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Abstract
News outlets are now more than ever incentivized to provide their audience with

slanted news, while the intrinsic homophilic nature of online social media may exac-
erbate polarized opinions. Here, we propose a new dynamic latent space model for
time-varying online audience-duplication networks, which exploits social media con-
tent to conduct inference on media bias and polarization of news outlets. Our model
contributes to the literature in several directions: 1) we provide a model-embedded
data-driven interpretation for the latent leaning of news outlets in terms of media
bias; 2) we endow our model with Markov-switching dynamics to capture polariza-
tion regimes while maintaining a parsimonious specification; 3) we contribute to the
literature on the statistical properties of latent space network models. The proposed
model is applied to a set of data on the online activity of national and local news
outlets from four European countries in the years 2015 and 2016. We find evidence
of a strong positive correlation between our media slant measure and a well-grounded
external source of media bias. In addition, we provide insight into the polarization
regimes across the four countries considered.
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1 Introduction
We propose a new statistical model able to offer meaningful insights into the perceived
media bias and regime changes in polarization within online social media. The risks of being
unintentionally exposed to biased news and polarized opinions gained awareness both in
the public debate (WEF 2022) and in the academic sphere (see Puglisi and Snyder Jr 2015;
Gentzkow et al. 2015; Cinelli et al. 2021) due to the rapid changes in the news consumption
landscape (Newman et al. 2017).

Figure 1: Italian Audience-Duplication Networks obtained from the bipartite network
of Italian news outlets and their Facebook commenters in 2015 (top left) and 2016 (top
right). Node size is proportional to the news outlets’ engagement in terms of comments.
Nodes are colored from red (left) to blue (right) according to the text-analysis political-
leaning score computed following Gentzkow and Shapiro (2010) and Garz et al. (2020).
Edge width is proportional to the number of commenters in common between any two news
outlets. The bottom panel indicates networks’ average edge weight - average number of
commenters in common between any two outlets - over time, with red error bars displaying
the intra-month inter-quartile range, while the black dot denotes the median.

Figure 1 provides an illustrative example of both media bias and polarization starting
from a preliminary analysis of the dataset described in Section 4. The figure displays a
network of Italian news outlets in which the edges’ thickness is proportional to the number
of Facebook commenters in common between any two outlets in the years 2015 (left) and
2016 (right). While media bias, in terms of political leaning, can be inferred indirectly
from the structure of the network or directly by analyzing news outlets’ content production
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(top panel), an increase in polarization can be detected when the average number of users
interacting with various sources decreases.

Media bias entails the propagation of biased news pieces, the aim of which is often
to support the interest of some individuals or groups, such as political parties. The phe-
nomenon is considered detrimental to consumer welfare (Gentzkow et al. 2015) as it entails
a reduction in the informativeness of news pieces, while some argue that biased news out-
lets jointly driven by ideological interests and profits could even affect political outcomes
(Anderson and McLaren 2012). Recent developments in measuring media bias include the
implementation of text-analysis techniques to take into account the similarity between news
articles and political content (see Gentzkow and Shapiro 2010; Garz et al. 2020) and the
use of latent-space models (Hoff et al. 2002; Friel et al. 2016; Sewell and Chen 2016) to
obtain a political leaning measure from social-media data (Barberá 2015).

Polarization refers to the radicalization of people’s opinions in the sense that they are
further apart. Some fear that this change in attitudes may be reflected in more partisan
positions of people’s representatives even though there is no obvious evidence of this (Prior
2013). Others claim that online social media exacerbate polarization by offering incentives
for homophilous behavior, i.e. the tendency to interact with similar individuals (Dandekar
et al. 2013). However, while a predisposition toward homophily has been observed on
several social platforms (see Hanusch and Nölleke 2019; Cinelli et al. 2021), evidence of an
exacerbation of polarization in social media environments is mixed (Kubin and von Sikorski
2021). Several different methodologies have been adopted for measuring polarization (see
Esteban and Ray 1994; Yarchi et al. 2021), including in the field of network science (see
Garimella et al. 2018; Cinelli et al. 2021). Two common objects of investigation are bipartite
networks, relating social media users to online pages, and audience duplication networks,
in which nodes represent pages and weighted edges denote the number of users in common
between any pair of pages. Figure 2 illustrates the two concepts.

Previous studies about media polarization use heuristics to detect communities and
informal sequential analysis for time variation, while we propose a formal statistical frame-
work for dynamic polarization analysis. In particular, we introduce a novel dynamic Latent-
Space (LS) network model which exploits both time-varying online audience-duplication
network data and textual content to characterize a set of news outlets both in terms of a
dynamic latent political-leaning dimension and in terms of popularity via individual effects.

LS models (Hoff et al., 2002) project the nodes of a network on a lower d-dimensional
latent space. Extensions of the original model include e.g. a dynamic component for the
latent coordinates (Friel et al., 2016; Sewell and Chen, 2016; Kim et al., 2018), mixtures
of latent coordinates (see Handcock et al., 2007) or extensions to multi-layer networks (see
Sosa and Betancourt, 2022). The statistical properties of LS models have been addressed by
Rastelli et al. (2016) for binary networks and Barberá (2015) presents an early application
of LS modeling for the estimation of latent ideology on social media.

Our paper adds to the methodological literature in several respects:

• We propose an LS model with Markov-Switching dynamics (MS-LS) which allows
capturing polarization regimes using a parsimonious specification.

• We provide a model-embedded data-driven interpretation for the latent space in terms
of media bias of news outlets exploiting text-based indicators (e.g. Gentzkow et al.,
2015; Garz et al., 2020).
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Figure 2: Media Networks: An example of a bipartite network of n readers, u1, . . . , un
and m news outlets, p1, . . . , pm (top left) and the corresponding audience duplication net-
work obtained using one-mode projection (top right). At the bottom, the adjacency-matrix
representation of both the bipartite network, Bn×m, and the audience-duplication network
Am×m. The matrix A is obtained as A = B′B.

• We extend the results of Rastelli et al. (2016) on statistical properties of LS models
to weighted temporal networks with MS dynamics. These are general results that
apply outside of the particular model we have implemented here.

Our model is applied to a novel time-varying network dataset we obtained from the
Facebook daily online activity of a broad set of news outlets from four European countries
(France, Germany, Italy, and Spain) in the years 2015 and 2016. This provides estimates
of media bias that are coherent with the PEW Research survey (Mitchell et al., 2018). We
also shed light on the in-platform (i.e. within Facebook) polarization regimes across the
four countries. We do not find evidence of a common shift from a low to a high polarization
regime in these data, in line with Prior (2013). The newly constructed dataset is freely
available (see Appendix J).

Section 2 will be dedicated to the overall description of the model within a Bayesian
setup and to the discussion of the statistical properties of the model. In Section 3, we
discuss posterior inference along with the constraints used in our model and present a
simulation exercise. Finally, Section 4 describes the dataset of European news outlets and
applies our model in both a static and a dynamic setup.
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2 The Longitudinal Markov-Switching Latent Space Model

2.1 The Model

Let G = {Grt, r = 1, 2, . . . , R, t = 1, 2, . . . , Tr} be an undirected and weighted temporal
(in our application audience-duplication) network with multiple layers Grt = (Vrt, Ert, Yrt).
For each layer (country) r, the vertex set (collection of news outlets) is constant, i.e.
Vrt = Vr ⊂ N, and the edge set Ert ⊂ Vr × Vr (common commenters between any two
outlets) is time-varying. For each edge (i, j) ∈ Etr we assume the (i, j)-th element of the
weighted adjacency matrix Yrt, i.e. Yijrt, is observed and denotes the number of connections
(commenters in common) between news outlets i and j at time t in country r. We adopt
a Poisson model for the connections:

Yijrt
ind∼ Poi(λijrt), (1)

for i, j = 1, . . . , Nr, t = 1, . . . , Tr and r = 1, . . . , R, where Nr = Card(Vr) is the number of
nodes in layer r and Poi(λ) denotes a Poisson distribution with intensity parameter λ > 0.
In our LS model, the intensity is driven by a set of static (αir) and d-dimensional dynamic
node-specific latent features (xirt ∈ X ⊂ Rd):

log λijrt = αir + αjr − βr||xirt − xjrt||2. (2)

The parameters αir, i = 1, . . . , Nr have the natural interpretation of individual effects
which are news-outlet specific and can be considered a proxy of the popularity of the
outlet (the engagement of the audience with the newspaper). The latent variables xirt,
i = 1, . . . , Nr enter the log intensity through the squared Euclidean distance. This way,
we account for the proximity of the news outlets on a given manifold. The more similar
the news outlets (the closer the nodes), the higher the number of commenters they tend to
have in common (if βr > 0).

We also employ an observable political leaning proxy, ℓirt, to provide additional infor-
mation on the location of news outlets within the latent space. Our modeling choice is
to not include ℓirt in the log-intensity equation to preserve the tractability of the random
graph model properties. Rather we assume that the political-leaning proxy ℓirt is driven
by the same latent variable xirt as in the network log-intensity:

ℓirt
ind∼ Be(φ(γ0r + γ ′

1rxirt)ϕr, (1− φ(γ0r + γ ′
1rxirt))ϕr), (3)

where φ(x) = 1/(1 + exp(−x)) is the logistic function, so that φ(γ0r + γ ′
1rxirt) is the

expectation of ℓirt and ϕr > 0 is a precision parameter. This modeling choice allows
endowing the latent feature xi,rt with a media-bias interpretation while ensuring yijrt is
independent of ℓirt conditional on xirt. Thus, the latent space can be interpreted as the
political spectrum of news outlets.

To make our model dynamic, we assume that a Markov-Switching (MS) process drives
the dynamic latent features. For this reason, we assume the existence of a Hidden Markov
Chain with Kr <∞ possible states of the world. The MS process allows our latent features
xirt to vary jointly through time across the different states. In the media environment, one
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can e.g. think about a state of low polarization, where news outlets are perceived, on
average, closer within the political spectrum, and a state of high polarization, in which
news outlets are perceived politically further apart (e.g., see Macy et al. (2021); Leonard
et al. (2021) on polarization dynamics). We can reparameterize our dynamic latent features
xit to account for this MS dynamic:

xirt =
Kr∑
k=1

I(srt = k)ζikr, (4)

where ζikr denotes the latent position of news outlet i of country r in state k, while I(srt = k)
is an indicator function which is 1 if the observed state srt = k for country r at time t, and
0 otherwise. Moreover, we characterize the transition between states through:

P(srt = k|sr,t−1 = l) = qlkr, l, k = 1, . . . , Kr, (5)

which can be grouped in the transition probability matrix Qr = {q1r, . . . , qlr, . . . , qKrr},
where qlr = (ql1r, . . . , qlKrr) denotes a column vector such that q′

lr1 = 1 for each state l.
The use of a large number of parameters can produce over-fitting. Thus we take a

Bayesian approach to inference and choose the following priors (as explained in Section 3.2
we fix βr in our empirical application):

αir ∼ N (0, σ2
α), ζikr ∼ N (0, σ2

krId), σ
2
kr ∼ IG(aσ2 , bσ2), (6)

γ0r ∼ N (0, bγ0),γ1r ∼ N (0, bγ1Id), ϕr ∼ G(aϕ, bϕ), qlr ∼ Dir(ω1, . . . , ωKr), (7)

where N (µ,Σ), G(a, b), IG(a, b) and Dir(c, d) denote the Normal, the Gamma, the Inverse
Gamma and the Dirichlet distribution respectively. The directed acyclic graph in Figure
3 summarizes our Bayesian MS-LS model. In our implementation of the MS-LS model
with d = 1 and K = 2, we have little prior information at our disposal and we opt for
the use of relatively vague priors to let the data speak: αir ∼ N (0, 152), ζikr ∼ N (0, σ2

kr),
σ2
kr ∼ IG(0.1, 0.1), γ0r ∼ N (0, 152), γ1r ∼ N (0, 152), ϕr ∼ G(0.01, 0.01) and qlr ∼ Dir(2, 2).

Our results are robust to substantial changes in these priors.

2.2 Model Properties

We now present some of the properties of the MS-LS Model in (1), (2) and (4). With
Assumption 2.1, we extend the scope of the Latent Variable Model provided in Rastelli
et al. (2016) to weighted temporal networks. To enhance readability, we drop the country
index r, and we drop the political-leaning equation (3) since this is quite specific to our
application and we aim to present the properties of a general network model.

Assumption 2.1. Given an undirected temporal network, Gt = (V,Et), for t = 1, 2, . . .
having vertex set V ⊂ N and weighted edge sets Et ⊂ V ×V with characteristic weight Yijt,
we assume a sequence of latent coordinates {X1t, . . . , XNt} for t = 1, 2, . . . with Xit ∈ X ⊂
Rd for each node i ∈ V and time index t ∈ N.

With Assumption 2.2, we introduce the Markov-Switching dynamics.
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xrt

srt

σ2
kr ζkr

γ0r γ1rϕr

αr βr Yijrt

ℓirt

xr,t+1

sr,t+1

Yijr,t+1

ℓir,t+1

. . . . . .

k = 1, . . . ,Kr

Figure 3: Directed Acyclic Graph of the Markov-switching latent-space model. The
graph exhibits the conditional independence structure of the observation model for yijrt and
ℓirt within white circles with parameters, αr = {α1, . . . , αNr}, βr, γ0r, γ1r, ϕr, latent coordi-
nates xrt = {x1,rt, . . . ,xNr,rt}, their state-dependent counterparts ζkr = {ζ1,kr, . . . , ζNr,kr}
with variance σ2

kr, and latent states, srt, within grey circles.

Assumption 2.2. Given a K-state latent Markov-chain process st ∈ {1, 2, . . . , K} for
K < ∞ and t = 1, 2, . . . with transition probabilities qlk = P(st = k|st−1 = l), we assume
the latent variables Xit =

∑K
k=1 I(st = k)Zik. We also define the set Zk = {ζ1k, . . . , ζNk}

consisting of the i.i.d. realizations of the latent random variables {Z1k, . . . , ZNk} with k ∈
{1, . . . , K}, where each Zik is distributed according to πk(·), a given probability measure.

Assumption 2.3 introduces the conditional independence between any two edges given
the latent variables and the current state of the world.

Assumption 2.3. We assume conditional independence between any two edges given the
latent variables for a given state st. Hence, ∀(j, i) ∈ Et, Yijt|Xit, st ∼ Poi (λijt) is a Poisson
random variable with intensity parameter λijt.

Moreover, we assume that our set of latent variables is jointly normally distributed.

Assumption 2.4. The realized latent variables belonging to Zk in Assumption 2.2 are
points in the Euclidean d-dimensional space, for a fixed d, and they are normally distributed:

p(Zk | σ2
k) =

N∏
i=1

fd
(
ζik; 0, σ

2
kId
)

Finally, we specify the form of the intensity parameter λijt.
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Assumption 2.5. Given the individual effects αi and αj and the latent variables, we
assume the Poisson rate parameter:

λijt = exp

{
αi + αj −

K∑
k=1

I(st = k)β||ζik − ζjk||2
}

Under Assumptions 2.1-2.5 our model is a time-varying MS-LS model with Poisson
weights and normally distributed latent variables.

The nodal strength, defined as Yit =
∑

j ̸=i Yijt, is a quantity of particular interest when
dealing with weighted networks as it provides information on how strongly connected a node
is with its neighbors. We can derive the following properties of the probability generating
function (pgf) of the nodal strength, where in the sequel we will focus on the strength of a
random node (and, thus, omit the index i):

Proposition 2.1. The m-th derivative of the conditional pgf of the nodal strength evaluated
in x = 1 given st−1 = l for the MS-LS model can be written as:

∂mGl(x)

∂xm

∣∣∣∣
x=1

=
K∑
k=1

qlk
∂mG̃k(x)

∂xm

∣∣∣∣∣
x=1

=
K∑
k=1

∑
hi∈Hi

(
m

hi

)
e
∑
j ̸=i(αi+αj)hj(σ2

k)
− d

2 bh,kqlk

where G̃k(x) is the conditional pgf given st = k and st−1 = l and

bh,k =

(
1

σ2
k

+
∑
j∈Ni

2βhj
2βhjσ2

k + 1

)− d
2 ∏
j∈Ni

(
2βhjσ

2
k + 1

) d
2

with multi-index hi = {h1, . . . , hi−1, hi+1, . . . , hN} and index set Hi = {hj ∈ {0, . . . ,m}, j ̸=
i|
∑

j ̸=i hj = m}, Ni = {j|j ̸= i, hj > 0} and β > 0.

The first derivative of the pgf returns the conditional expectation of the strength for a
random node, E(Yt|st−1 = l).

Corollary 2.1. Defining α = αi + αj for each i and each j, the expected nodal strength of
the underlying network Gt can be expressed as

E(Yt|st−1 = l) = G′
l(x)|x=1 =

K∑
k=1

qlk G̃
′
k(x)

∣∣∣
x=1

= (N − 1)eα
K∑
k=1

qlk
(
4σ2

kβ + 1
)− d

2 .

Note that E(Yt|st−1 = l) turns out to be a weighted sum of the expected nodal strength
obtained by conditioning on each possible state of the world. In this sense, the result in
Rastelli et al. (2016) can be obtained as a special case imposing all but one of the conditional
probabilities qlk for k ∈ {1, . . . , K} to be zero.

The expected strength for each regime increases linearly with the number of nodes, N ,
and exponentially with the intercept parameter α.
Corollary 2.2. The analytical expression of the variance of the strength distribution uses
the first and the second factorial moment of the pgf, resulting in

V ar(Yt|st−1 = l) =
K∑
k=1

qlkV ar(Yt|st = k) +
K∑
k=1

qlk

(
G̃′

k(x)
∣∣∣
x=1

− G′
l(x)

∣∣
x=1

)2
,
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where V ar(Yt|st = k) = G̃′′
k(x)

∣∣∣
x=1

+ G̃′
k(x)

∣∣∣
x=1

− G̃′2
k (x)

∣∣∣
x=1

.
Similarly, an analytical expression for the Dispersion Index can be obtained.

D(Yt|st−1 = l) =
K∑
k=1

qlkD(Yt|st = k) + v,

where

D(Yt|st = k) = 1 +
G̃′′

k(x)
∣∣∣
x=1

G̃′
k(x)

∣∣∣
x=1

− G̃′
k(x)

∣∣∣
x=1

v =

∑K
k=1 qlk G̃

′′
k(x)

∣∣∣
x=1∑K

k=1 qlk G̃
′
k(x)

∣∣∣
x=1

−
K∑
k=1

qlk
G̃′′

k(x)
∣∣∣
x=1

G̃′
k(x)

∣∣∣
x=1

.

The result for the second factorial moment differs from the results in Rastelli et al.
(2016) as our derivation reflects the existing heterogeneity in weighted edges.

Figure 4 displays the contour plots of the expected value (Top Panels), standard devi-
ation (Middle Panels), and dispersion index (Bottom Panels) of the Strength Distribution
of a two-state MS Poisson LS. Labels "L" and "H" denote low and high polarization states.
We consider d = 1 and different values of α, σ2

Lβ and pL, pH = 1 − pL. As one can ex-
pect, due to the equal-dispersion property of the Poisson distribution, both the expected
strength and the spread increase with the intercept value α. The lower σ2

Lβ, the larger
the similarity across the features of the nodes in that state and, in turn, the higher the
expected strength. Expected strength also increases with the probability of state L.

3 Inference

3.1 Posterior sampling algorithm

In this section, we will go back to the setup in (1)-(7) and assume d = 1 in line with
the particular application we focus on, so that xirt and γ1 are scalars xirt and γ1. Let
Y = (Y1, . . . ,YR) where Yr = (Y1r, . . . ,YTrr) be the collection of observed network
weights with characteristic element Yijrt, ℓ = (ℓ1, . . . , ℓR) where ℓr = (ℓ1r, . . . , ℓTrr) are the
observable political-leaning proxies with characteristic element ℓirt and sr = (sr1, . . . , srTr)
are the latent states for each country r. Consider the parameters θ = (θ1, . . . ,θR) where
θr = (αr, ζr,σ

2
r , γ0r, γ1r, ϕr,Qr), while βr is fixed in our empirical implementation (see

Section 3.2). Here ζr = (ζ1r, . . . , ζir, . . . , ζNrr) denotes the latent parameters, where ζir =
(ζi1r, . . . , ζiKrr), a row vector with Kr elements, while σ2

r = (σ2
1r, . . . , σ

2
Krr

). The joint
posterior π(θ|Y, ℓ) ∝ f(Y, ℓ|θ)π(θ) is not tractable. Thus we follow a data augmentation
approach and apply a Gibbs sampler for posterior inference (see Appendix C). Let us
denote with ξr = (ξ1r, . . . , ξTrr) the collection of state indicator variables, where ξrt =
(ξ1,rt, . . . , ξKr,rt) and ξk,rt = I(srt = k). Then, the complete-data likelihood function for
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Figure 4: Strength Distribution of an MS Poisson LS model: Contour plots of the
expected value (Top Panels), standard deviation (Middle Panels), and dispersion index
(Bottom Panels) of the Strength Distribution of a two-state MS Poisson LS model for
different values of α and σ2

Lβ, and for different transition probabilities pL and pH = 1− pL.
We assume d = 1, N = 100, and σ2

Hβ = 4.
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r = 1, . . . , R is the product of the following:

f(Yr, ℓr, ξr|θr) =
Tr∏
t=1

Nr∏
i=1

(
fB(ℓirt|srt,θr)

Nr∏
j=i+1

fP (Yijrt|srt,θr)

)
Kr∏
l=1

Kr∏
k=1

q
ξlr,t−1ξkrt
lkr , (8)

where fP (Yijrt|srt,θr) is the Poisson pmf in (1) with dynamic intensity given in (2), fB(ℓirt|srt,θr)
the Beta pdf given in (3). With this notation, xirt can be written as ζirξrt, in (1) and (3).

We approximate the joint posterior distribution by Markov-chain Monte Carlo (MCMC)
sampling. Our Gibbs sampling algorithm iterates the following steps for each r:

1. Draw αir from π(αr| . . .), i = 1, . . . , Nr via Adaptive Metropolis-Hastings (MH);

2. Draw ϕr from π(ϕr| . . .) via MH with truncated normal proposal;

3. Draw γ0r and γ1r from π(γ0r, γ1r| . . .) via MH;

4. Draw ζikr from π(ζikr| . . .), i = 1, . . . , Nr and for k = 1, . . . , Kr via Adaptive MH;

5. Draw σ2
kr from π(σ2

kr|ζkr) for k = 1, . . . , Kr;

6. Draw qlr from π(qlr|ξr) for l = 1, . . . , Kr.

7. Draw sr via the forward-filtering and backward-sampling algorithm (see Frühwirth-
Schnatter, 2006).

Further details on the algorithmic design can be found in Appendix C.

3.2 Identifying Restrictions

The model presents well-known identification challenges. The first issue is related to the
multiplication of the squared Euclidean distance ||ζirξrt−ζjrξrt||2 by the parameter βr. As
there is a clear scale indeterminacy between βr and the variance of the latent variables in
terms of σ2

k, we choose to set βr = 1. In addition, latent coordinates enter the parameter
λijrt only through the squared distance. This makes – in principle – positions that differ
just by means of reflection, translation, and rotation equally likely (see Hoff et al., 2002
and Friel et al., 2016). Nonetheless, the introduction of (3) helps prevent the emergence of
many equivalent latent-space representations. Still, translation and reflection along the y-
coordinate remain possible. To overcome translation issues, we center the latent coordinates
to the origin of the axes at each Gibbs-sampling iteration. To overcome reflection, we
assume that the position of a single outlet is known in terms of left and right political
leaning (e.g. ζi∗kr < 0 for a left-leaning outlet i∗ and for each state k), and we apply a
reflection transformation to the latent leaning coordinates every time the latent leaning of
i∗ is in the wrong orthant, similarly to Barberá (2015). Finally, as pointed out in Frühwirth-
Schnatter (2006), the joint posterior in Markov-Switching models is invariant with respect
to a re-labeling of the hidden states. We tackle this issue by imposing an ordering restriction
on the latent regimes across states. In particular, we label latent regimes in increasing order
of median distance, D̃rk = medj>i (Dijrk), where Dijrk = ||ζikr − ζjkr||.
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3.3 Analysis of Simulated Data

We assess the performance of our inference method by running the algorithm on simulated
data. Our simulation consists of 20 fictitious news outlets observed for 100 periods. Each
period may belong to one of two polarization states k ∈ {L,H}, where State L is charac-
terized by a lower average distance in the political-leaning dimension across news outlets,
and State H has a higher average distance. So news outlets jointly undergo periods of high
polarization and low polarization.

The latent leaning positions in State H, ζiH , are drawn from a normal distribution
centered at -0.75 for i ∈ {1 : 10} and in 0.75 for i ∈ {11 : 20} with σH = 0.15, while
the latent leaning positions in State L, ζiL, are centered around the positions -0.25 for
i ∈ {1 : 10} and 0.25 for i ∈ {11 : 20} with σL = 0.15; the individual effect parameters αi

are randomly drawn from a normal distribution with µα = 0 and σα = 2; the transition
probability matrix is Q = (q1., q2.)

′ where q1. = (0.95, 0.05) and q2. = (0.05, 0.95), and the
sequence of states is randomly drawn from the Markov Chain initialized at State L; finally,
we set ϕ = 200, γ0 = −0.1, and γ1 = 0.5. We sample Yijt and ℓit from the data generating
process (1)-(4). Our simulation represents a situation in which news outlets diverge in
magnitude – via αi – and in terms of political leaning – via ζik.

We run our MCMC algorithm for 50,000 iterations and we discard the first 30,000
iterations as burn-in while applying thinning by a factor of 10 to reduce auto-correlation in
the draws increasing the effective sample size. To correctly identify left and right-leaning,
we consider the leaning position of news outlet 14 as known to be left.

Figure 5 reports a summary of the simulation results. From a comparison between the
true values and the marginal posterior distributions, the model performs very well in terms
of identification of the individual effects and latent variables (Panel A), the latent states
(Panel B), as well as the other parameters in the simulation (Panel C). Credible regions for
the pairs (αi, ζik) estimated with our model (red solid ellipses in Panel A) are narrower than
those obtained disregarding the political-leaning proxy ℓit, i.e. dropping (3) from the model
(dashed black ellipses). This suggests that the information-borrowing strategy is effective
in improving the estimation accuracy of the latent variables. Properties of the MCMC
chains are reported in the Supplementary Material (Appendix D). Our MCMC algorithm
is implemented in R and C++ and we make the scripts freely available (see Appendix J.2).

4 Political Leaning and Polarization of News Outlets
We provide an application of our model to a dataset of daily Facebook activities related to
225 national and local news outlets in France, Germany, Italy and Spain. We provide both
static and dynamic analyses which allow us to assess the media slant in local and national
European news outlets as well as the polarization levels and regimes across countries.

4.1 Dataset Description and Construction

For our application, we construct and exploit a novel time-varying set of media networks,
which we will call the network dataset. We build the networks from the source dataset
collected by Schmidt et al. (2018) containing tick-by-tick information on the Facebook
activity of national and local news outlets from four European countries (France, Germany,
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Italy, and Spain) in a time-span entirely covering the years 2015 and 2016. We aggregate
this activity to daily data. The news outlet list is reported in the Reuters Digital News
Report (2017) (Newman et al., 2017). The source dataset contains all posts published by
the news outlets in those years along with the associated metadata and also all the data on
anonymized user interactions with these posts in the form of comments. Table 1 reports a
summary description of the source dataset, which includes for each country the set of news
outlets’ pages, their posts and users’ comments.

Country Pages Posts Comments Commenters
France 65 1,008,018 47,225,675 5,755,268
Germany 49 749,805 31,881,407 5,338,195
Italy 54 1,554,817 51,515,121 4,086,351
Spain 57 1,372,805 34,336,356 6,494,725

Table 1: Source Dataset Description: Description of the Facebook dataset on national
and local news outlets of the four European countries (France, Germany, Italy and Spain)
gathered by Schmidt et al. (2018). The dataset entirely covers the years 2015 and 2016.
The news outlet list is the one reported in the Reuters Digital News Report (2017).

After constructing the set of daily bipartite networks of interaction between news outlets
and commenters - those Facebook users commenting on news outlets’ posts - for each
country r ∈ {France,Germany, Italy, Spain} at time t, we obtain the set of audience-
duplication networks Gtr presented in Fig. 6 by performing the one-mode projection on the
side of news outlets (as in Fig. 2).

We complement our network dataset with data from Crowdtangle (CrowdTangle Team,
2022) and Chapel Hill Survey Data (CHES) (Polk et al., 2017). Crowdtangle allows re-
trieving Facebook posts for public pages and provides additional metadata for each post.
In particular, the fields Link Text and Description contain information on the text of linked
pages, such as the texts of news articles published on the Facebook walls of the news out-
lets. There is not a perfect match between all the pages available in the source dataset of
Schmidt et al. (2018) and those available in Crowdtangle. Some news outlets may have
changed account or ceased to exist. In this case, information about these news outlets
may no longer be available on Facebook at the time of writing. The CHES questions
political scientists on different aspects related to politics and European integration. The
CHES dataset contains all the information at an aggregate level about scientists’ opinions
on the ideological position of political parties in Europe. Here we will make use of the lrgen
variable, which provides the ideological stance of a political party from 0 (extreme left)
to 10 (extreme right). The information retrieved from Crowdtangle and CHES allows us
to construct a text-analysis proxy for media slant. In particular, we obtain our observed
proxy for daily media slant ℓitr by computing the index proposed by Gentzkow and Shapiro
(2010) and adapted to online media outlets by Garz et al. (2020). Such a media slant index
relies on text analysis techniques to assess the similarity between pieces by news outlets
and texts published by politicians. We then associate a political leaning to each news outlet
as a function of this similarity and the parties’ political leaning. Further information on
the adopted methodology can be found in Appendix F.

The network dataset and the media slant index are publicly available as described in
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Appendix J.1.

France Germany

Italy Spain

Figure 6: Audience-Duplication Networks: Cumulative audience duplication network
for France (top-left panel, 62 outlets), Germany (top-right panel, 47 outlets), Italy (bottom-
left panel, 45 outlets) and Spain (bottom-right panel, 43 outlets) from January 1st 2015 to
December 31st 2016. Node sizes are proportional to the cumulative number of comments
received in the time interval, while edge thickness is proportional to the number of common
commenters between each pair of outlets. Relevant quantities are normalized for each
country.

4.2 Results from a Static Analysis

First, we implement a static version of our model on the whole 2-year time period, without
the MS dynamic component. For this, we use an overall audience duplication network
G̃tr, where the weighted edge for each pair of outlets is Ỹijr =

∑T
t=1 Yijrt, and the overall

observable leaning-feature is constructed as ℓ̃ir = T−1
∑T

t=1 ℓitr. Panels A, B, C, and D in
Fig. 7 report the estimated latent coordinates in the latent leaning-individual effect space.
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We notice how the individual effect parameter αir associated with each news outlet and
country may be interpreted in terms of news outlet’s engagement, as major national news
outlets are concentrated at the top in each graph.

We correlate our estimated (posterior mean) media slant with the results obtained by
the PEW Research Survey (Mitchell et al., 2018). In this survey, participants were asked to
assess the left-right leaning of national news outlets on a 0-6 scale with 0 indicating far left
and 6 indicating far right. We will refer to the left-right ranking obtained by PEW Research
as the PEW Research index. We find that the PEW Research index has a 0.73 correlation
with our estimated latent leaning, see Panel E in Fig. 7. Moreover, we notice the presence
of both a left-leaning cluster (bottom-left) and a right-leaning cluster (top-right).
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Figure 7: PEW Index - Latent Leaning Static Comparison: Panels A, B, C, and
D present the posterior mean of the latent coordinates of our news outlets, while Panel
E displays the scatter plot comparing the PEW survey results with our estimated latent
leaning proxy (country-specific mean has been subtracted from PEW Score to improve
readability).

Fig. I.1 in Appendix I presents the marginal posterior distribution of the parameters
γ0r, γ1r and ϕr. The parameter γ1r conveys information on the relationship between the
latent variable xir and the observable leaning proxy ℓir. Latent leaning appears to be a
strong driver for the observable proxy only in the case of Italy, as the posterior mass of γ1r
is located far away from zero, while it seems a weak driver for France and mostly irrelevant
for both Germany and Spain. Nonetheless, the strong correlation with the PEW Research
index suggests that having information on online users’ interactions with news outlets may
still be sufficient to provide an effective classification on the political spectrum.
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4.3 Results from a Dynamic Analysis

We now estimate the model described in Subsection 2.1 in its dynamic specification, i.e. in-
cluding the MS specification of (4). The dynamic analysis uses daily data, and we deleted
from our dataset those outlets that remained inactive – i.e. did not receive any comment
– for more than 15 consecutive days. Overall, we removed 13 news outlets (DE: 4 outlets,
FR: 5, IT: 2, SP: 2, see Appendix G), who displayed unusual behavior. Posterior results
on the parameters are presented in Figure 8, where it is clear that the large number of ob-
servations leads to more precise inference than in the static case. Inference on γ1r indicates
a clear link between xir and ℓir for both France and Italy. Also, as expected, values of σ2

H

tend to be larger than those for σ2
L. In Fig. 9, we report the posterior means of the latent

positions for the four countries in both states. The individual-effect values are coherent
with the engagement interpretation in both states: well-known national newspapers appear
in the upper part of the graph, while local newspapers are most prevalent at the bottom.
Moreover, our latent variable also positively correlates with the PEW Research Survey
Index in this setting. Figure 10 illustrates the correlation of 0.68 in the lower polarisation
state and 0.69 in the state of higher polarisation.
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Figure 8: Marginal Posteriors - Dynamic Analysis: Histograms for the MCMC draws
for the parameters γ0r, γ1r, ϕr, σ2

Lr and σ2
Hr for France, Germany, Italy and Spain with

prior pdfs indicated by dashed lines (mostly indistinguishable from the horizontal axis).

Table 2 reports a posterior predictive check (see Gelman et al., 2014) in which the
posterior predictive expected nodal strength and its variance and dispersion index are
compared with the empirical values for the standard Poisson random graph model, the
Poisson random graph model with individual effects and observed leaning distances and
the MS-LS model. We notice how all models are able to mimic the first moment of the
strength distribution, while the two more elaborate models are able to capture the observed

17



BFMTV

L'ExpressLe Figaro
Le Monde

Libération

Mediapart

TF1

BFMTV

L'ExpressLe Figaro
Le Monde

Libération

Mediapart

TF1

−2

0

2

State L State H

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

−2

0

2

In
di

vi
du

al
 E

ffe
ct

France

Bild

FAZ RTL Aktuell

SPIEGEL ONLINE
Süddeutsche Zeitung

Bild

FAZ RTL Aktuell

SPIEGEL ONLINE
Süddeutsche Zeitung

−2

−1

0

1

2

−1 0 1 −1 0 1

−2

−1

0

1

2

In
di

vi
du

al
 E

ffe
ct

Germany

Corriere.della.Sera

Il.Fatto.Quotidiano Il.Giornale

la.Repubblica

La7

Libero

Rainews.it
Tgcom24

Corriere.della.Sera

Il.Fatto.Quotidiano Il.Giornale

la.Repubblica

La7

Libero

Rainews.it

Tgcom24

−2

0

2

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

−2

0

2

In
di

vi
du

al
 E

ffe
ct

Italy

ABC.esAntena 3

El MundoEl País

La Vanguardia

ABC.es

Antena 3

El Mundo

El País

La Vanguardia

−2

0

2

−2 −1 0 1 2 −2 −1 0 1 2

−2

0

2

Latent Leaning

In
di

vi
du

al
 E

ffe
ct

Spain

Figure 9: Latent Positions - Dynamic Analysis: Estimated latent coordinates of the
news outlets for France (Panel A), Germany (Panel B), Italy (Panel C) and Spain (Panel
D) in State L and in State H.
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Figure 10: PEW Index - Latent Leaning Dynamic Comparison: Scatter plot com-
paring the PEW survey results against our latent leaning proxy in State L and H. The
country-specific mean has been subtracted from the PEW Score to improve readability.

dispersion in the strength distribution (with the MS-LS model giving a slightly better fit).
Latent states signal the presence of lower or higher in-platform polarization regimes. In

state L the average distance between outlets is lower in terms of political leaning than in
state H, making Facebook users more prone to interact with news outlets with different
political tendencies. Panels A-D of Fig. 11 report the estimated posterior probabilities
for State H through time for the four countries. We notice a tendency to move from a
state of high in-platform polarization to a low polarization for Germany and Spain. Italy
instead moves in the opposite direction, while France does not show a clear pattern, rather
it alternates between the two states.

Overall, our findings contradict the hypothesis of a common shift toward a high polariza-
tion regime on social media in this time frame. Panels E-H of Fig. 11 report the estimated
transition probabilities. Spain is characterized by high persistence whereas France switches
most frequently between the two states.

4.4 Model Selection

We perform model selection considering three alternative models: M1r is the unrestricted
model described in Subsection 2.1, M2r omits the text-analysis interpretation in (3) (equiv-
alent to imposing γ1r = 0) for each country r, while the static model M3r omits the
Markov-switching dynamics described in (4). This comparison highlights the contributions
of the observable leaning a-là Gentzkow et al. (2015) and the dynamic component.

Model selection is carried out via two popular predictive measures, the Deviance Infor-
mation Criterion (DIC) (Spiegelhalter et al., 2002) and the log pointwise predictive density
(lppd) of Gelman et al. (2014) (see Appendix E for further details). Tables 3 and 4 report
both criteria and indicate that the model without the dynamic component (M3r) is dom-
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Average Empirical Network Metrics
France Germany Italy Spain

Expected Strength 280.83 161.82 380.98 239.32
S.D. Strength 450.53 209.39 600.58 340.76
Dispersion Index 814.20 306.11 1037.82 562.56

R.G. λijt = exp{α}
Expected Strength 280.82

(280.55, 281.10)
161.82

(161.56, 162.04)
380.99

(380.62, 381.37)
239.30

(239.00, 239.59)
S.D. Strength 16.53

(16.43, 16.62)
12.49

(12.40, 12.57)
19.17

(19.04, 19.29)
15.18

(15.07, 15.28)
Dispersion Index 0.98

(0.97, 0.99)
0.98

(0.96, 0.99)
0.98

(0.96, 0.99)
0.98

(0.96, 0.99)
R.G. λijt = exp{αi + αj − β||ℓit − ℓjt||2}

Expected Strength 276.64
(276.36, 276.92)

162.73
(162.47, 163.00)

375.68
(375.26, 376.09)

239.50
(239.19, 239.80)

S.D. Strength 431.33
(430.84, 431.85)

201.97
(201.60, 202.30)

577.62
(576.89, 578.30)

312.12
(311.67, 312.54)

Dispersion Index 672.57
(671.57, 673.75)

250.68
(250.10, 251.23)

888.15
(886.72, 889.50)

406.79
(405.96, 407.55)

Dynamic MS-LS Model
Expected Strength 280.84

(280.60, 281.09)
161.81

(161.57, 162.03)
380.99

(380.64, 381.36)
239.32

(239.00, 239.64)
S.D. Strength 437.96

(437.52, 438.44)
201.90

(201.59, 202.24)
587.77

(587.12, 588.43)
313.64

(313.16, 314.13)
Dispersion Index 683.13

(682.10, 684.22)
251.94

(251.33, 252.54)
906.83

(905.48, 908.02)
411.12

(410.20, 412.04)

Table 2: Network Posterior Predictive Check: The table compares the network char-
acteristics in terms of expected strength, strength’s standard deviation, and dispersion
index for the standard Poisson random graph model (second panel), the Poisson random
graph model with individual effects and observed leaning distances as a covariate (third
panel) and the dynamic latent space network model (bottom panel) with the observed net-
work metrics averaged over time (top panel). The 95% credible intervals are in parenthesis.

inated by the other two specifications for each country r. Except for Spain and to some
extent Italy, very similar scores are obtained for M1r and M2r. This is to be expected
as M1r aims to offer more informative latent coordinates rather than an improved fit for
the network. Table 4 also includes results for the random graph models, which are clearly
performing worse than our models.
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Figure 11: Latent States Comparison: Posterior Probabilities for State H through time
for France, Germany, Italy and Spain (Panels A-D). Posterior mean transition matrices
for France, Germany, Italy and Spain (Panels E-H) with red shades proportional to the
magnitude of the transition probability.

DIC×10−6

Model France Germany Italy Spain

M1 4.4696 2.3669 3.3049 4.6139

M2 4.4698 2.3669 3.3066 4.6390

M3 4.6434 2.4766 3.4825 4.9049

Table 3: Model Selection: DIC scores for the three nested models considered here.

lppd fP × 10−6

Model France Germany Italy Spain
M1 −2.2784 -1.2191 -1.6776 −2.3347

M2 -2.2784 −1.2190 −1.6771 -2.3471
M3 -2.3597 -1.2702 -1.7657 -2.4511

R.G. λijt = exp{α} -12.5047 -4.8341 -13.1011 -7.6049
R.G. λijt = exp{αi + αj − β||ℓit − ℓjt||2} -2.6153 -1.4121 -2.2424 -2.7350

Table 4: Model Selection: Log pointwise predictive density (lppd) as in Gelman et al.
(2014) for the models introduced here and two random graph models.
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5 Conclusion
We propose a dynamic Markov-Switching Latent Space model through which insightful in-
formation can be extracted concerning media ideology and in-platform polarization regimes.
The model projects the audience duplication network of news outlets on a one-dimensional
Euclidean space where the latent positions can be interpreted in terms of political leaning
through the use of a suitable proxy. Inference is carried out within a Bayesian framework
which allows for reliable results with relatively standard MCMC methods. We derive the
theoretical model properties and assess the efficacy of the proposed methodology on simu-
lated data. Our model is applied to a Facebook dataset of news outlets in four European
countries, covering the years 2015 and 2016. We carry out both a static and a dynamic
analysis and in both settings we found that the inferred latent leaning variable strongly
correlates with the independent PEW Research Survey Index and correctly clusters news
outlets in terms of left and right leaning. Moreover, we find that inference on the latent
states does not support the hypothesis of a unidirectional shift toward high polarization
on Facebook. Finally, model selection suggests that the dynamic specification should be
preferred to the static model and that a text-analysis index helps estimation for three of
the four countries.
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SUPPLEMENTARY MATERIAL

A Proof of the Latent Space Model Properties
In this section, we provide proof of the propositions reported in Subsection 2.2 for what
concerns the properties of a Latent Space model applied to a weighted multi-layer network
Gr. For ease of exposition and without loss of generality we drop the index r.

A.1 Relevant Results

We report here below some results that will turn out useful in the derivation of our results.

Proposition A.1. Multinomial Theorem

(x1 + x2 + · · ·+ xm)
n =

∑
k∈K

(
n

k

) m∏
i=1

xm, (A.1)

where k = {k1, . . . , km}, K = {ki ∈ N|
∑

i ki = ℓ}.

Proposition A.2. Integral of the product of N zero-mean independent MVNs

∫
X

N∏
i=1

f(x; 0, σ2
i Id)dx = (2π)−

(N−1)d
2

(
N∑
i=1

1

σ2
i

)− d
2 N∏

i=1

(σ2
i )

− d
2 , (A.2)

where f(x; 0, σ2
i Id) is the pdf of a d-dimensional multivariate normal distribution with mean

0 and variance σ2
i Id for each i = 1, . . . , N .

The proofs are straightforward hence they are omitted.

Proposition A.3. Convolution of Normal Distributions

G1 ∗G2(z) =

∫
G1(x)G2(z − x)dx (A.3)

=

∫
1

(2π)p/2|A|1/2
e−

1
2
(x−a)′A−1(x−a) 1

(2π)p/2|B|1/2
e−

1
2
(z−x−b)′B−1(z−x−b)dx (A.4)

=

∫
gp(x; a,A) · gp(x; z − b, B)dx (A.5)

=
1

(2π)p/2|A+B|1/2
e−

1
2
(z−(a+b))′(A+B)−1(z−(a+b)) (A.6)

= gp(z; a+ b, A+B). (A.7)

A.2 Probability Generating Function

For a general LS model, following the conditional independence and HMM assumptions
(Assumption 2.1 and 2.2) and from the law of iterated expectation, the probability gener-
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ating function (pgf) for the weighted degree can be written as:

Gl(x) =
∞∑
v=0

xvpv =
K∑
k=1

G̃k(x)qlk, (A.8)

where

G̃k(x) =
∞∑
v=0

xv
∫
ZNk

P
(
Sit = v | st = k, ζ

k

)( N∏
j=1

f (ζjk)

)
dζ1k · · · dζNk (A.9)

=

∫
ZNk

(
∞∑
v=0

xvP
(
Sit = v | st = k, ζ

k

))( N∏
j=1

f (ζjk)

)
dζ1k · · · dζNk (A.10)

=

∫
Zk
f(ζik)

(∫
Z(N−1)
k

(∏
j ̸=i

φijk (x; ζik, ζjk)

)(∏
j ̸=i

f (ζjk)

)
dζjk

)
dζik (A.11)

=

∫
Zk
f (ζik)

(∏
j ̸=i

∫
Z(N−1)
k

φijk (x; ζik, ζjk) f(ζjk)dζjk

)
dζik (A.12)

=

∫
Zk
f (ζik)

∏
j ̸=i

θik (x; ζik) dζik, (A.13)

with latent coordinates ζ
k
= {ζ1k, . . . , ζNk}, nodal strength Yit = Yi1t + . . . + Yij−1t +

Yij+1t+. . .+YiNt, strength’s pgf φijk(x; ζik, ζjk) = E
(
xYijt |st = k, ζik, ζjk

)
= eλijk(ζik,ζjk)(x−1).

The θik(x; ζik) =
∫
Zk
φijk(x; ζik, ζjk)f(ζjk)dζjk is the pgf of the weight of the edge between

a node chosen at random and a node with latent information ζik.

A.3 Derivatives of an LS model with individual effects

Consider an LS model with Poisson likelihood for the edges Yijt ∼ Poi (λijk) with intensity
parameter λijk = exp {αi + αj − β||ζik − ζjk||2} (Assumption 2.3). From the independence
assumption in Assumption 2.1, and normal assumption for the latent features (Assumption
2.4), the m-th derivative of the corresponding pgf can be written as:

∂m

∂xm

∏
j ̸=i

θik(x, ζik)

∣∣∣∣∣
x=1

=
∂m

∂xm

∫
ZN−1
k

∏
j ̸=i

e(x−1)λijkf(ζjk)dζjk

∣∣∣∣∣
x=1

(A.14)

=

∫
ZN−1
k

∂m

∂xm
e(x−1)

∑
j ̸=i λijk

∏
j ̸=i

f(ζjk)dζjk

∣∣∣∣∣
x=1

(A.15)

=

∫
ZN−1
k

(∑
j ̸=i

λijk

)m

e(x−1)
∑
j ̸=i λijk

∏
j ̸=i

f(ζjk)dζjk

∣∣∣∣∣
x=1

(A.16)

=

∫
ZN−1
k

(∑
j ̸=i

λijk

)m∏
j ̸=i

f(ζjk)dζjk (A.17)
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=

∫
ZN−1
k

∑
hi∈Hi

(
m

hi

)∏
j ̸=i

λ
hj
ijhf(ζjk)dζjk (A.18)

=
∑
hi∈Hi

(
m

hi

)∏
j ̸=i

∫
Z
λ
hj
ijkf(ζjk)dζjk (A.19)

=
∑
hi∈Hi

(
m

hi

) ∏
j∈N ∗

e(αi+αj)hj

∫
Zh
e−β||ζik−ζjk||2hjf(ζjk)dζjk (A.20)

=
∑
hi∈Hi

(
m

hi

) ∏
j∈N ∗

e(αi+αj)hj

∫
Zk
e−β||ζik−ζjk||2kjf(ζjk)

(2π)d/2

(2π)d/2
(1/2βhj)

d/2

(1/2βhj)d/2
dζjk (A.21)

=
∑
hi∈Hi

(
m

hi

) ∏
j∈N ∗

i

(1/2βhj)
d
2 (2π)

d
2 e(αi+αj)hjf

(
ζik; 0

(
σ2
k +

1

2βhj

)
Id

)
(A.22)

where hi = {h1, . . . , hi−1, hi+1, . . . , hN}, Hi = {hj ∈ Ni j ̸= i|
∑

j ̸=i hj = m}, N ∗
i =

{j|j ̸= i, hj > 0}, β > 0, and where the fifth equation follows from Proposition A.1 and
the last equation from Proposition A.3. Thus we obtain the following:

∂mG̃k(x)

∂xm

∣∣∣∣∣
x=1

=

∫
Zk
f(ζik)

∑
hi∈Hi

(
m

hi

) ∏
j∈N ∗

i

(1/2βhj)
d
2 (2π)

d
2 e(αi+αj)hjf (ζik; 0, τkjId)

 dζik,

(A.23)

where τkj =
(
σ2
k +

1
2βhj

)
. Set αi + αj = α for each i and j, then from Proposition A.2:

∂mG̃k(x)

∂xm

∣∣∣∣∣
x=1

=

∫
Zk

f(ζik)

 ∑
hi∈Hi

(
m

hi

) ∏
j∈N∗

(1/2βhj)
d
2 (2π)

d
2 eαhjf (ζik; 0, τkjId)

 dζik (A.24)
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 ∑
hi∈Hi

(
m

hi

)
eαm
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d
2 (2π)

d
2

∫
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 (A.25)
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− d
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(A.26)
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∑
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− d
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(A.27)

A.3.1 First Conditional Factorial Moment

If we solve for m = 1, we obtain:

∂G̃k(x)

∂x

∣∣∣∣∣
x=1

= eα(π)
d
2

∑
hi∈Hi

∫
Zk
f(ζik)f

(
ζik; 0

(
σ2
k +

1

2β

)
Id

)
dζik

 (A.28)

= eα(π)
d
2 (N − 1)

(
2σ2

k +
1

2β

)− d
2

(2πβ)−
d
2 (A.29)
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= (N − 1)eα
(
4σ2

kβ + 1
)− d

2 (A.30)

A.3.2 Second Conditional Factorial Moment

If we solve for m we obtain:

G̃′′
k(x)

∣∣∣
x=1

= (N − 1)e2α
(
σ2
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1
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+ (2β)−d(N − 1)(N − 2)e2α
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1
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)−d
(
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σ2
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1
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+
1

σ2
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)− d
2 (
σ2
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2 (A.32)

= e2α(N − 1)
(
8σ2

kβ + 1
)− d

2 + (N − 1)(N − 2)e2α
(
2σ2

kβ + 1
)− d

2
(
6σ2

kβ + 1
)− d

2 (A.33)

A.3.3 First Moment

Employing the result in A.3.1 along with the linearity property of differentiation, we can
write the expected strength for our MS-LS model as:

E(Yt|st−1 = l) = G′
l(x)|x=1 =

K∑
k=1

qlk G̃
′
k(x)

∣∣∣
x=1

= (N − 1)eα
K∑
k=1

qlk
(
4σ2

kβ + 1
)− d

2 (A.34)

A.3.4 Second Central Moment

We notice that in general for a given discrete random variableX with pgf G(x), the variance
can be computed as:

V ar(X) = G′′(x)|x=1 + G′(x)|x=1 − (G′(x)|x=1)
2 (A.35)

We thus obtain the following expression for the variance of the strength distribution:

Var(Yt|st−1 = l) =
K∑
k=1

qlk G̃′′
k(x)

∣∣∣
x=1

+
K∑
k=1

qlk G̃′
k(x)
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 ∑
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qlkG̃
′
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2

(A.36)
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(A.37)

+

K∑
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qlk G̃′2
k (x)

∣∣∣
x=1

−
K∑
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qlk G̃′2
k (x)
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=
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qlkV ar(Yt|st = k) +
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G̃′

k(x)
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(A.41)
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A.3.5 Dispersion Index

We provide a formula for the Dispersion Index (D) similar to the one suggested by Rastelli
et al. (2016):

D = 1 +
G′′(x)|x=1

G′(x)|x=1

− G′(x)|x=1 (A.42)

For our model, the dispersion index is the following:

D(Yt|st−1 = l) = 1 +
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=
K∑
k=1
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where v =
∑K
k=1 qlk G̃
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−
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B DGP Simulations
As a robustness check, we study the statistical properties of a weighted network generated
by the LS model in simulation. We draw the latent coordinates xi ∼ N (0, σ2Id) for i =
1, . . . , 100, d = 1 and K = 1 and generate the networks weights Yij ∼ Poi(λij) with
intensity parameter log λij = α− β||xi − xj||2.

As is common in network theory, we define the strength of node i as Si =
∑

j ̸=i Yij.
We proceed studying the properties of the empirical distribution of S = {S1, . . . , SN}. In
particular we cast out attention on the following statistics: the sample mean S, the sample
standard deviation SD(S), the divergence index D(S) and the clustering coefficient CC as
defined in Barrat et al. (2004).

Figures B.1 and B.2 report the sensitivity analysis for the aforementioned statistics as
α and σ2 vary. In this simulation we assume β = 1. Notice how the theoretical quantities
obtained in Appendix A (dashed lines) match with empirical quantities (solid lines).
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C Details of the MCMC Sampler
The joint likelihood function f(Y, ℓ|θ) is written assuming cross-country independence as
the product of the country-specific likelihoods for r ∈ 1, . . . , R:

f(Yr, ℓr|θr) =
∑

sr∈{1,...,Kr}Tr

Tr∏
t=1

Nr∏
i=1

(
fB(ℓirt|srt,θr)

Nr∏
j=i+1

fP (Yijrt|str,θr)

)
h(srt|sr,t−1),

(C.1)
where fP (Yijrt|srt) is the Poisson distribution with dynamic intensity given in Eq. 2,
fB(ℓirt|srt) the Beta distribution given in Eq. 3 and

h(srt|sr,t−1) =
Kr∏
l=1

Kr∏
k=1

p
I(sr,t−1=l)I(srt=k)
lkr , (C.2)

the hidden Markov chain transition distribution. The joint posterior distribution is not
tractable thus a data augmentation has been followed. In addition, given the cross-country
independence assumption for both the likelihood and the joint prior, the Gibbs sampler
iterates independent chains over the R countries. We report below the derivation of the full
conditional distributions for the components of θr and briefly discuss the sampling method.

C.1 Full conditional distribution of αir

π(αir| . . .) ∝ π(αir|µα, σ
2
α)f(Yr, ℓr|θr) ∝ N (αir;µα, σ

2
α)

Tr∏
t=1

Nr∏
i=1

Nr∏
j=i+1

fP (Yijrt|λijrt)

∝ N (αr;µα, σ
2
αI)

Tr∏
t=1

Nr∏
i=1

Nr∏
j=i+1

λ
Yijrt
ijrt e

−λijrt ,

where log λijrt = αir + αjr − ||ζirξrt − ζjrξrt||2. We sample from π(αir| . . .) via Adaptive
RW-MH.

C.2 Full conditional distribution of ϕr

π(ϕr| . . .) ∝ π(ϕr)f(Yr, ℓr|θr)

∝ ϕ
aϕ−1
r e−bϕϕr

Tr∏
t=1

Nr∏
i=1

ℓait−1
irt (1− ℓirt)

bit−1

B(ait, bit)
,

where airt = φ(γ0r + γ1rζirξrt)ϕr, birt = (1− φ(γ0r + γ1rζirξrt))ϕr. We sample from
π(ϕr| . . .) via RW-MH with a truncated Gaussian proposal.

C.3 Full conditional distribution of γ0r and γ1r

π(γ0r, γ1r| . . .) ∝ π(γ0r, γ1r)f(Yr, ℓr|θr)
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∝ N (aγ0 , bγ0)N (aγ1 , bγ1)
Tr∏
t=1

Nr∏
i=1

ℓ
a,rt−1
irt (1− ℓirt)

birt−1

B(airt, birt)
,

where airt = φ(γ0r + γ1rζirξrt)ϕr, birt = (1 − φ(γ0r + γ1rζirξrt))ϕr. We sample from
π(γ0r, γ1r| . . .) via RW-MH.

C.4 Full conditional distribution of ζikr

π(ζikr| . . .) ∝ π(ζikr)f(Yr, ℓr|θr)

∝ N (ζikr; 0, σ
2
kr)
∏
t∈Tkr

ℓait−1
irt (1− ℓirt)

bit−1

B(airt, birt)

∏
j∈S−i

r

λ
Yijrt
ijrt e

−λijrt ,

where Tkr = {t : ξk,rt = 1}, S−i
r = {j ∈ 1, . . . Nr : j ̸= i}, log λijrt = αir + αjr − ||ζirξrt −

ζjrξrt||2, ait = φ(γ0r + γ1rζirξrt)ϕr, bit = (1 − φ(γ0r + γ1rζirξrt))ϕr. We sample from
π(ζikr| . . .) via Adaptive RW-MH (see Subsection C.7).

C.5 Full conditional distribution of σ2kr

π(σ2
kr|ζkr, ξr) ∝ π(σ2

kr)π(ζkr|σ2
kr, ξr)

∝ (1/σ2
kr)

aσ2+1e
−bσ2

1

σ2
kr

Nr∏
i=1

(
1/σ2

kr

) 1
2 e

− 1

2σ2
kr

ζ2ikr

∝ (1/σ2
kr)

aσ2+1e
−bσ2

1

σ2
kr

(
1/σ2

kr

)Nr
2 e

− 1

2σ2
kr

∑Nr
i=1 ζ

2
ikr

∝ (1/σ2
kr)

aσ2+
Nr
2

+1e
−
(
bσ2+

∑Nr
i=1

ζ2ikr
2

)
1

σ2
kr ∝ IG(a∗σ2kr, b

∗
σ2kr)

where a∗σ2kr = aσ2 + Nr
2

and b∗σ2kr = bσ2 +
∑Nr
i=1 ζ

2
ikr

2
.

C.6 Full conditional distribution of qlr

π(qlr|ξ) ∝

(
Tr∏
t=1

Kr∏
k=1

q
ξl,r,t−1ξk,rt
lkr

)(
Kr∏
k=1

qωk−1
lk

)

∝
Kr∏
k=1

q
∑Tr
t=1(ξl,r,t−1ξk,rt)+ωk−1

lk

∝ Dir(ω̄1r, . . . , ω̄Kr),

where ω̄kr =
∑Tr

t=1(ξl,r,t−1ξk,rt) + ωk − 1.
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C.7 Adaptive MCMC

Sampling from the full conditional of αr and ζkr is obtained via Adaptive MH algorithm
with global adaptive scaling proposed in Andrieu and Thoms (2008). Adaptive MH gener-
ates samples from the distribution of θ by iterating the following steps:

1. Starting values for the parameter of interest θ0 and for µ0 and Σ0 are chosen.

2. For each iteration h, given θh, µh, Σh and δh:

(a) θ̃h ∼ N (θh−1, δh−1Σh−1) is sampled and θh = θ̃h with probability α(θh−1, θ̃h),
otherwise θ̃h = θh−1;

(b) Update log(δh) = log(δh−1) + γh[α(θh−1, θ̃h)− α∗];

(c) Update µh = µh−1 + γh(θh − µh−1);

(d) Update Σh = Σh−1 + γh[(θh − µh−1)(θh − µh−1)
′ −Σh−1];

where γh = 1
hψ

for ψ ∈ (0, 1) and α∗ is a target acceptance rate, here chosen to be
25%.
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D MCMC Properties for the Simulated Data
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Figure D.1: Simulation Output: Trace plots for the parameters α1 (Panel A), α11 (Panel
B), γ0 (Panel C), γ1 (Panel D) and ϕ (Panel E). The solid black line represents the cumu-
lative average while the dashed black line represents the true parameter in the simulation.
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Figure D.2: Simulation Output: Trace plots for the latent leaning for outlet 1 – ζ1,L
(Panel A), ζ1,H (Panel B) – an for outlet 11 – ζ11,L (Panel C), ζ11,H (Panel D). The solid
black line represents the cumulative average while the dashed black line represents the true
parameter in the simulation.
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Raw Series (50,000 obs.)
Parameter ᾱi γ0 γ1 ϕ ζ̄L ζ̄H

ACF(1) 0.996 0.788 0.997 0.980 0.924 0.956
ACF(10) 0.972 0.190 0.978 0.925 0.713 0.803
ACF(30) 0.930 0.009 0.947 0.911 0.487 0.641
Acc. 25% 26% 26% 21% 25% 25%
ESS 0% 8% 0% 0% 2% 1%
CD p-val 0.050 0.175 0.000 0.000 0.109 0.142

With Burn-in (20,000 obs.)
Parameter ᾱi γ0 γ1 ϕ ζ̄L ζ̄H

ACF(1) 0.891 0.730 0.898 0.750 0.849 0.766
ACF(10) 0.529 0.034 0.398 0.067 0.374 0.149
ACF(30) 0.318 -0.017 0.145 -0.011 0.174 0.048
Acc. 25% 25% 25% 22% 25% 25%
ESS 3% 16% 4% 14% 6% 10%
CD p-val 0.213 0.399 0.040 0.146 0.300 0.256

With Burn-in and Thinning every 10 (2000 obs.)
Parameter ᾱi γ0 γ1 ϕ ζ̄L ζ̄H

ACF(1) 0.527 0.017 0.401 0.040 0.367 0.149
ACF(10) 0.135 -0.005 0.054 0.028 0.057 0.011
ACF(30) 0.022 0.022 0.003 0.004 0.005 0.008
Acc. - - - - - -
ESS 23% 100% 35% 93% 44% 66%
CD p-val 0.209 0.402 0.033 0.013 0.275 0.259

Table D.1: Simulated data: Auto-correlation (ACF) at lag 1, 10, 30, Acceptance Rate,
Effective Sample Size over the number of draws (ESS) and Convergence Diagnostic p-value
(CD) as defined in Geweke et al. (1991) for the MCMC sampling of ᾱ, γ0, γ1, ϕ, ζ̄L,
ζ̄H respectively on the raw series, on the series collected after burn-in, and on the series
applying burn-in and thinning.
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E Model Selection
We compute DIC to compare models as in Gelman et al. (2014): DICr(Mr) = −2log f(Yr, ℓr|θ,Mr)+
pD, where log f(Yr, ℓr|θ,Mr) = (1/H)

∑H
h=1 log f(Yr, ℓr|θh

r ,Mr) is the sample average of
the loglikelihood computed at each iteration h of model M while pD = 2V ar

(
log f(Yr, ℓr|θ1:H

r ,Mr)
)
.

We also compute the Log Pointwise Predictive Density (lppd) as in Gelman et al. (2014):
lppdr(Mr) =

∑
i>j,t log

(
1
H

∑H
h=1 fP

(
Yijrt | θh

r ,Mr

))
.

Model France Germany Italy Spain

log fP (Yr|θr, sr,M)× 10−6

M1 −2.2796 −1.2198 -1.6789 −2.3365

M2 −2.2796 -1.2198 −1.6788 -2.3491

M3 -2.3602 -1.2706 -1.7664 -2.4536

log f(Yr, ℓr|θr, sr,M)× 10−6

M1 −2.2347 −1.1834 −1.6524 −2.3069

M2 -2.2348 -1.1834 -1.6532 -2.3194

M3 -2.3153 -1.2342 -1.7397 -2.4240

Table E.1: Model Selection: DIC-score components for the three nested models consid-
ered for each country.
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F Details of the Observable Media Slant Index
To construct an observable proxy for media slant we rely on the methodology proposed by
Gentzkow and Shapiro (2010) and extended to online textual data by Garz et al. (2020).
Textual processing is carried out with the use of the R package quanteda. The underlying
intuition is that of computing the distance between the language used by news outlets in
their posts and the language used by political parties. To do so we compose two corpora of
textual data: the Parties Corpus consisting of the textual content of the posts published
by the major parties in the years 2015-2016 on their Facebook wall, the Outlets Corpus
consisting of the same information related to the posts published by the Italian news outlets
considered in this work.

On both corpora, textual pre-processing is carried out (lower case transformation, punc-
tuation removal, stopwords removal and n-gram tokenization) and tokens not present in
the Outlets corpus are filtered out from the Parties Corpus. By means of the TF-IDF score
applied on the Parties Corpus, we retrieve the top 100 tokens with highest TF-IDF score
for each party. We proceed assessing the cosine similarity between the vector of tokens xt,o

obtained from the set of posts published by outlet o at time t and the set of tokens yp

characteristic of each party p.

simpot =

∑K
k=1 xkotykp√∑K

k=1 x
2
kot

√∑K
k=1 y

2
kp

(F.1)

To take into account the fact that the style of posting adopted by some parties is closer to
the one of news outlets and vice-versa, Garz et al. (2020) suggest regressing the similarity
on a constant and both outlet and party fixed-effects to extract the residuals ϵpot, which
can be interpreted as a proxy of unexplained similarity. Finally the media slant for outlet
o at time t is computed as:

slantot =
P∑

p=1

ϵpotscorep (F.2)

where scorep is the political leaning assigned to party p by the 2014 Chapel Hill Experts
Survey classification provided in Polk et al. (2017), see Fig. F.1.

Figure F.2 reports the average media slant for the available set of news outlets for
France, Germany, Italy, and Spain, trough the whole time lapse.
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Figure F.1: Ideology of Political Parties: The index is computed according to the 2014
Chapel Hill Experts Survey (Polk et al., 2017).
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Figure F.2: Media Slant of News Outlets: The index is computed following the method-
ology proposed by Gentzkow and Shapiro (2010) and Garz et al. (2020). Full dots represent
the average leaning and error bars represent the µ± σ interval over the time-lapse.
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G Identifiers and List of Removed Outlets
The table below lists the news outlets used as identifiers of the political orientation.

News Outlet Country Assumed Media Bias Sign PEW score (0-6)
l’Humanité France Left <0 NA

Bild Germany Center-Right >0 3.1
Libero Italy Center-Right >0 3.6
ABC Spain Center-Right >0 3.3

Table G.1: Identifiers: Set of outlets used to identify the political orientation of the news
outlets. The column sign reports the assumed political orientation: either < (left) or >
(right). The column PEW score reports the estimated leaning as per Mitchell et al., 2018.

A few news outlets were removed in the dynamic analysis because of their prolonged in-
activity, i.e. 15 days without any comment. They are DE: Der Westen, GMX News, WEB.DE,
News ZDF, FR: Charlie Hebdo Officiel, France Télévisions, Franceinfo, LCI, Révolution Perma-
nente, IT: La Gazzetta del Mezzogiorno.it, MSN Italia, SP: La Voz de Asturias, Yahoo España.
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H Controlling for Exposure
Here we discuss the inclusion of an additional variable, TotComrt, accounting for the
exposure to the total number of comments at time t. This is to compare polarisation
across periods with different engagement levels. To maintain parameter interpretation,
we add to the log-intensity the de-meaned logarithm of the total number of comments,
log TotComrt:

log λijrt = αir + αjr + δ log TotComrt − βr||xirt − xjrt||2. (H.1)

We run our modified LS model for the Italian data. Figure H.1 reports the posterior
estimates of the latent space and states through time when we include this control. Panel
A reports the latent space of Italian news outlets in the two states. State identification is
not trivial anymore. In fact, we notice heterogeneous behavior between local and national
outlets. We achieve state identification by considering the average distance computed across
national news outlets (triangles), as they involve a larger number of commenters. Panel B
reports the latent states through time. The states are coherent with those found in Sec. 4.
Figure H.2 reports the marginal posteriors draws for the parameters δ, γ0r, γ1r and ϕr. The
sign of the parameter δ is as expected. Higher comments overall in the network implies
also a higher number of comments in common between the pairs of pages.

Figure H.1: Posterior Mean Latent Space and States with Exposure Control:
Panel A reports the latent space of Italian news outlets in the two states. State identifi-
cation is achieved considering the average distance computed across national news outlets
(triangles). Panel B reports the latent states through time. The states are coherent with
those found in Sec. 4.
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Figure H.2: Marginal Posterior Distributions with Exposure cControl: Histograms
for the MCMC draws for the parameters δ, γ0r, γ1r and ϕr for Italy.

I Further Results for the Facebook Data
Figure I.1 presents the posterior distributions of the parameters of the static LS model for
the Facebook data.
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Figure I.2: Predictive-Check Comparison: Scatter plot of between yijrt and the poste-
rior λijt for the MS-LS model (left panels) and for the R.G. model with the observed-leaning
distance covariate in log scales. We also plot the 45-degree line (dashed) and the set of
regression lines for each iteration (solid lines, very close to each other)

44



J Data and Scripts Repository
Data and Scripts are stored in the following Repository: https://github.com/BayesianEcon/
Dyn-MS-LS-Media. Refer to the README file in the repository for a complete description
of each file.

J.1 Data

The data entirely covers 729 days from "2015-01-01" to "2016-12-31". The number of news
outlets included in each dataset is the following: Germany 47 news outlets, France 62, Italy
45 and Spain 43.

Network Dataset: Data set used in the illustration of the MS-LS Network Model in
Section 4. The data set is an edge-list representation of the media networks where
columns "i" and "j" refer to the nodes, column "t" refers to the day and column "w"
refers to the number of unique Facebook commenters in common between "i" and "j"
at time "t". The static-version of the Network Dataset of each country is contained
within the file ("Data_Env_single_(country).RData"), while the dynamic version is
in the file ("DataEnv_(country)_all.RData").

Slant-Index Dataset: Data set used in the illustration of the MS-LS Network Model in
Section 4. Refer to Appendix F and the README file for an illustration of how
the index has been obtained. The data set represents a nodal feature of the media
networks where column "i" refers to the nodes, column "t" refers to the day and
column "leaning" refers to the Slant Index.

The static version of the Slant-Index Dataset of each country is contained within the
file ("Data_Env_single_(country).RData"), while the dynamic version is included
in the file ("DataEnv_(country)_all.RData").

J.2 Scripts

We report here a brief description of the main scripts used to estimate the Bayesian MS-
LS network model on the datasets studied in the main paper (Sections 3 and 4) and the
supplementary material. Our MCMC algorithm is entirely implemented in C++, enabling
faster execution speed compared to interpreted languages like R or Python. However,
we still rely on R for data manipulation and plotting. The smooth integration of the two
languages has been made possible through the utilization of the Rcpp package, which offers
a convenient interface for invoking C++ scripts within R. Refer to the README.txt file
in the repository for a complete description of each script.

JASA_Simulation_02_results.R:
Estimates the MS-LS model on the simulated network dataset.
Running time ∼ 12 mins (50,000 iterations, Apple M2, 8 GB Memory)

JASA_Static_01_Results_(Country).R:
Estimates the MS-LS model on the static network dataset.
Running time ∼ 45 mins. (15,000 iterations, Apple M2, 8 GB Memory)
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JASA_Dynamic_01_Results_(country).R:
Estimates the MS-LS model on the dynamic network dataset.
Running time > 20 hrs. (35,000 iterations, Apple M2, 8 GB Memory)

JASA_MS_LS_FE.cpp:
The script contains the function to generate MCMC draws for the dynamic Bayesian
MS-LS network model.
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