typically small. This is evident if the properties 
positive internalisation and superadditivity fail, but even if they hold, the positive externality effect to outsiders may be stronger than 
the positive externality effect to insiders via positive internalisation and superadditivity, such that only small coalitions are stable.12 

The fourth and the fifth property can be viewed as normative properties. Clearly, in the grand coalition, total welfare and total 
mitigation levels are strictly higher than in any other coalition, which is true in any externality game. However, it may not always be 
true that these levels increase with every enlargement of a coalition, irrespective of its size, as we will illustrate and explain in more 
detail below. Note that a sufficient condition for welfare cohesiveness is superadditivity and positive externalities. 

3.2. Propositions 

Our first result is summarized in Proposition 1 below. 

Proposition 1. Comparison of the NC- and ST-Scenario, Mitigation, Payoffs and Stable Coalitions 

Consider a generic coalition of size p.  

a) Suppose Ψ < 0. Hence, reaction functions are downward sloping in mitigation space. Then the following relations hold:  

• MNC∗(p) > MST∗(p), mNC∗
S (p) > mST∗

S (p) and mNC∗
NS (p) < mST∗

NS (p) ∀ p, 1 < p < n;  

• WNC∗
S (p) < WST∗

S (p) and WNC∗
NS (p) > WST∗

NS (p) ∀ p, 1 < p < n;  

• pST∗ ≥ pNC∗ ∀ p, 1 ≤ p ≤ n, with pST∗ ≥ 2.  
b) Suppose Ψ > 0. Hence, reaction functions are upward sloping in mitigation space. Then the following relations hold:  

• MNC∗(p) < MST∗(p), mNC∗
S (p) < mST∗

S (p) and mNC∗
NS (p) < mST∗

NS (p) ∀ p, 1 < p < n;  

• WNC∗
S (p) < WST∗

S (p), WNC∗
NS (p) < WST∗

NS (p) and WNC∗(p) < WST∗(p) ∀ p, 1 < p < n;  

• mST∗
S (p) − mNC∗

S (p) > mST∗
NS (p) − mNC∗

NS (p), implying WST∗
S (p) − WNC∗

S (p) < WST∗
NS (p) − WNC∗

NS (p) ∀ p, 1 < p < n;  

• pNC∗ ≥ 2 and pST∗ ≥ 2. 

Proof. See Appendix A.2. 

If Ψ < 0 (Proposition 1a), which would always be true in a pure mitigation game without adaptation, reaction functions in 
mitigation space are downward sloping. Consequently, signatories, having a strategic advantage (i.e., a first mover advantage) under 
the ST-scenario, will lower their mitigation levels compared to the NC-scenario, knowing that non-signatories will partly make up for 
this by mitigating more. Overall, total mitigation will be lower under the ST- than under the NC-scenario for any generic coalition of 
size p, n > p > 1. The Stackelberg leader will be better off and the reverse is true for the follower compared to the NC-scenario. It is for 
this reason that stable coalitions under the ST-scenario will be at least as large as under the NC-scenario. This result is known in the 
literature since Barrett (1994), though it has only been derived from simulations in the pure mitigation game. We provide a general 
proof, including the generalization to a mitigation-adaptation game. 

It is evident from Proposition 1a why it is not possible to draw any general conclusion about total mitigation levels and global 
welfare for stable coalitions under the two scenarios. In terms of global welfare, we do not know whether WNC∗(p) > WST∗(p) or 
whether the reverse is true for a given p, as signatories are better off but non-signatories worse off under the ST- than under the NC- 
scenario. Hence, we also do not know generally whether for stable coalitions WNC∗(pNC∗) < WST∗(pST∗) or whether the opposite is true 
in equilibrium. In terms of global mitigation, we know that MNC∗(p) > MST∗(p) but pNC∗ ≤ pST∗ and, hence, generally, MNC∗(pNC∗) < ,>

MST∗(pST∗). 
If Ψ > 0 (Proposition 1b), reaction functions in mitigation space are upward sloping, which is only possible in a game which in-

cludes adaptation as a strategy to address climate change. Both, signatories and non-signatories, increase their mitigation levels under 
the ST-compared to the NC-scenario in such a matching game. This also translates into a Pareto-improvement to all countries and 
therefore in higher total welfare. However, compared to the NC-scenario, non-signatories gain more than signatories, i.e., there is a 

12 Note that whenever we have mS(p) > mNS(p) (which is always the case in the NC-scenario and in the ST-scenario if Ψ > 0; see subsection 2.3), 
positive internalisation and superadditivity when moving from p − 1 to p are necessary, though not sufficient, properties for internal stability of a 
coalition of size p. See the proof in Bayramoglu et al. (2018), Appendix A.2. 
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second mover advantage.13 The reason is that signatories increase their mitigation levels more than non-signatories and therefore carry 
higher additional mitigation costs. Hence, one could be inclined to conclude that the size of stable coalitions is generally weakly 
smaller under the ST- than NC-scenario.14 However, we have not been able to prove this at a general level, even though this is 
confirmed for the specific payoff function which we consider in section 4. Finally, even if we had always pNC∗ > pST∗, and know that 
MNC∗(p) < MST∗(p) as well as WNC∗(p) < WST∗(p) from Proposition 1b, nothing could be concluded about total mitigation and welfare 
for stable coalitions. This would only be possible for pNC∗ < pST∗ for which, however, we do not find evidence. 

In order to understand the driving forces in the coalition game and to rationalize equilibrium coalition sizes as well as differences 
between the two scenarios, we consider some general properties in Proposition 2 below (see Definition 1 above). These will be 
particularly helpful in explaining our more specific results in section 4. 

Proposition 2. Properties under the NC- and ST-scenario 

Consider the general payoff function (1) and assume the General Assumptions to hold. Further assume the sufficient conditions for the 
existence of a unique interior equilibrium in the second stage to hold, as stated in Appendix 1. Then the following conclusion can be drawn:  

Properties Ψ < 0  Ψ > 0  

NC-scenario ST-scenario NC-scenario ST-scenario 

PEP ✓ fails when MCOH fails ✓ ✓ 
PIP may fail for small p may fail for small p; holds if m∗

S(p) > m∗
NS(p) ✓ ✓ 

SAD may fail for small p ✓ ✓ ✓ 
WCOH may fail for small p may fail for small p ✓ ✓ 
m∗

NS(p) − m∗
NS(p − 1) - - if MCOH holds; þ possible if MCOH fails + +

m∗
S(p) − m∗

S(p − 1) - possible for large p - possible for large p + +

MCOH ✓ may fail for small p ✓ ✓ 

Properties as defined in Definition 1; ✓ = property holds for all expansion p − 1 to p, 2 ≤ p ≤ n, except for PEP for which 2 ≤ p ≤ n − 1 is assumed. 

Proof. See Appendix A.3. 

Under the NC-scenario, the game is a positive externality game. Total mitigation increases steadily with an expansion of the 
coalition from which also non-signatories benefit due to the non-exclusiveness of the public good.15 Non-signatories reduce their 
contribution to this public good if reaction functions are downward sloping (and therefore have not only higher benefits but also lower 
mitigation costs). However, even if Ψ > 0, non-signatories contribute less than proportionally to the total increase in total mitigation 
(see Proposition 1) and, hence, also enjoy a positive externality from the expansion of the coalition. Therefore, with positive exter-
nalities, there is an incentive to remain a non-signatory. 

Moreover, under the NC-scenario, if Ψ < 0, it is also evident that positive internalisation and superadditivity may fail due to the 
leakage effect, which is also an obstacle to form large stable coalitions. In particular if p is small, there are many non-signatories 
countervailing the efforts of the few signatories. Together, this explains why only small coalitions are stable if reaction functions 
are downward sloping in mitigation space. This will be confirmed for our specific payoff function considered in section 4. In contrast, if 
reaction functions are upward sloping in mitigation space, positive internalisation and superadditivity always hold, as the game has 
turned into a matching game with anti-leakage. This allows to form larger stable coalitions, including the grand coalition if Ψ > 0, as 
confirmed for our specific payoff function in section 4. It is also evident that if the leakage effect is present (i.e., Ψ < 0), welfare 
cohesiveness may fail (as a result of a failure of superadditivity). 

Under the ST-scenario, the negative conclusion about the size of stable coalitions if reaction functions are downward sloping (i.e., 
Ψ < 0) is just reversed. Roughly speaking, and as our simulations will confirm in section 5, the steeper the reaction function, the larger 
is the strategic advantage of the leader over the follower and, hence, the larger will be stable coalitions. Moreover, superadditivity 
always holds, and, at least for not too large coalitions, the enlargement of coalitions may not be associated with positive but with 
negative externalities, making it attractive for non-signatories to join the coalition. The fact that larger coalitions may not necessarily 
lead to substantially better outcomes, as will be confirmed in section 5, is already apparent by the fact that welfare and mitigation 

13 This is in line with the literature on Stackelberg games with symmetric players (though usually confined to two players). There is a first (second) 
mover advantage in the presence of downward (upward) sloping reaction functions (Endres 1992; Gal-Or 1985).  
14 We would like to thank an anonymous reviewer for pointing out this potential pitfall. The analysis in Appendix A.5 underlines why general 

conclusions are not straightforward.  
15 The reader may be puzzled how ∂M∗/∂p > 0 can hold if ∂m∗

NS/∂p < 0 holds and ∂m∗
S/∂p < 0 is possible, where we treat p as a continuous variable 

without loss of generality. However, in Appendix A.3, we show ∂M∗
S(p)

/
∂p > 0, ∂M∗

NS(p)
/

∂p < 0 but ∂M∗
S(p)

/
∂p >

⃒
⃒
⃒
⃒∂M∗

NS(p)
/
∂p

⃒
⃒
⃒
⃒ if Ψ < 0. Intuitively, 

even if an “old” signatory at p − 1 may not increase its mitigation level at p, the “old” non-signatory at p − 1 which is a “new” signatory at p increases 
its mitigation level and, hence, signatories as an entire group increase their mitigation level and this increase is larger than the decrease of total 
mitigation of non-signatories. 
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cohesiveness does not generally hold if Ψ < 0.16 In other words, larger stable coalitions under Stackelberg leadership come at a price. 
For Ψ > 0, under the ST-scenario all properties hold. In fact, at this level of generality, all properties are the same than under the 

NC-scenario, from which we may conjecture that stable coalitions are of similar size. Section 4 will confirm this for our specific payoff 
function. 

4. Stable coalitions for a specific payoff function 

4.1. Preliminaries 

It is well-known from the literature on IEAs that sharp predictions about first stage equilibria (i.e., the size of stable agreements) are 
only possible for specific payoff functions. Different from the main body of the literature, we are able to provide analytical results. In 
line with the literature on IEAs and following Bayramoglu et al. (2018), we consider a payoff function with quadratic benefit and cost 
functions: 

wi =
(

bM −
g
2

M2
)
+ ai(β − fM) −

c
2

m2
i −

d
2

a 2
i such that BaM < 0. (10.a)  

and 

wi =
(

bM −
g
2

M2
)
+ ai(β+ fM) −

c
2

m2
i −

d
2

aa 2
i such that BaM > 0. (10.b) 

assuming that all parameters b, g, c β, f , and d are strictly positive. If we were to set g = 0, we could retrieve the linear-quadratic 
payoff function, also frequently considered in the literature on IEAs. For expositional clarity, we ignore this case. It is also clear that by 
setting ai = 0, we could retrieve the pure mitigation game. Due to space limitations, we provide all details about equilibrium miti-
gation and adaptation levels under the NC- and ST-scenario and the conditions that we impose on the parameters, such that the 
sufficient conditions for existence and uniqueness of interior equilibria are satisfied, in Appendix A.4. 

Note that (10a) and (10b) only differ in one sign, which does not make any difference for the size of stable coalitions. In other 
words, for all results derived in this section, one can work with (10.a) and if the case of BaM > 0 shall be considered, then parameter f is 
set to − f . As the discussion here and in Appendix A.4 will confirm, the sign of f does not matter, as it always appears in the form fx, 
with x = 2, 4, 6, ...., i.e., even numbers, in all relevant equations. Hence, all results are the same, regardless whether we assume 
BaM < 0 or BaM > 0. 

For payoff function (10.a) and (10.b), Ψ =
f2 − g · d

d , which is negative if f2 − g · d < 0 and positive if f2 − g · d > 0, but the sign of 

parameter f does not matter. Accordingly, the slopes of the aggregate reaction function of non-signatories, R′

NS =
(n− p)(f2 − g · d)

c · d− (n− p)(f2 − g · d) and 

signatories, R′

S =
p2(f2 − g · d)

c · d− p2(f2 − g · d), are negative if Ψ < 0 and positive if Ψ > 0, as the denominators of these slopes are always positive due 
the sufficient condition for a unique interior equilibrium, which for payoff functions (10a) and (10b) is also a necessary condition and 
is given by c · d − n2(f2 − g · d) > 0. Further details are provided in Appendix A.4. 

Proposition 3. Stable Coalitions for Specific Welfare Functions 

Consider payoff function (10.a) and (10.b) and assume the conditions imposed on the parameters in Appendix A.4 to hold. 
The size of stable coalitions p∗ under the NC- and ST-scenario are as follows: 
Let Ψ < 0. 

Under the NC-scenario, pNC∗ ∈ [1,2] and under the ST-scenario pST∗ ∈ [2, n]. Thus, pNC∗ ≤ pST∗. 

Let Ψ > 0 and n ≥ 7.  

a) Under the NC- and ST-scenario, p∗ = 3 is always a stable equilibrium.  
b) If Ψ ≥ Ψ , then p∗ = n is a second equilibrium where Ψ NC < Ψ ST. That is, upward sloping reaction functions in mitigation space must be 

sufficiently steep such that the grand coalition is stable.  

c) There are no other equilibria than p∗ = 3 and p∗ = n. If p∗ = n exists, it Pareto-dominates p∗ = 3.  
d) Thus, pNC∗ ≥ pST∗. 

Proof. See Appendix A.5. 

It is evident that for downward sloping reaction functions in mitigation space, under the ST-scenario, even the grand coalition could 

16 Welfare cohesiveness fails whenever the superadditivity effect is dominated by the negative externality effect. Mitigation cohesiveness may fail 
as the Stackelberg leaders use their strategic advantage to reduce their contribution to the public good, which may not be compensated by the 
followers’ additional mitigation effort. 
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form. In contrast, under the NC-scenario, only small coalitions are stable. As we will see in the next subsection, the steeper reaction 
functions in mitigation space are, the larger will be stable coalitions in the ST-scenario. The steeper the reaction function, the larger is 
the strategic advantage of signatories, and the larger the strategic loss of non-signatories compared to the NC-scenario. 

For upward sloping reaction functions in mitigation space, things are more complicated. First note that the upper bound of 
Ψ (Ψ = c/n2) follows for payoff function (10a) and (10b) from the conditions for the existence of a unique interior equilibrium, which 
are identical to the second order conditions in the grand coalition (see Appendix A.1 and A.4). Since the slopes of the reaction functions 
in mitigation space increase in Ψ , this imposes an upper bound on the maximum value of those slopes. Second, in the entire permissible 
range of Ψ a coalition of size p = 3 is stable. Third, if Ψ is larger than some threshold (Ψ ≥ Ψ ), which implies that the slopes of the 
reaction functions in mitigation are sufficiently large, also the grand coalition is stable. Fourth, this lower bound is larger under the ST- 

than under the NC-scenario. Consequently, there is a range of Ψ , Ψ ∈
[
Ψ NC,Ψ ST

)
, such that pNC∗ = n > pST∗, which specifically means 

pNC∗ = n > pST∗ = 3 if n ≥ 7. Fifth, if the grand coalition is stable, it Pareto-dominates p∗ = 3.17 

The intuition why the grand coalition can be stable if reaction functions in mitigation space are upward sloping (Ψ > 0) and 
sufficiently steep (large values of Ψ), can be related to two characteristics. First, according to Proposition 2, we know that for Ψ > 0 the 
properties superadditivity and positive internalisation hold for any expansion of coalitions under both scenarios. As we explained 
above, both properties provide an incentive for countries to join a coalition. Second, normally, stable coalitions are small because if 
they are sufficiently large, leaving the coalition is attractive: leaving decreases (concave) benefits only marginally but implies a 
substantial drop in (convex) mitigation costs. We know from section 2.4 that for Ψ > 0 the optimally adapted net benefit function is 
convex. Particular for larger values of Ψ and/or large membership, this function is very steep. Hence, leaving a coalition at p = n 
implies a large drop of convex optimally adapted net benefits, which may exceed the large drop of mitigation costs. Thus, leaving does 
not pay. 

5. The paradox of cooperation 

In this section, we want to analyze the “paradox of cooperation”. For this, we need to evaluate stable coalitions in welfare terms. We 
consider two indices in our simulations. We recall that no-cooperation with p = 1 corresponds to the classical Nash equilibrium 
without coalition formation and full cooperation with p = n corresponds to the social optimum. We denote total welfare by W, W =
∑n

i=1wi, and use superscripts to refer to the social optimum, SO, Nash equilibrium, NE, and stable coalitions in the NC- and ST- 
scenario, respectively. 

Definition 2. Importance of Cooperation and Improvement upon No Cooperation  

- The Importance of Cooperation Index (ICI) measures the percentage global welfare improvement from moving from no-cooperation 
(NE) to the social optimum (SO): 

ICI =
WSO − WNE

WNE · 100    

- The Improvement upon No Cooperation Index (INI) measures the percentage global welfare improvement obtained in a stable 
equilibrium under the NC- and ST-scenario, respectively: 

ININC =
W∗NC(pNC∗) − WNE

WNE · 100.

INIST =
W∗ST(pST∗) − WNE

WNE · 100.

All indices are relative measures, as absolute values are meaningless without any benchmark. Index ICI measures the potential 
gains from cooperation or what Barrett (1994) called the “need for cooperation”. Index INI measures the performance of stable co-
alitions. The paradox of cooperation comes in two versions. First, the ICI is small, and, hence, also the INI must be small, even though 
stable coalitions may be large. Second, the ICI may be large, but the INI is small because only small coalitions are stable. Hence, the 
“anti-paradox” would relate to large ICI and INI. That is, the potential gains from cooperation are large and these gains are reaped 
because large coalitions are stable. Generally, and as our simulations will confirm, focusing only on the size of stable coalitions p∗ may 
be misleading; also, the efficacy of cooperation needs to be evaluated. 

We have conducted extensive simulations. The underlying simulation strategy is described in Appendix A.6. Those simulations are 
grouped into Ψ < 0 and Ψ > 0 of which Tables 2 and 3 show representative examples in that they capture all interesting features 
relevant for our discussion. Appendix A.6 explains further sensitivity analyses and refers to an Online Appendix where these additional 

17 Bayramoglu et al. (2018) show that for welfare function (10.a) and (10.b) in the NC-scenario and Ψ > 0 pNC∗ ∈ [3,n]. We find that if n ≥ 7 (as 
also assumed in our simulations), this leads to pNC∗ = {3, n}. See Appendix A.5. 
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Table 2 
Different slopes of reaction functions through a variation of parameter c.a,b  

SIMULATIONS r’NS Ψ NASH-COURNOT STACKELBERG Substitutability Complementarity  

SAD PEP PIP MCOH WCOH p* SAD PEP PIP MCOH WCOH p* h’(M) ICI INI NC INI ST h’(M) ICI INI NC INI ST  

c = 500 − 0.0016 − 0.80 ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ 3 − 0.20 135.57 0.79 1.89 0.20 186.92 1.09 2.60  
c = 300 − 0.0027 − 0.80 ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ 3 − 0.20 94.19 0.82 1.69 0.20 121.10 1.06 2.17  
c = 150 − 0.0053 − 0.80 p > 10 ✓ ✓ ✓ ✓ 1 ✓ ✓ ✓ ✓ ✓ 3 − 0.20 49.76 0 1.02 0.20 59.87 0 1.23  
c = 50 − 0.0157 − 0.80 p > 15 ✓ p > 6 ✓ ✓ 1 ✓ ✓ p > 2 ✓ ✓ 3 − 0.20 13.10 0 0.09 0.20 14.99 0 0.09  
c = 20 − 0.0385 − 0.80 p > 15 ✓ p > 8 ✓ ✓ 1 ✓ p > 2 p > 4 p > 2 p > 2 5 − 0.20 3.24 0 0.01 0.20 3.66 0 0.01  
c = 10 − 0.0741 − 0.80 p > 16 ✓ p > 9 ✓ ✓ 1 ✓ p > 4 p > 8 p > 4 p > 4 9 − 0.20 0.98 0 0.01 0.20 1.10 0 0.02  
c = 5 − 0.1379 − 0.80 p > 17 ✓ p > 9 ✓ ✓ 1 ✓ p > 7 p > 14 p > 7 p > 7 15 − 0.20 0.27 0 0 0.20 0.31 0 0  
c = 3 − 0.2105 − 0.80 p > 17 ✓ p > 9 ✓ p > 12 1 ✓ p > 11 p > 21 p > 11 p > 11 22 − 0.20 0.10 0 0 0.20 0.12 0 0  
c = 1.5 − 0.3478 − 0.80 p > 17 ✓ p > 9 ✓ p > 14 1 ✓ p > 19 p > 35 p > 19 p > 18 36 − 0.20 0.03 0 0 0.20 0.03 0 0  
c = 1 − 0.4444 − 0.80 p > 17 ✓ p > 9 ✓ p > 15 1 ✓ p > 25 p > 44 p > 25 p > 24 46 − 0.20 0.01 0 0 0.20 0.01 0 0  
c = 0.7 − 0.5333 − 0.80 p > 17 ✓ p > 9 ✓ p > 15 1 ✓ p > 31 p > 53 p > 31 p > 29 54 − 0.20 0.01 0 0 0.20 0.01 0 0  
c = 0.5 − 0.6154 − 0.80 p > 17 ✓ p > 9 ✓ p > 15 1 ✓ p > 38 p > 61 p > 38 p > 34 62 − 0.20 0 0 0 0.20 0 0 0  
c = 0.3 − 0.7273 − 0.80 p > 17 ✓ p > 9 ✓ p > 15 1 ✓ p > 47 p > 72 p > 47 p > 42 74 − 0.20 0 0 0 0.20 0 0 0  
c = 0.2 − 0.8000 − 0.80 p > 17 ✓ p > 9 ✓ p > 16 1 ✓ p > 55 p > 79 p > 55 p > 49 81 − 0.20 0 0 0 0.20 0 0 0  
c = 0.1 − 0.8889 − 0.80 p > 17 ✓ p > 9 ✓ p > 16 1 ✓ p > 66 p > 89 p > 66 p > 59 90 − 0.20 0 0 0 0.20 0 0 0  
c = 0.05 − 0.9412 − 0.80 p > 17 ✓ p > 9 ✓ p > 16 1 ✓ p > 75 p > 94 p > 75 p > 67 95 − 0.20 0 0 0 0.20 0 0 0  
c = 0.005 − 0.9938 − 0.80 p > 17 ✓ p > 9 ✓ p > 16 1 ✓ p > 92 p > 99 p > 92 p > 87 100 − 0.20 0 0 0 0.20 0 0 0  

Simulations for Ψ < 0, implying downward sloping reaction functions in mitigation space. 
Remark: Lowering parameter c increases the absolute value of the slope of the reaction function in mitigation space. 
If SAD holds for a given p, it means that the move from p-1 to p is superadditive. The values of Ψ , ICI and INI are rounded to 2 digits and the values of r′

NS are rounded to 4 digits. 
a For the other parameters we assume throughout: b = 10, β = 10, g = 1, f = 1, d = 5. 
b ✓ means this property holds for all values of p, p > x means this property holds for all values of p larger than x. Headings and abbreviations as explained in the text. 
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Table 3 
Variation of parameters f, g and d that affect the value of and the cost parameter c to cover different sizes of stable coalitionsa,b  

SIMULATIONS r’NS Ψ NASH-COURNOT STACKELBERG Substitutability Complementarity  

SAD PEP PIP MCOH WCOH p∗ SAD PEP PIP MCOH WCOH p∗ h’(M) ICI INI NC INI ST h’(M) ICI INI NC INI ST  

Base simulation 0 0.11 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 − 0.33 176.42 0.21 0.21 0.33 618.04 0.73 0.73  
g = 1.51 0 0.60 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 − 0.33 196.45 0.21 0.21 0.33 688.13 0.73 0.73  
g = 2.11 0 0 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 − 0.33 172.47 0.21 0.21 0.33 604.19 0.72 0.72  
f = 6.33 0 0 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 − 0.32 176.71 0.21 0.21 0.32 597.52 0.72 0.72  
f = 6.99 0 0.44 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 − 0.35 176.39 0.19 0.19 0.35 685.29 0.75 0.75  
c = 45001 0 0.11 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 − 0.33 195.76 0.23 0.23 0.33 679.23 0.79 0.80  
c = 100000 0 0.11 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 − 0.33 88.74 0.11 0.11 0.33 325.39 0.39 0.39  
d = 6.51 0.0001 4.49 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 − 0.99 0 0 0 0.99 4604.72 0.57 0.58  
d = 21.1 0 0 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 − 0.31 190.46 0.23 0.23 0.31 619.07 0.74 0.74  
CASE 1b 0.0001 4.99 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 3 − 0.99 0.01 0.01 0 0.99 1.23x106 1.23x106 0.62  
CASE 2b 0.0001 4.99 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 100 − 0.99 0 0 0 0.99 1.26x109 1.26x109 1.26x109  
CASE 3b 0.0001 0.09 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 100 − 0.19 0 0 0 0.19 3.02x106 3.02x106 3.02x106  
CASE 4b 0.0001 0.99 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 100 − 0.99 0 0 0 0.99 1.58x107 1.58x107 1.58x107  
CASE 5b 0.0001 1.99 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 100 − 0.99 0 0 0 0.99 2.46x106 2.46x106 2.46x106  
CASE 6b 0.0001 9.99 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 3 − 0.99 0.01 0.01 0 0.99 1.31x106 1.31x106 0.66  

Simulations for Ψ > 0, implying upward sloping reaction functions in mitigation space. 
Remark: Note that CASE 1 and CASE 2 are obtained from the base simulation, changing both parameters f and d. 

a For the base simulation, we assume: b = 10, β = 10, g = 2, f = 6.5, c = 50000, d = 5. For the six different cases for which p∗=n in the NC and ST scenario, we assume: CASE 1: b = 10, β = 10, g = 2, f =
6.9989, c = 50000, d = 7; CASE 2: b = 10, β = 10, g = 2, f = 6.9999, c = 50000, d = 7; CASE 3: b = 1, β = 5, g = 0.3, f = 1.9999, c = 1000, d = 10; CASE 4: b = 10, β = 10, g = 21, f = 21.9999, c = 10000, d =
22; CASE 5: b = 10, β = 10, g = 0.0001, f = 1.9999, c = 20000, d = 2; CASE 6: b = 10, β = 10, g = 5, f = 14.9979, c = 100000, d = 15. 

b See Table 2. 
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results are available. Without any exception, all qualitative features displayed in Tables 2 and 3 are confirmed by our sensitivity 
analyses. In the tables, the most important columns are the one displaying the slope of the individual reaction function of non- 
signatories, r′

NS, the size of stable coalitions, p∗, and the indexes ICI and INI, indicating the potential and actual gains from coopera-
tion respectively. The other columns report about properties which have been discussed in previous sections. 

Table 2, with Ψ < 0, confirms that for the ST-scenario, the steeper reaction functions in mitigation space are, the larger are stable 
coalitions. We recall that the sign of BaM does not matter for this result. For the ST-scenario, large coalitions (including the grand 
coalition) may be stable, but the ICI and, hence, also the INI are small. Conversely, if the ICI is large, only small coalitions are stable 
and, hence, the INI is small. Importantly, this paradox of cooperation also holds for the NC-scenario because stable coalitions are 
always small, even if BaM > 0 (instead of BaM < 0) would be assumed. It is also evident that the ST-scenario only improves upon the NC- 
scenario by a margin if at all. 

Table 3, with Ψ > 0, also confirms the paradox of cooperation for BaM < 0. If the ICI is large, we have only p∗ = 3 and if the ICI is 
small, we have p∗ = 3 or p∗ = n, with n = 100, but, of course, then also the INI is small, even for p∗ = n.18 Table 3 also confirms pNC∗ ≥

pST∗, as stated in Proposition 3. The only case in which the paradox is not confirmed is if p∗ = n and BaM > 0. We interpret this as 
underlining the robustness of our conclusions because, as discussed in subsection 2.5, BaM > 0 is not very likely. 

Taken together, the paradox of cooperation also holds true if adaptation is added to mitigation as a strategy to address climate 
change in a coalition formation game, regardless whether Stackelberg leadership of signatories is assumed. Even in those cases where 
large coalitions, including the grand coalition, are stable, stable coalitions improve only marginally upon no cooperation. This 
evaluation is missing in Bayramoglu et al. (2018). In other words, adaptation is not solving the paradox of cooperation. 

6. Summary and conclusion 

In this paper, we considered the standard two-stage coalition formation game with symmetric players. We explored a mitigation- 
adaptation game under a Nash-Cournot scenario (NC-scenario) and a Stackelberg scenario (ST-scenario). In the first stage of the game, 
players choose whether to sign an agreement and be part of a climate coalition or to remain outside as a singleton. In the second stage, 
signatories choose their economic strategies (mitigation and adaptation) by maximizing their aggregate welfare, while non-signatories 
maximize their individual welfare. The sequence of these decisions differed between the NC- and the ST-scenario. 

Our analysis combined features of two contributions. The first contribution by Barrett (1994), Diamantoudi and Sartzetakis (2006) 
and Rubio and Ulph (2006) who studied the effect of ST-scenario on the size of stable agreements in a pure mitigation (or emission) 
game; though in the absence of adaptation. The second contribution by Bayramoglu et al. (2018) who studied the effect of adding 
adaptation to a mitigation coalition game under the NC-scenario. 

We complemented these studies by considering Stackelberg leadership in a mitigation-adaptation game, which we viewed as a 
generalization of the pure mitigation game. This allowed us to address two research questions. 1) Does the ST-scenario improve over 
the NC-scenario? 2) Does the paradox of cooperation as established by Barrett (1994) and later reiterated by many others also hold if 
adaptation is included in the analysis? 

We found that the ST-scenario leads to larger stable coalitions if reaction functions in mitigation space are downward sloping, i.e., 
mitigation levels in different countries are strategic substitutes. This happens because signatories reduce their mitigation efforts, 
forcing followers to mitigate more compared to the NC-scenario. Therefore, participation is more attractive in the ST- than in the NC- 
scenario. However, we found that whenever the difference in stable coalition sizes is large between the two scenarios, the potential 
gains from cooperation are small. Hence, the ST-scenario only marginally improves upon the NC-scenario. In contrast, if reaction 
functions in mitigation space are upward sloping, stable coalitions may be smaller in the ST- than in the NC-scenario, but in terms of 
global welfare the difference is again marginal. If large coalitions are stable, the gains from cooperation are small. 

The results for the ST-scenario confirmed Barrett’s paradox of cooperation: either coalitions are small or, if they are large, the 
potential gains from cooperation are small. Hence, the paradox extends to a game which includes adaptation. This is also true for the 
NC-scenario. Even though we confirm Bayramoglu et al. (2018) in that large coalitions can be stable in a mitigation-adaptation game, 
we qualify their positive conclusion because large stable coalitions only emerge if the gains from cooperation are small. Hence, the 
paradox of cooperation extends to a richer coalition game, which includes adaptation as an additional strategy to mitigation for the 
widespread assumption that mitigation and adaptation are substitutes. 

For future research, two obvious extensions come to mind. Firstly, we assumed that adaptation is either chosen simultaneously with 
mitigation or after mitigation. In other words, we considered “reactive adaptation”. However, in a dynamic game in which negotia-
tions take place over some time and in which contracts are renegotiated, like for instance in Battaglini and Harstad (2016) and Harstad 
(2012), one can easily perceive that adaptation becomes “active” as considered for instance by Buob and Stephan (2011), Breton and 
Sbragia (2019) and Heuson et al. (2015). Secondly, we assumed symmetric players. In order to capture the current interesting dis-
cussion whether industrialized countries should support developing countries by providing adaptation because of their high vulner-
ability to climate change and their lack of adaptation capacity, the model would need to be extended to allow for asymmetry in terms of 
benefit and cost functions like this is considered for instance in Eyckmans et al. (2016), Lazkano et al. (2016) and Li and Rus (2018). 

18 Whenever pNC∗ = pST∗ = 3, we should have ININC < INIST according to Proposition 1b, but the differences are so small in our simulations that 
they hardly show up in Table 3, with values rounded to 2 digits. For pNC∗ = n > pST∗ = 3, the ININC is also only marginally larger than the INIST 

because the value of ICI is generally small. 
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However, as an anonymous reviewer pointed, the additional complexity would make it difficult to obtain analytical results. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jeem.2021.102461. 

Appendix 

A.1. Technical Details around the Slopes of Reaction Functions in Mitigation Space 

A.1.1. Second Order Conditions and Optimally Adapted Net Benefits 
From the first order conditions as stated in Table 1, we derive the second order conditions in the NC-scenario: 
Non-signatories: BMM − Cmm < 0 and signatories: p2 ·BMM − Cmm < 0 
with respect to mitigation and 
Both: Baa − Daa < 0 
with respect to adaptation. These conditions always hold due to the General Assumptions, as stated in section 2. Moreover, noting 

the interaction between mitigation and adaptation, substituting ai(mi +M− i) into the payoff function, differentiating twice with respect 
to mitigation, noticing that Ba = Da from the first order conditions with respect to adaptation, we derive19 

Non-signatories: Ψ − Cmm < 0 and signatories: p2 ·Ψ − Cmm < 0. 
We note that these second order conditions are not automatically fulfilled if Ψ > 0 but can generally be satisfied. We have omitted 

the arguments in these functions for convenience, but notice that Ψ = BMM +
(BaM)

2

Daa − Baa 
has the same value in both second order conditions 

because M∗ and a∗
i will be the same for non-signatories and signatories. Moreover, if third derivatives are assumed to be zero, then Ψ 

and Cmm are constants, with Cmm(m∗
NS) = Cmm(m∗

S). Consequently, in this case, n2 ·Ψ − Cmm < 0 is the most restrictive condition, which 
is the second order condition in the social optimum. 

Accordingly, differentiating the optimally adapted net benefit function Bi(M, ai(M)) − Di(ai(M)) twice, gives Ψ . Hence, the optimal 
adapted net benefit function is concave if Ψ < 0 and convex if Ψ > 0. Clearly, even if the optimally adapted net benefit function is 
convex, the second order conditions can be satisfied. 

Finally, under the ST-scenario, everything is the same, except the second order condition of signatories with respect to mitigation, 
p2 ·(1 + R′

NS) ·BMM − Cmm < 0, and those if ai(mi +M− i) is considered, p2 ·(1 + R′

NS) ·Ψ − Cmm < 0, where for simplicity we have made 
use of the assumption that third derivatives are zero. Now it is clear that the first inequality is automatically satisfied due the General 
Assumptions. Moreover, one can show that if n2 ·Ψ − Cmm < 0 holds, then also p2 ·(1+R′

NS) ·Ψ − Cmm < 0 holds. If R′

NS < 0, this is 
obvious. Hence, we assume R′

NS > 0, insert R′

NS from (8) in the text into p2 ·(1 + R′

NS), and show that this term is an increasing and 
convex function of p, using the condition n2 ·Ψ − Cmm < 0. Thus, we insert the largest possible value for p which is p = n− 1 (recall if 
p = n, then there is no Stackelberg leadership) in p2 ·(1+R′

NS) and show that this is smaller than n2. Hence, if the second order 
condition in the social optimum is satisfied, then also the second order condition of the Stackelberg leader is satisfied. 

A.1.2. Existence and Uniqueness Condition of an Interior Equilibrium in the Second Stage 
The procedure to derive sufficient conditions for the existence and uniqueness of mitigation and adaptation equilibria for every 

coalition of size p follows Bayramoglu et al. (2018). The procedure is based on the concept of replacement functions. Let mS = gS(M) be 
the individual replacement function of a signatory and mNS = gNS(M) be the replacement function of a non-signatory. The aggregate 
replacement function G(M) is derived by summing over all replacement functions, which for symmetry is 

∑n

i=1
mi = p ·mS + (n − p) ·mNS = M = G(M) =

∑n

i=1
gi(M) = p · gS(M) + (n − p) · gNS(M).

If every replacement function is downward sloping over the entire mitigation space, the aggregate replacement function will be 
downward sloping as well (which is the vertical aggregation of individual replacement functions) and, hence, will intersect with the 
45-degree line once. In other words, the level of M, which satisfies the equality above is the equilibrium M∗, which upon substitution 
into individual replacement functions gives m∗

S and m∗
NS. As we will see below, replacement functions are downward sloping (like 

reaction functions) if Ψ < 0. In the case of upward sloping replacement functions (Ψ > 0), a sufficient condition for uniqueness is that 
the aggregate replacement function has a slope of less than 1 over the entire domain of M such that it intersects with the 45-degree line 
and this happens only once. Note that if replacement functions are linear, which is the case if all third derivatives are zero, this 
sufficient condition is also a necessary condition. Finally, as reaction functions of adaptation as a function of total mitigation are 
continuous and single valued, also equilibrium adaptation levels will be unique. Below, we derive the sufficient conditions in the case 
of the ST-scenario, which are those in the NC-scenario as derived by Bayramoglu et al. (2018) if we set R′

NS = 0.
The first order conditions of signatories with respect to mitigation and substituting ai(M), read: 

19 We could also derive the Hessian matrix with the same result. 
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p ·
[
BM(M, ai(M)) ·

(
1+R′

NS

)]
=Cm(mS(M))

using Table 1. Total differentiation with respect to M, and ignoring third derivatives for simplicity, gives the slope of the individual 
replacement function of signatories: 

g′

S(M)=
p ·
[
Ψ ·

(
1 + R′

NS

)]

Cmm(mS)
.

For non-signatories, we find, using the first order conditions in Table 1 

BM(M, ai(M))=Cm(mNS(M))

and, hence, we derive the slope of the individual replacement of non-signatories: 

g′

NS(M)=
Ψ

Cmm(mNS)
.

Accordingly, the slope of the aggregate replacement function is given by: 

G′

(M)=Ψ ·

[
p2 ·

[(
1 + R′

NS

)]

Cmm(mS)
+

(n − p)
Cmm(mNS)

]

which is negative if Ψ < 0, but is positive if Ψ > 0. Hence, a sufficient condition for a unique interior equilibrium is G′

(M) < 1 over 
the entire domain of M. In the NC-scenario, R′

NS = 0. If third derivatives are zero, the largest value of G′

(M) is if p = n in which case the 
condition collapses to the second order condition in the social optimum, i.e., n2 ·Ψ − Cmm < 0. Since the second order conditions as well 
as the condition for a unique interior equilibrium need to be satisfied for all values of p, 1 ≤ p ≤ n, n2 ·Ψ − Cmm < 0 is the relevant 
condition, which we will use subsequently. For completeness let us point out that for any value p ∕= n, the sufficient conditions for a 
unique interior equilibrium are more restrictive than the second order conditions. Finally, it is easily checked that if n2 · Ψ − Cmm < 0 
holds, also G′

(M) < 1 under the ST-scenario, following the Proof at the end of Appendix A.1.1. 

A.1.3. Upper and Lower Bounds of the Slopes of Reaction Functions 
Consider the slope of the reaction function in mitigation space of a single non-signatory, which is given by r′

NS(M− j) = Ψ
Cmm(mNS)− Ψ. 

Cmm(mNS) − Ψ > 0 by the condition n2 ·Ψ − Cmm < 0. If Ψ < 0, then r′

NS(M− j) approaches − 1 if Cmm approaches zero and approaches 0 
if Cmm becomes very large. If Ψ > 0, then r′NS(M− j) increases in Ψ , with the lower bound of r′

NS(M− j) being 0 if Ψ approaches 0. However, 
the largest possible value of Ψ follows from n2 ·Ψ − Cmm < 0, which implies Ψ < Cmm

n2 . If we substitute Ψ = Cmm
n2 into r′

NS(M− j), we have: 
r′NS(M− j) =

1
(n− 1)(n+1) and this upper bound decreases with the number of players n. In our simulations, with n = 100, 1

(n− 1)(n+1) =
1

9999 ≈

10− 4. 

A.2. Proof of Proposition 1 

In a first step, we differentiate the left-hand side of signatories’ first order conditions in mitigation space (5.a) under the ST-scenario 
with respect to M: 

∂
[
p ·
(
BM(M, ai(M) ) ·

(
1 + R’

NS

) ) ]

∂M
= p ·

[[

BMM + BMa ·
∂ai

∂M

]

·
(
1 + R’

NS

)
]

assuming second derivatives to be constant. Knowing that ∂ai
∂M = BaM

Daa − Baa 
and rearranging terms, we obtain: 

∂
[
p ·
(
BM(M, ai(M)) ·

(
1 + R′

NS

))]

∂M
= p ·

[
Ψ ·

(
1+R′

NS

)]
.

We notice that we would get the same for the NC-scenario (using (3.a) by setting R′

NS = 0 above. Then, differentiating the benefit 
side of non-signatories’ first order conditions (5.b), which is the same as (3.b), we obtain: 

∂[(BM(M, ai(M)))]

∂M
=

[

BMM +BMa ·
∂ai

∂M

]

=Ψ .

The signs of these derivatives depend on the sign of Ψ (as 1 + R′

NS > 0 is always true). Therefore, for both, signatories and non- 
signatories, the left-hand side of marginal benefits in their respective first order conditions will decrease (increase) in the level of 
total mitigation M if Ψ < (>)0 under both scenarios.  

1) Let us assume Ψ < 0. Hence, R′

NS < 0. We want to show MNC∗(p) > MST∗(p) but assume the opposite: MNC∗(p) ≤ MST∗(p). 

From signatories’ first order conditions under the NC-scenario (3.a) and under the ST-scenario (5.a), keeping in mind that for Ψ <
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0, i.e., marginal benefits in the first order conditions decrease in total mitigation M, the following holds: 

Cm
(
mST∗

S

)
= p ·

[
BM

(
MST∗, aST∗

i

(
MST∗)) ·

(
1 + R

′

NS

)]
≤ p ·

[
BM

(
MNC∗, aNC∗

i

(
MNC∗)) ·

(
1 + R

′

NS

)]
<

p ·
[
BM

(
MNC∗, aNC∗

i

(
MNC∗

))]
= Cm

(
mNC∗

S

)

For non-signatories, using (3.b) or (5.b), which are identical, accordingly, we have: 

Cm
(
mST∗

NS

)
=BM

(
MST∗, aST∗

i

(
MST∗))≤BM

(
MNC∗, aNC∗

i

(
MNC∗

))
=Cm

(
mNC∗

NS

)
.

It follows that Cm(mST∗
S ) < Cm(mNC∗

S ) and Cm(mST∗
NS ) ≤ Cm(mNC∗

NS ) hold and, therefore, given the convexity of cost functions, mST∗
S <

mNC∗
S and mST∗

NS ≤ mNC∗
NS must hold. These inequalities contradict the assumption MNC∗(p) ≤ MST∗(p). Hence, MNC∗(p) > MST∗(p) must be 

true. Consequently, mNC∗
NS (p) < mST∗

NS (p) must hold from the first order conditions of non-signatories and, hence, for MNC∗(p) > MST∗(p), 
we must have mNC∗

S (p) > mST∗
S (p) for signatories. 

Stackelberg leaders will be better off (or equal well off) than in the simultaneous game by axiomatic reasoning. For non-signatories, 
the variables that affect their welfare by going from the Nash-Cournot to the Stackelberg scenario are total mitigation (that also affects 
equilibrium adaptation levels) and individual mitigation. We know that mitigation costs will increase due to higher mNS. In order to 
evaluate the overall effect, we totally differentiate a non-signatory’s welfare function: 

ΔWNS =
∂B

(
MNC, aNC

i

)

∂M
·ΔM +

∂B
(
MNC, aNC

i

)

∂ai
·
∂ai

∂M
·ΔM −

∂C
(
mNC

NS

)

∂mNS
·ΔmNS −

∂D
(
aNC

i

)

∂M
·
∂ai

∂M
·ΔM  

and, using the first order conditions in terms of adaptation, Ba = Da, and dropping the arguments in the function above for conve-
nience, we get: 

ΔWNS =BM ·ΔM − Cm(mNS) ·ΔmNS.

As we know from above that ΔM < 0 and ΔmNS > 0, it follows that a non-signatory’s welfare will drop when moving from the NC- 
to the ST-scenario. Therefore, pulling results together for Ψ < 0, WNC∗

S (p) < WST∗
S (p) and WNC∗

NS (p) > WST∗
NS (p) hold, though nothing can 

be said about aggregate welfare W∗(p) at a general level. Noting that WNC∗
NS (p) > WST∗

NS (p) holds for every p, 1 < p < n, we also have 
WNC∗

NS (p − 1) > WST∗
NS (p − 1). Considering internal stability, W∗

S(p) ≥ W∗
NS(p − 1), we notice that the left-hand side term is larger and the 

right-hand side term smaller under the ST-scenario than under the NC-scenario. Hence, pST∗ ≥ pNC∗ follows. This conclusion is still true 
if we consider the boundary values of p, namely p = n, in which case W∗

S(p) is the same under both scenarios but W∗
NS(p − 1) is lower 

under the ST-than NC-scenario, and p = 2, in which case W∗
NS(p − 1) is the same under both scenarios according to our assumption, but 

W∗
S(p) is larger under the ST-than NC-scenario. Finally, under the ST-scenario, strict superadditivity always holds (see Proposition 2). 

For the move from p − 1 = 1 to p = 2, this implies 2 ·W∗
S(2) > 2 ·W∗

NS(1) or W∗
S(2) > W∗

NS(1) and the condition for internal stability 
requires W∗

S(2) ≥ W∗
NS(1). Thus, pST∗ ≥ 2.  

2) We now consider Ψ > 0. We want to show MNC∗(p) < MST∗(p). 

From the first order conditions of signatories (3.a) and (5.a), it is clear that MNC∗(p) = MST∗(p) is not possible. Due to upward- 
sloping mitigation reaction functions, we need to consider two possibilities: 

MNC∗(p) < MST∗(p), which would be compatible only with mNC∗
S (p) < mST∗

S (p) and mNC∗
NS (p) < mST∗

NS (p); 
MNC∗(p) > MST∗(p), which would be compatible only with mNC∗

S (p) > mST∗
S (p) and mNC∗

NS (p) > mST∗
NS (p). 

We note that, axiomatically, the Stackelberg leader will receive a higher (or equal) payoff compared to the NC-scenario. To see how 
signatories’ welfare will change when moving from the NC- to the ST-scenario, we total differentiate welfare function (1). The result 
would be the same for non-signatories, except for individual mitigation levels (as done below). We have: 

ΔWS =
∂B

(
MNC, aNC

i

)

∂M
·ΔM +

∂B
(
MNC, aNC

i

)

∂ai
·
∂ai

∂M
·ΔM −

∂C
(
mNC

S

)

∂mS
·ΔmS −

∂D
(
aNC

i

)

∂M
·
∂ai

∂M
·ΔM 

and, using the information Ba = Da from the first order conditions with respect to adaptation, we get: 

ΔWS =BM ·ΔM − Cm(mS) ·ΔmS.

From the first order conditions of signatories under the NC-scenario (3.a) in Table 1, we know that p ·BM = Cm(mS). Hence, ΔWS =

BM ·ΔM − BMp ·ΔmS = BM(ΔM − p ·ΔmS). In the case of MNC∗(p) < MST∗(p), ΔM > 0, ΔmS > 0 and ΔmNS > 0 with ΔM > p · Δms and, 
hence, ΔWS > 0 follows. In the case of MNC∗(p) > MST∗(p), ΔM < 0, ΔmS < 0 and ΔmNS < 0 with |ΔM| > |p ·Δms| and, hence, ΔWS < 0, 
which must be wrong by the axiomatic reasoning above. 

Therefore, for Ψ > 0, we will have: MNC∗(p) < MST∗(p), mNC∗
S (p) < mST∗

S (p) and mNC∗
NS (p) < mST∗

NS (p). 
For non-signatories, we have: 

ΔWNS =BM ·ΔM − Cm(mNS) ·ΔmNS.

From the first order conditions of non-signatories under the NC-scenario (3.b) in Table 1, we know that BM = Cm. We also know that 
because of upward sloping mitigation reaction functions |ΔM| > |ΔmNS| holds and, hence, |BM ·ΔM| > |Cm(mNS) ·ΔmNS|. Hence, taken 
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together, WNC∗
S (p) < WST∗

S (p) and WNC∗
NS (p) < WST∗

NS (p). Hence, WNC∗(p) < WST∗(p) if Ψ > 0. 
Now, we need to show mST∗

S (p) − mNC∗
S (p) > mST∗

NS (p) − mNC∗
NS (p), which implies WST∗

S (p) − WNC∗
S (p)< WST∗

NS (p) − WNC∗
NS (p). Looking at 

signatories’ and non-signatories’ welfare functions, we can rewrite those as follows: WNC∗
NS = WNC∗

S + (C(mNC∗
S ) − C(mNC∗

NS )) and WST∗
NS =

WST∗
S + (C(mST∗

S ) − C(mST∗
NS )). Using this, WST∗

S (p) − WNC∗
S (p)< WST∗

NS (p) − WNC∗
NS (p) translates into C(mST∗

S ) − C(mNC∗
S ) > C(mST∗

NS ) −

C(mNC∗
NS ). This will be true provided mST∗

S (p) − mNC∗
S (p) >mST∗

NS (p) − mNC∗
NS (p) holds, which we need to prove. 

We know from above that for Ψ > 0, MST∗ > MNC∗ and BM(MST∗,a ST∗
t ) > BM(MNC∗,a NC∗

t ). Hence, from the FOCs of signatories and 
non-signatories, we have: 

Cm
(
m ST∗

S

)
= Cm

(
m NC∗

S

)
+ p ·

[
BM

(
MST∗, a ST∗

i

)
− BM

(
MNC∗, a NC∗

i

)
+ BM

(
MST∗, a ST∗

i

)
·R′

NS

]
and

Cm
(
m ST∗

NS

)
= Cm

(
m NC∗

NS

)
+ BM

(
MST∗, a ST∗

i

)
− BM

(
MNC∗, a NC∗

i

)
.

Moving the cost terms to the left-hand side, we have: 

Cm
(
m ST∗

S

)
− Cm

(
m NC∗

S

)
= p ·

[
BM

(
MST∗, a ST∗

i

)
− BM

(
MNC∗, a NC∗

i

)
+BM

(
MST∗, a ST∗

i

)
·R′

NS

]
(A.1)  

Cm
(
m ST∗

NS

)
− Cm

(
m NC∗

NS

)
=BM

(
MST∗, a ST∗

i

)
− BM

(
MNC∗, a NC∗

i

)
. (A.2) 

We know that Cm(m ST∗
S ) − Cm(m NC∗

S ) > 0 as m ST∗
S > m NC∗

S and Cm(m ST∗
NS ) − Cm(m NC∗

NS ) > 0 as m ST∗
NS > m NC∗

NS if Ψ > 0. 
Substituting (A.2) into (A.1), we have: 

Cm
(
m ST∗

S

)
− Cm

(
m NC∗

S

)
= p ·

[
Cm

(
m ST∗

NS

)
− Cm

(
m NC∗

NS

)
+BM

(
MST∗, a ST∗

i

)
·R′

NS

]
. (A.3) 

Assuming second derivatives to be constant, the differences in marginal costs can be rewritten as: 

Cm
(
m ST∗

S

)
− Cm

(
m NC∗

S

)
= Cmm ·

[
m ST∗

S − m NC∗
S

]
and

Cm
(
m ST∗

NS

)
− Cm

(
m NC∗

NS

)
= Cmm ·

[
m ST∗

NS − m NC∗
NS

]
.

Substituting into (A.3), we obtain: 

Cmm ·
[
m ST∗

S − m NC∗
S

]
= p ·

[
Cmm ·

[
m ST∗

NS − m NC∗
NS

]
+BM

(
MST∗, a ST∗

i

)
·R′

NS

]
.

Finally, dividing through by Cmm, we have: 

m ST∗
S − m NC∗

S = p ·
[

m ST∗
NS − m NC∗

NS +
BM

(
MST∗, a ST∗

i

)
·R′

NS

Cmm

]

From this inequality, we can conclude mST∗
S (p) − mNC∗

S (p) > mST∗
NS (p) − mNC∗

NS (p) as R′

NS > 0 if Ψ > 0 and, hence, WST∗
S (p) − WNC∗

S (p) <
WST∗

NS (p) − WNC∗
NS (p). 

Finally, pNC∗ ≥ 2 and pST∗ ≥ 2 follows from the fact that for Ψ > 0 the game is a superadditive coalition game for both scenarios 
according to Proposition 2. Then, we apply the same proof as outlined above. 

Remark: Note that for ΩST(p) := WST∗
S (p) − WST∗

NS (p − 1) and ΩNC(p) := WNC∗
S (p) − WNC∗

NS (p − 1), ΩST(n) < ΩNC(n) because WST∗
S (n) =

WNC∗
S (n) and WST∗

NS (n − 1) > WNC∗
NS (n − 1), and ΩST(2) > ΩNC(2) because WST∗

S (2) > WNC∗
S (2) and WST∗

NS (1) = WNC∗
NS (1). Thus, stability 

functions Ω(p) under the two scenarios cross each other at least once for Ψ > 0, which makes general predictions difficult. As will be 
apparent from Appendix A.5 for the specific payoff function (10a) and (10b), the curvature of the stability functions ΩST(p) and ΩNC(p)
under the two scenarios may be quite complex, with fluctuating upward and downward sloping as well as convex and concave seg-
ments in different intervals of p. 

A.3. Proof of Proposition 2 

Mitigation Cohesiveness (MCOH) and the Change of Signatories’ and Non-signatories’ Equilibrium Mitigation Levels with Membership 
The difference M∗(p) − M∗(p − 1) can also be investigated by considering ∂M∗

∂p , treating p as a continuous variable. Bayramoglu et al. 
(2018) have derived ∂M∗

∂p in the NC-scenario. Following their approach, only minor modifications for the ST-scenario are necessary. By 

setting R′

NS = 0, we retrieve the conditions in the NC-scenario. Total differentiation of the first order conditions of signatories and 
non-signatories, as provided in Table 1, assuming second derivatives to be constant, delivers: 

∂m∗
S

∂p
=

p ·Ψ · ∂M∗

∂p ·
(
1 + R′

NS

)

Cmm(m∗
S)

+
BM ·

(
1 + R′

NS

)

Cmm(m∗
S)

∂m∗
NS

∂p
=

Ψ · ∂M∗

∂p

Cmm(m∗
NS)

where BM ·(1+R′

NS)

Cmm(m∗
S)

> 0. We have: ∂M∗

∂p = m∗
S + p · ∂m∗

S
∂p − m∗

NS + (n − p) · ∂m∗
NS

∂p . Substituting ∂m∗
S

∂p and ∂m∗
NS

∂p from above and rearranging terms, we 
obtain: 
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∂M∗

∂p
=

m∗
S − m∗

NS +
p ·BM ·(1+R′

NS)
Cmm(m∗

S)

1 − Ψ ·

[
p2 ·(1+R′

NS)
Cmm(m∗

S)
+

(n− p)
Cmm(m∗

NS)

]

The term p ·BM ·(1+R′

NS)

Cmm(m∗
S)

is always positive and the denominator is always positive by the sufficient conditions for the existence of a 

unique interior equilibrium, as derived in Appendix A.1. Hence, if m∗
S − m∗

NS > 0, we can conclude ∂M∗

∂p > 0. We know that m∗
S− m∗

NS > 0 

if Ψ > 0 in both scenarios, in which case we can also conclude ∂m∗
S

∂p > 0 and ∂m∗
NS

∂p > 0 from above. If Ψ < 0, in the NC-scenario, we also 

have m∗
S − m∗

NS > 0. Hence, ∂M∗

∂p > 0 and ∂m∗
NS

∂p < 0 can be concluded, but nothing can be concluded about ∂m∗
S

∂p , as the first term is negative 
and the second positive in the derivative above. If Ψ < 0, in the ST-scenario, m∗

S − m∗
NS < 0 (which typically happens for small values of 

p) and m∗
S − m∗

NS > 0 (which typically happens for sufficiently large values of p) are possible. Hence, nothing can be generally 
concluded about the signs of ∂M∗

∂p , ∂m∗
NS

∂p and ∂m∗
S

∂p . 

Positive Externality Property (PEP) and Positive Internalisation Property (PIP) 
Let us first consider PEP, again, treating p as a continuous variable. In the context of the NC-scenario, see Bayramoglu et al. (2018). 

In the ST-scenario, we derive exactly the same condition for non-signatories: 

∂WST∗
NS

∂p
=BM ·

[
∂MST∗

∂p
·

(

1 −
Ψ

Cmm(mST∗
NS )

)]

noting that BM > 0 from the General Assumptions and 
(

1 − Ψ
Cmm(mST∗

NS )

)

>0 from the sufficient condition of the existence of a uniqueness 

interior equilibrium, as stated in Appendix A.1. Therefore, ∂WST∗
NS

∂p depends on the sign of ∂MST∗

∂p . Whereas ∂MNC∗

∂p > 0 always holds in the NC- 

scenario, and ∂MST∗

∂p > 0 in the ST-scenario if Ψ > 0, as we know from above, we also know that in the ST-scenario ∂MST∗

∂p < 0 is possible if 
Ψ < 0 in which case non-signatories do not enjoy a positive but suffer from a negative externality if the coalition is expanded. 

Let us now consider PIP, again, treating p as a continuous variable. In the NC-scenario, we have ∂WNC∗
S

∂p = BM ·

[
∂M
∂p

NC∗
− p · ∂mNC∗

S
∂p

]

Using 

∂MNC∗

∂p = mNC∗
S + p · ∂mNC∗

S
∂p − mNC∗

NS + (n − p) · ∂mNC∗
NS

∂p , we get: 

∂WNC∗
S

∂p
=BM ·

[

mNC∗
S − mNC∗

NS +(n − p) ·
∂mNC∗

NS

∂p

]

.

In the NC-scenario, we always have: mNC∗
S − mNC∗

NS > 0, while ∂mNC∗
NS

∂p > (<)0 if Ψ > (<)0. Hence, ∂WNC∗
S

∂p > 0 if Ψ > 0. If Ψ < 0, we have 

mNC∗
S − mNC∗

NS > 0 and ∂mNC∗
NS

∂p < 0. In this case, PIP may fail for small p because mNC∗
S − mNC∗

NS is small and because (n − p) ∂mNC∗
NS

∂p is large in 
absolute terms. 

In the ST-scenario, we have: ∂WST∗
S

∂p = BM ·

[
∂M
∂p

ST∗
− p ·[1+R′

NS] ·
∂mST∗

S
∂p

]

or 

∂WST∗
S

∂p
=BM ·

[

mST∗
S − mST∗

NS +(n − p) ·
∂mST∗

NS

∂p
− p ·R′

NS ·
∂mST∗

S

∂p

]

.

The sign of PIP depends on the sign of the term in brackets. Substituting ∂mST∗
NS

∂p and ∂mST∗
S

∂p from above and using R′

NS =
(n− p) ·Ψ

Cmm(mST
NS)− (n− p) ·Ψ, 

we have: 

∂WST∗
S

∂p
=BM

[(
mST∗

S − mST∗
NS

)
·Cmm

(
mST∗

S

)

Cmm(mST∗
NS ) − (n − p) ·Ψ

]

with Ψ =BMM +
(BaM)

2

Daa − Baa 

The denominator is positive for the existence-uniqueness condition (see Appendix A.1.2). 

Superadditivity (SAD) 
We need to show: p ·W∗

S(p) ≥ (>)[p − 1] ·W∗
S(p − 1) + W∗

NS(p − 1) for all p, 2 ≤ p ≤ n. For the NC-scenario Bayramoglu et al. (2018) 
established that a sufficient condition for SAD to hold are (weakly) upward sloping reaction functions, i.e., Ψ ≥ 0. For the ST-scenario, 
we notice that SAD must hold by axiomatic reasoning. Step 1: Any move from p − 1 to p implies one more signatory. Keeping total 
mitigation of the p signatories at the same level than at p − 1 (p · m̃S(p) = [p − 1]m∗

S(p − 1) + m∗
NS(p − 1)), total mitigation cost will 

have decreased among the p signatories as the first order conditions of mitigation imply cost-effectiveness among signatories. The n− p 
non-signatories will not have changed their strategies in Step 1. Step 2: The p Stackelberg leaders choose their equilibrium strategies by 
maximizing their aggregate payoff, taking the best-response of non-signatories into account. If they choose different strategies in step 2 
compared to step 1 (m∗

S(p)∕= m̃S(p)), the aggregate welfare of the p signatories must have further increased. For the final move from p−
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1 = n − 1 to p = n, when there are no outsiders left after the move, the SAD-condition is equal to welfare cohesiveness (WCOH) and 
WCOH for this last move does generally hold because total welfare in the grand coalition is strictly larger than in any other coalition in 
an externality game by axiomatic reasoning. 

Welfare Cohesiveness (WCOH) 
If a game is superadditive and exhibits a positive externality throughout, this is sufficient that WCOH holds. Both conditions hold in 

both scenarios for Ψ > 0. In order to prove that WCOH may fail for Ψ < 0, we note that under the NC-scenario SAD may fail and under 
the ST-scenario PEP may fail, and refer to Table 2 for examples. 

A.4. Equilibrium Mitigation and Adaptation for Payoff Function (7.a) and (7.b) 

Due to space limitations, we only provide the central equations here, all details are provided in an Online Appendix 1 (NC-scenario) 
and an Online Appendix 2 (ST-scenario). Considering payoff function (10.a) for which BaM < 0, we have: BM = b − g · M − f · ai, BMM =

− g < 0, BMa = − f < 0, Ba = β − f ·M, Baa = 0, Cm = c ·mi, Cmm = c, Da = d · ai, Daa = d and Ψ = − g + (− f)2
d =

f2 − g · d
d . The sign of Ψ 

depends on the sign of f2 − g · d. From the sufficient condition for the existence of a unique interior equilibrium under the NC-scenario 

Ψ ·

[
p2

Cmm(mS)
+

(n− p)
Cmm(mNS)

]

<1 (see Appendix A.1), noticing that Cmm(mS) = Cmm(mNS) = c as well as Ψ are constants, the left-hand side of this 

inequality increases in p. Hence, using p = n, we derive for payoff function (10a) c · d − n2 ·(f2 − g · d) > 0 for this condition. We notice 
that this condition is not binding if f2 − g · d < 0, i.e., Ψ < 0, as expected. Moreover, due to linear replacement functions, if this 
condition is binding (i.e., Ψ > 0), it is also a necessary condition. From Appendix A.1 we may recall that this condition is also sufficient 
to guarantee a unique interior equilibrium under the ST-scenario. 

For the slopes of the reaction functions, we derive: 

r′

S(M− i)=
p ·
(
f 2 − d · g

)

c · d − p ·
(
f 2 − d · g

),R′

S(MNS)=
p2 ·

(
f 2 − d · g

)

c · d − p2 ·
(
f 2 − d · g

), r′

NS

(
M− j

)
=

f 2 − d · g
c · d −

(
f 2 − d · g

),R′

NS(MS)=
(n − p) ·

(
f 2 − d · g

)

c · d − (n − p) ·
(
f 2 − d · g

)

and h′

(M)=
− f
d
.

where r′ denotes the slopes of individual and R′ the slopes of the aggregate reaction functions. For the NC-scenario, we have: 

mNC∗
S (p)=

p ·(b · d − β · f )
c · d − (p2 + n − p) ·

(
f 2 − d · g

),mNC∗
NS (p)=

mNC∗
S (p)

p
and aNC∗

i (p)=
β · c − (n − p + p2) ·(b · f − g · β)
c · d − (n − p + p2) ·

(
f 2 − d · g

) .

In the ST-scenario, we find: 

mST∗
S (p)=

c · p · d · (b · d − β · f )
Z

,mST∗
NS (p)=

(
c · d − (n − p) ·

(
f 2 − g · d

))
· (b · d − β · f )

Z
and 

aST∗
i (p)=

(b · f − g · β) ·
(
f 2 − d · g

)
· (n − p)2

+ c · β ·
(
c · d + (n − p)f 2

)
− X

Z  

with Z :=(f2 − d ·g) ·( − c ·d ·(p2+2n − 2p))+(f2 − d ·g)2
· (n − p)2 + c2 ·d2 and X := b · f ·c ·d · (n − p+ p2)+ g ·β ·c ·d ·(2(n − p) + p2). 

We impose the following five conditions on parameters: 

C1ST =C1NC : b − g ·M − f · a > 0,

C2ST =C2NC : β − f ·M > 0,

C3ST =C3NC : c · d − n2 ·
(
f 2 − g · d

)
> 0,

C4ST =C4NC : b · d − β · f > 0,

C5NC : β · c − n2 ·(b · f − g · β)> 0,

C5ST : (b · f − β · g) ·
(
f 2 − d · g

)
· (n − p)2

+ c · β ·
(
f 2 · p − f 2 · n + c · d

)
− b · f · c · d ·

(
p2 + n − p

)
+

g · β · c · d ·
(
p2 + 2n − 2p

)
> 0 .

Conditions C1 and C2 are required for the General Assumptions to hold (i.e., BM > 0 and Ba > 0; see Section 2); C3 is the condition 
for the existence of a unique interior equilibrium as discussed already above; C4 and C5 are the respective additional conditions that 
ensure that equilibrium mitigation and adaptation levels are positive. C4 ensures that the numerators of equilibrium mitigation levels 
are positive. (The remaining term in the numerator of mST∗

NS (p) is positive due to the condition for the existence of a unique interior 
equilibrium, i.e., C3ST = C3NC.) C5 ensures that the numerators of equilibrium adaptation levels are positive. Finally, we note that the 
term Z, the denominator of equilibrium mitigation and adaptation levels, is always positive. The second term in Z, (f2 − d · g)2

·
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(n − p)2, is always positive. Hence, we have to sign c2 · d2 − (c · d ·(p2 + 2n − 2p) · (f2 − d · g)). Dividing by c · d, we obtain c · d − (p2 +

2n − 2p) · (f2 − d · g), which takes on its lowest value for p = n. Replacing p = n, we obtain C3ST = C3NC. 
Substituting the highest possible equilibrium mitigation and adaptation levels in C1 and C2, it turns out that these two conditions 

are captured by the non-negativity conditions C4 and C5. Therefore, for both scenarios, only condition C3 to C5 are relevant, with C3 
being only relevant if f2 − g · d > 0, i.e., if Ψ > 0. 

Moving now to the case of BaM > 0 i.e., considering payoff function (10.b), it turns out that some of the conditions above can be 
dropped (e.g., C4 because f is now − fand b · d + β · f > 0 is always true) and no additional conditions need to be imposed. 

A.5. Proof of Proposition 3 

Due to space limitations, we only provide the central idea of the proof; all details are provided in an Online Appendix 3 (NC- 
scenario) and an Online Appendix 4 (ST-scenario). 

The result for Ψ < 0 and the NC-scenario is proved in Bayramoglu et al. (2018). For the ST-scenario, p∗ ≥ 2 follows from the fact 
that p = 2 is internally stable by the property superadditivity. Thus, if p = 2 is not externally stable, some larger coalition will be stable. 
The fact that any coalition between p = 2 and p = n can be stable follows from our simulations on which we report in the paper. 

Consider now Ψ > 0. 
Bayramoglu et al. (2018) derive the sign of ΩNC(p) := WNC∗

S (p) − WNC∗
NS (p − 1) for the NC-scenario: 

sign
[
ΩNC(p, n)

]
= −

[
Φ1(p, n) ·Ψ 2 − c ·Φ2(p, n) ·Ψ +(p − 3) · c2]

with: 

Φ1(p,n) = p5 − 5p4 + 2np3 + 7p3 − 4np2 + n2p − 3p2 − 2np+ n2,

Φ2(p,n) = 2p3 + 2np − 8p2 − 2n+ 6p − 4 and 
Ψ =

f2 − gd
d , with Ψ derived in Appendix A.4. If sign[ΩNC(p,n)] ≥ 0, internal stability holds. We assume generally, n ≥ 7. We note that 

p = 1 and p = 2 are internally stable, but not externally stable. Hence, we focus on p ≥ 3. 

It can be shown that Φ1(p, n) > 0 for any p and Φ2(p, n) > 0 for p ≥ 3. 
For p = 3, sign[ΩNC(3, n)] = − [Φ1(3, n) ·Ψ2 − c ·Φ2(3, n) ·Ψ ] with Φ1(3, n) = 4n2 + 12n and Φ2(3, n) = 4n − 4. Solving 

sign[ΩNC(3, n)] ≥ 0 gives Ψ ≤ c ·Φ2
Φ1

= c 4n− 4
4n2+12n. By the sufficient conditions for the existence of a unique equilibrium, Ψ < c

n2, this con-
dition always holds because 4n− 4

4n2+12n ≥
1
n2 for n ≥ 3. Thus, sign[ΩNC(3,n)]>0. 

For p > 3, sign[ΩNC(p, n)] = − [Φ1(p, n) ·Ψ2 − c ·Φ2(p, n) ·Ψ ] ≥ 0 for Ψ ∈
[
Ψ NC;ΨNC

]
with Ψ NC = −

(− Φ2+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 4Φ1 · p+Φ2

2+12Φ1
√

) · c
2Φ1 

and 

ΨNC
= −

(Φ2+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 4Φ1 · p+Φ2

2+12Φ1
√

) · c
2Φ1

. 

For p = n, it can be shown that 0 < Ψ NC and ΨNC
= c

n2. Thus, there exists a range of Ψ such that the grand coalition is stable. 
Furthermore, if the grand coalition is stable, it Pareto-dominates p∗ = 3.

For 3 < p < n, it can be shown that c
n2 < Ψ NC < ΨNC.20 (See Online Appendix 3.) That is, the sufficient condition for the existence of 

a unique equilibrium, Ψ < c
n2, is violated for sign[ΩNC(p,n)] ≥ 0. Thus, there exists no other stable coalition than p∗ = 3 and p∗ = n in the 

NC-scenario for n ≥ 7. 
We derive the sign of ΩST(p) := WST∗

S (p) − WST∗
NS (p − 1) for the ST-scenario: 

sign
[
ΩST(p, n)

]
= −

[
Φ1(p, n) ·Ψ 4 − c ·Φ2(p, n) ·Ψ 3 + c2 ·Φ3 ·Ψ 2 + c3 ·Φ4 ·Ψ + c4 ·

(
p2 − 4p+ 3

)]

with: 

Φ1(p,n) = − (n − p + 1)2
· (n − p)2, 

Φ2(p,n) = (np2 − p3 + 2n2 − 4np + 3p2 − n + p − 1) · (n − p + 1), 
Φ3(p,n) = p4 + ( − 2n − 4) · p3 + (n2 + 8n + 9) · p2 + ( − 4n2 − 12n − 12) · p+ 2n2 + 8n+ 5, 
Φ4(p, n) = p3 · (6 − p) + p ·( − 2np+8n − 15p+18) − 6n − 8 and 
Ψ =

f2 − gd
d . If sign[ΩST(p, n)] ≥ 0, internal stability holds. We assume, again, n ≥ 7. Again, we focus on p ≥ 3 because smaller co-

alitions are internally stable but not externally stable. 

It can be shown that Φ1(p, n) < 0 for any p < n and Φ1(p, n) = 0 for p = n, Φ2(p, n) > 0 for any p, Φ3(p, n) ≤ 0 for any p if n ≤

p3 − 4p2+6p− 4+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p4 − 3p2 − 4p+6

√

p2 − 4p+2 and Φ3(p, n) > 0 otherwise and Φ4(p, n) < 0 for any p. 

20 The reader will appreciate, by consulting the Online Appendices 3 and 4, that a graphical analysis can be justified in some exceptional cases due 
to the complexity of some terms. See Eichner and Pethig (2015, 2017) for a similar procedure. 
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For p = 3, sign[ΩST(3, n)] is a polynomial of degree four, with one zero point at Ψ = 0. We solve for the remaining zero points by 
reducing the function to a polynomial of degree three by dividing by Ψ and using the Cardano formula (See Online Appendix 4.). For 
n ≥ 7, there exists only one remaining zero point, which is negative. It can be shown that sign[ΩST(3, n)] ≥ 0 for Ψ < c

n2, proving that any 
coalition of size p = 3 is internally stable. 

For p = n, sign[ΩST(n, n)] is a polynomial of degree three, as Φ1(n,n) = 0. We solve for the zero points of sign[ΩST(n, n)] by using the 
trigonometric approach for solving cubic equations and obtain three zero points, Ψ0, Ψ1 and Ψ2 (See Online Appendix 4.). It can be 

shown that Ψ2 < 0 < Ψ0 < c
n2 < Ψ1 and sign[ΩST(n, n)] ≥ 0 for Ψ ∈

[
Ψ ST;ΨST

]
with Ψ ST = Ψ0 and ΨST

= c
n2, given that we investigate 

Ψ > 0. Thus, there exists a range of Ψ such that the grand coalition is stable. Moreover, sign[ΩST(n, n)]<0 for Ψ NC, confirming that 
Ψ NC < Ψ ST. Hence, the range of Ψ for which the grand coalition is stable is smaller in the ST- than NC-scenario. Furthermore, if the 
grand coalition is stable, it also Pareto-dominates p∗ = 3 in the ST-scenario. 

For 3 < p < n, sign[ΩST(p, n)] is a polynomial of degree four. We solve for the potential zero points by building the cubic resolvent of 
the polynomial. This yields eight potential solutions for sign[ΩST(p,n)]. It can be graphically shown that these eight solutions Ψ i, i ∈

[1;8], are either not an element of Ψ ∈
[
0; c

n2

]
or not a zero point of sign[ΩST(p, n)] (See Online Appendix 4.). Thus, sign[ΩST(p, n)] does 

not change for Ψ < c
n2. It can be shown that sign[ΩST(p, n)]〈0 for Ψ ≤ c

n2. Thus, there exists no stable coalition other than p∗ = 3 and p∗ =
n in the ST-scenario for n ≥ 7. 

A.6 Simulation Strategy 

We run a comprehensive number of simulations based on payoff function (10). For each simulation run, we consider payoff 
functions (10.a) and (10.b) for the same parameter values. (Setting f in (10.a) to − f gives (10.b)). Thus, we cover the case of mitigation 
and adaptation being substitutes and complements. All parameter values have to satisfy conditions C3 to C5 as explained in 
Appendix A.4. We start from an initial parameter configuration, and then systematically vary each parameter in order to cover all 
possible cases. 

Downward sloping reaction functions (Ψ < 0)
Table 2 in the text considers 17 simulations with different values for the mitigation cost parameter c in order to cover the full range 

of possible slopes of reaction functions in mitigation space where we display the slope of a single non-signatory’s reaction in all tables. 
That is, we assume the same value for all parameters except for parameter c, and vary c to cover the range r′

NS ∈ ( − 1, 0). 
In Online Appendix 5, three additional tables report results from extensive sensitivity analyses. In Table O.1, we vary the benefit 

parameter g to cover r′

NS ∈ ( − 1,0) keeping other parameters fixed. We consider 15 different values of parameter g. 
Table O.2 and Table O.3 in Online Appendix 5 select those parameter constellations from Table 2 in the text and Table O.1 in Online 

Appendix 5 for which pST∗ ≥ 80 (given n = 100) as starting values and vary other parameters. In Table O.2, we vary the benefit 
parameters b and β by considering 48 different parameter combinations, and in Table O.3 we vary parameters f and d considering 38 
different parameter combinations where d is the adaptation cost parameter and f measures the marginal decrease (increase) of the 
marginal benefit from adaptation due to an increase in total mitigation. Changes of parameters b and β do not affect the slope of the 
reaction function in mitigations space and, hence, also not pST∗, whereas changes of parameters f and d affect the slope and, hence also 
pST∗. Table O.2 and O.3 serve to test the robustness of the conclusion regarding the paradox of cooperation by considering large stable 
coalitions. 

Upward sloping reaction functions (Ψ > 0)
In case of upward sloping reaction functions in mitigation, we face a constraint on the upper bound of the slope of reaction 

functions. See Appendix A.1. Only flat reaction functions do not violate the condition for the existence of a unique interior equilibrium. 
In Table 3 in the text, various combinations of parameters g, f and d (that determine the value of Ψ) and of parameter c are 

considered in order to cover all possible outcomes in terms of stable coalition sizes, as stated in Proposition 3. (All four parameters 
affect the slope of the reaction function in mitigation space.) 15 simulations are reported. Additional sensitivity analyses are conducted 
in Table O.4 and O.5 in Online Appendix 5. 

Table O.4 focuses on those cases of Table 3 in the text for which the grand coalition is stable in both scenarios, the NC- and ST- 
scenario. For each case, we vary parameters g, f and d in order to show that p∗ = n, for any given level of the cost parameter c, 
can be achieved. According to Proposition 3, Ψ ≤ Ψ is required to have p∗ = n. Eight cases in which the grand coalition is stable in both 
scenarios are reported in Table O.4. 

Finally, Table O.5 focuses on those simulations for which p∗ = n in Table 3, either in the NC-scenario or in both scenarios, and 
performs a sensitivity analysis with respect to the benefit parameters b and β in order to test the robustness of our conclusions regarding 
the paradox of cooperation. Thirty different combinations are reported. 
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