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A B S T R A C T

A minimal stochastic dynamical model of the interbank network is introduced, with linear interactions
mediated by an integral of recent variations. Defining stress as the variance over the banks’ states, the
interaction correction to the stress expectation is derived and studied on the short-medium timescale in an
expansion. It is shown that, while different interaction matrices can amplify or absorb fluctuations, on average
interactions increase the stress expectation. More in general, this analytical framework enables to estimate
the impact of the uncertainty about financial exposures, and to draw conclusions about the importance of
disclosure.
1. Introduction

The stability of the financial system is at the basis of a functioning
economy, where banks enable business by lending and investing under
a solid regulatory framework [1]. Investment and risk hedging are such
that banks form a network of assets and liabilities whose market values
are affected by interest rates, credit risk, volatility, and more [2,3]. This
interconnectedness creates the conditions for contagion and systemic
risk, where shocks on individual banks get amplified by the network
dynamics [4–7].

The study of the Jacobian around fixed points of dynamical sys-
tems, where eigenvalues determine the stability to perturbations, has
widely been adopted to characterize the long-term behavior of complex
networks [8–13]. For the shorter timescales, on the other hand, the par-
ticular realization of the fluctuations matters [14,15] and characteriza-
tions are typically given in terms of probability functionals, e.g. deriva-
tives prices [15,16], response coefficients [17–19], entropy produc-
tion [20–23]. Motivated by the perspective of financial regulators, a
stress expectation is here considered as probability functional.

In this paper, a minimal stochastic dynamical model of how ex-
posures propagate fluctuations through the financial network is in-
troduced. Abstracting from the complexity of trade types, the model
employs an interaction matrix acting on an integral of recent variations.
The interaction matrix properties which determine if, on the short-
medium term, the stress is absorbed or rather amplified, are derived
in an analytical expansion. The impact of the uncertainty about such
interaction matrix is also derived, and it will motivate the importance
of exposures disclosure.

E-mail address: andrea.auconi@gmail.com.

2. The interbank model

Let us consider a network of 𝑁 banks and a corresponding set of
variables 𝑥(𝑡) ≡ {𝑥𝑖(𝑡)}𝑖=1,…,𝑁 representing the state at time 𝑡 of the
individual banks. These variables can model (the logarithm of) the book
value, stock price, asset swap spreads, or some synthetic measure of
financial health. In a nutshell, the book value of a bank 𝑖 fluctuates over
time due to price variations of its external assets, and these fluctuations
will then affect the book value of another bank 𝑗 if it is a counterparty
of 𝑖 for example by holding its bonds. This propagation of fluctuations
is however not immediate because bonds are market traded and cannot
follow the issuer’s book value variations immediately, also because
earnings and other impactful news are only disclosed periodically. The
minimal interbank network stochastic dynamics model reads

𝑑𝑥𝑖 = 𝜎𝑑𝑊𝑖 + 𝛾𝑀𝑖𝑗ℎ
𝑗𝑑𝑡, (1)

where the adapted stochastic process 𝑑ℎ𝑖 = −𝛽ℎ𝑖𝑑𝑡+
√

𝛽 𝑑𝑥𝑖 is the recent
variation of 𝑥𝑖 over the timescale 𝛽−1, which models the finite speed of
the market reaction and how it mediates the linear interactions between
banks.

The uncertainty of banks’ profits due to market fluctuations and
non-modeled factors is described using uncorrelated standard Brownian
motion increments, {𝑑𝑊𝑖(𝑡)}𝑖=1,…,𝑁 in the Itô notation [15]. These
follow the standard covariance E 𝑑𝑊𝑖(𝑡)𝑑𝑊𝑗 (𝑡′) = 𝛿𝑖𝑗𝛿𝑡𝑡′𝑑𝑡, where
∫ 𝑇
0 𝛿𝑡𝑡′𝑓 (𝑡′) ≡ 𝑓 (𝑡)I0<𝑡<𝑇 defines the Dirac delta for a smooth function
𝑓 (𝑡), I is the indicator function, and 𝛿𝑖𝑗 the Kronecker delta. Sums
are implicit following Einstein convention, 𝑀𝑖𝑗ℎ𝑗 ≡

∑

𝑗 𝑀𝑖𝑗ℎ𝑗 , and
we consider the processes to start at 𝑥𝑖(0) = 0 and ℎ𝑖(0) = 0 for
all 𝑖s. 𝑀̂ ≡ {𝑀𝑖𝑗}𝑖,𝑗=1,…,𝑁 is the interaction matrix, and 𝛾 the inter-
action strength. This model is meant as a coarse-grained description
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of how financial exposures drive the propagation of individual nodes’
fluctuations through the network, without modeling the complexity of
trade types. Note that not only standard exposures in terms of trades’
profit-and-loss, but also changes in calibration models can propagate
fluctuations [24]. To focus on the effect of interactions we now keep
the volatility 𝜎 > 0 to be constant over time, and identical for all nodes.
ater the model is extended with stochastic volatility.

The recent variation ℎ𝑖 ≡ ℎ𝑖(𝑡) follows an Ornstein–Uhlenbeck
rocess whose formal solution in terms of the matrix exponential is,
ee [14],

𝑖(𝑡) = 𝜎
√

𝛽 ∫

𝑡

0

(

𝑒−𝐴̂(𝑡−𝑡
′)
)

𝑖𝑗
𝑑𝑊 𝑗 (𝑡′), (2)

here we defined 𝐴̂ ≡ 𝛽𝛿 −
√

𝛽𝛾𝑀̂ , and 𝛿 denotes the identity matrix.
We note that in the absence of interactions, namely 𝛾 = 0, the recent
variation is stationary with zero mean and variance independent of 𝛽,
lim𝑡→∞ E

[

ℎ2𝑖 (𝑡)
]

|

|

|𝛾=0
= 𝜎2∕2. Integrating Eq. (1) and using Eq. (2) we

obtain

𝑥𝑖(𝑡) = 𝜎𝑊𝑖(𝑡) + 𝜎
√

𝛽𝛾𝑆𝑖(𝑡), (3)

where 𝑊𝑖(𝑡) = ∫ 𝑡
0 𝑑𝑊𝑖(𝑡′) is standard Brownian motion and 𝑆𝑖(𝑡) is the

tochastic integral

𝑖(𝑡) ≡ ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑖𝑗

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑗𝑘
𝑑𝑊𝑘(𝑡′′), (4)

which sums the propagation onto node 𝑖 of the fluctuations in all nodes
𝑘 during the time interval [0, 𝑡).

3. The stress observable

Let us consider the sample variance of the banks states as a quanti-
fier of stress in financial networks. For a particular realization 𝑥(𝑡) this
is

𝑦 ≡ 1
𝑁 − 1

𝑢𝑖𝑥𝑖
(

𝑥𝑖 −
1
𝑁

𝑢𝑗𝑥𝑗
)

, (5)

where 𝑢 ≡ {1}𝑖=1,…,𝑁 induces the summations, and from now on we
omit the time dependence for ease of notation. The motivation for this
definition is that when 𝑦 gets large then some banks are comparatively
much riskier than other banks, and this could trigger market panic and
a bank run. And while central banks and regulators can intervene on the
overall market level with interest rates hikes, new legislation, or even
market interventions like the TARP in the 2008 financial crisis [1,25],
it is way more difficult to orchestrate the restructuring of a single bank
over a short period of time. Therefore it sounds reasonable from the reg-
ulators perspective to ask that exposures between banks, as quantified
by the interaction matrix 𝑀̂ , do not destabilize the financial system
by increasing the stress expectation. Please note that an alternative
definition of stress as the market level uncertainty would not affect the
main result, see Appendix E.

4. The stress expectation

To compute the stress expectation E𝑀̂𝑦 ≡ E
[

𝑦||
|

𝑀̂
]

conditional on
the interaction matrix 𝑀̂ we evaluate the correlations
1
𝜎2

E𝑀̂
[

𝑥𝑖𝑥𝑗
]

= E𝑀̂
[

𝑊𝑖𝑊𝑗
]

+ 𝛽𝛾2E𝑀̂
[

𝑆𝑖𝑆𝑗
]

+
√

𝛽𝛾
(

E𝑀̂
[

𝑊𝑖𝑆𝑗
]

+ E𝑀̂
[

𝑊𝑗𝑆𝑖
])

. (6)

he Brownian motion correlations [14,15] are simply E
[

𝑊𝑖𝑊𝑗
]

= 𝛿𝑖𝑗 𝑡,
nd we find the other terms are

𝑀̂
[

𝑊𝑖𝑆𝑗
]

= ∫

𝑡

0 ∫

𝑡′

0
𝑑𝑡′𝑑𝑡′′𝑀𝑗𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘

𝑖
, (7)

𝑀̂
[

𝑆𝑖𝑆𝑗
]

= ∫

𝑡

0 ∫

𝑡′

0 ∫

𝑡

𝑡′′
𝑑𝑡′𝑑𝑡′′𝑑𝑡′′′𝑀𝑖𝑘𝑀𝑗𝑚

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙 (
𝑒−𝐴̂(𝑡

′′′−𝑡′′)
)𝑚

𝑙
, (8)

see Appendix A for full derivations.
2 
Fig. 1. Diagrams contributing to the stress expectation E𝑦(𝑡) in Eq. (12) for each nodes
pair (𝑖, 𝑗). The arrows denote the noise propagation and {𝑘} the set of all nodes. (Top)
𝛾 order terms 𝑀𝑖𝑗 ; (Middle) 𝛾2 order terms 𝑀𝑖𝑘𝑀𝑘

𝑗 ; (Bottom) 𝛾2 order terms 𝑀𝑖𝑘𝑀𝑗
𝑘.

5. On the short-medium term

In a real financial network, exposures as defined by the matrix
𝑀̂ are time-dependent, both as a result of the mark-to-market delta
variations and for the booking of new trades [1]. Here we assume that
exposures can be considered approximately fixed on the short-medium
term, and we study the problem in an expansion. Considering only the
first order for the matrix exponentials
(

𝑒−𝐴̂𝜏
)

𝑖𝑗
= 𝛿𝑖𝑗 − 𝐴𝑖𝑗𝜏 + (𝜏2), (9)

and applying to Eqs. (7)–(8) we obtain, up to (𝑡3),

𝑀̂
[

𝑊𝑖𝑆𝑗
]

= 𝑡2

2

[

𝑀𝑗𝑖

(

1 − 𝛽 𝑡
3

)

+
√

𝛽𝛾𝑀𝑗𝑘𝑀
𝑘
𝑖
𝑡
3

]

, (10)

E𝑀̂
[

𝑆𝑖𝑆𝑗
]

= 𝑀𝑖
𝑘𝑀𝑗𝑘

𝑡3

3
. (11)

he stress expectation is then

𝑀̂𝑦 = 𝜎2𝑡 +
𝜎2

√

𝛽𝛾
𝑁 − 1

𝑢𝑖
(

𝑀𝑖𝑖 −
1
𝑁

𝑢𝑗𝑀𝑖𝑗

)

(

1 −
𝛽
3
𝑡
)

𝑡2

+
𝜎2𝛽𝛾2

3(𝑁 − 1)
𝑀𝑖𝑘

[

𝑀 𝑖𝑘 − 1
𝑁

𝑢𝑖𝑢𝑗𝑀
𝑗𝑘
]

𝑡3, (12)

where by 𝑀𝑖𝑗 ≡ 𝑀𝑖𝑗 + 𝑀𝑗𝑖 we denote the symmetrized interaction
matrix elements. Let us note that even if we would start with some
initial offset 𝑥(0) ≠ 0 the expected stress change E𝑀̂𝑦(𝑡) − 𝑦(0) would
still be given by Eq. (12) as long as ℎ(0) = 0.

6. Physical interpretation of Eq. (12)

The stress expectation establishes the conditions on 𝑀̂ under which
nteractions are beneficial to stabilize the financial system, and in
q. (12) we derived the leading terms on the shorter timescales. Their
eaning is discussed here.

The first order term 𝜎2𝑡 is the standard statistics coming from the
ncorrelated Brownian motions [14,15]. The effect of direct interac-
ions appears at the second order where a negative correction occurs
f off-diagonal terms are overall larger than diagonal terms, meaning
hen 𝑢𝑖𝑀𝑖𝑖 < 𝑢𝑖𝑢𝑗𝑀𝑖𝑗∕𝑁 . For the financial network this means that

positive exposures reduce the expectation of stress, as indeed positive
correlations imply more homogeneous returns over the banks. This
effect is reduced at the third order as the noise integration time 𝛽−1
is approached.

The third order term in the second line is the effect of indirect
interactions occurring in the two forms listed below, also see Fig. 1,

• the noise on node 𝑗 propagates to the other nodes {𝑘} and then
on to node 𝑖, giving the term 𝑢𝑖𝑢𝑗𝑀𝑖𝑘𝑀𝑘𝑗 .

• the noise on the other nodes {𝑘} affects directly both nodes 𝑖 and
𝑗 thereby creating a correlation, giving the term 𝑢𝑖𝑢𝑗𝑀𝑖𝑘𝑀 𝑗𝑘.

The sum of these two terms gives the symmetrized interaction matrix
term 𝑢𝑖𝑢𝑗𝑀𝑖𝑘𝑀 𝑗𝑘.

The crucial approximation of Eq. (9) limits the analysis to timescales
𝜏 satisfying 𝜏 ≲ 𝛽−1 and 𝜏 ≲ 𝛽−1∕2𝛾−1, and discrepancies are indeed

found numerically beyond this timescale, see below Fig. 2.
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Fig. 2. Quadratic scaling of the interaction correction with the interaction strength 𝛾
according to the theoretical estimate of Eq. (13). The parameters used here are 𝑁 = 30,
= 100, 𝛽 = 0.01.

. Random interaction matrix

Assume now that regulators do not have detailed knowledge of
xposures between banks, but only of the average squared exposure
n the network 𝛾2, so that we can take 𝑀̂ to be a random matrix with
ndependent Gaussian entries of unit variance, namely E𝑀𝑖𝑗 = 0 and
[

𝑀𝑖𝑗𝑀𝑘𝑙
]

= 𝛿𝑖𝑘𝛿𝑗𝑙. The random matrix expectation of the expected
tress is, up to (𝑡3),

𝑦 = 𝜎2𝑡
[

1 +
𝛽𝛾2

3
(𝑁 + 1) 𝑡2

]

, (13)

nd we note that stochastic dynamics and random matrix expectations
ommute. This Eq. (13) is consistent with the fact that adding inter-
ctions in an unknown direction is effectively an additional source of
oise, which on average can only increase the sample variance 𝑦. From
his equation we can estimate at around 𝑡̃ ≈ 1

𝛾
√

𝛽𝑁
the time when the

tressing effect of interactions themselves is of the same magnitude of
hat of the noise without interactions.

The interaction correction of Eq. (13) results to be a lower bound
or larger time intervals, see the numerical results in Fig. 2. This is
nderstood as the random matrix 𝐴̂ has a positive probability of having
ne or more eigenvalues with negative real part which makes the
rnstein–Uhlenbeck process non stationary and expectations diverging
xponentially over time.

The variance of the interaction correction on the stress expectation
ue to the uncertainty about the interaction matrix is, up to (𝑡4), see
ppendix B,
[

(

E𝑀̂𝑦 − E𝑦
)2
]

= 𝜎4
𝛽𝛾2

𝑁 − 1
𝑡4, (14)

o that the standard deviation is of lower order than the interaction
orrection of Eq. (13). This means that, while interactions on average
estabilize the dynamics, a bigger impact comes actually from the
ncertainty about these interactions, and especially for small networks,
hich motivates the importance of disclosure regarding exposures
etween big banks.

. Network size

The network size effect is described by the linear factor 𝑁 + 1 in
he interaction correction of Eq. (13) and in the 1∕(𝑁 − 1) factor in
he variance of Eq. (14), which implies that for large networks the
estabilization becomes certain. However, in obtaining these results we
id not consider any constraints on the total exposures, while actually
apital regulations are in place in financial markets requiring banks
o limit their risk taking. Assuming a simple statistical constraint on
xposures of the form E𝑢𝑗 (𝛾𝑀 )2 = 𝑘2 with 𝑘 independent of 𝑁 gives
𝑖𝑗

3 
= 𝑘∕
√

𝑁 so that E𝑦 is not increasing with the network size. An even
ore strict constraint of the form E𝑢𝑗𝛾||

|

𝑀𝑖𝑗
|

|

|

= 𝑘 would give 𝛾 =
√

𝜋
2

𝑘
𝑁

nd E𝑦− 𝜎2𝑡 converging to zero for large 𝑁 in agreement with the law
of large numbers. Let us also note that imposing a no self-interaction
condition, meaning 𝑀𝑖𝑖 = 0 for all 𝑖s, it does not change Eq. (13).

9. Stochastic volatility

To motivate the consideration of the interaction correction we
compare it with the impact of stochastic volatility which is an industry
standard for the pricing models of interest rates derivatives [15,16].
Modeling volatility as a geometric Brownian motion with VolVol pa-
rameter 𝜈, we find that corrections to the correlations E

[

𝑥𝑖𝑥𝑗
]

appear
lready at 𝑡2 order but at this order they are independent of the indices
and 𝑗, so the stochastic volatility correction to Eq. (12) appears only
t (𝑡3), see Appendix C,

𝑀̂𝑦 − E𝑀̂𝑦𝜈=0 = 𝜎2
√

𝛽𝛾𝜈2𝑢𝑖
(

𝑀𝑖𝑖 −
1
𝑁

𝑢𝑗𝑀𝑖𝑗

) 𝑡3

6
, (15)

and it is dominated by the direct interaction correction on the short
time limit. This stochastic volatility correction of Eq. (15) vanishes with
the random matrix expectation as E𝑀𝑖𝑗 = 0, so that Eq. (13) stays
unaffected.

10. Effect of nonlinearities

The assumption of a constant interaction matrix is valid only for
short timescales as it neglects the time variation of portfolios’ delta
risks, which is due to trades’ time to maturity getting shorter, interest
rates and hazard rate curves changes, new trades being booked, and
more [15,16]. These effects introduce a number of nonlinearities which
impact the stress expectation. As an example, consider zero-coupon
risky bonds [26] whose present value can be modeled in the simplest
case as 𝐵𝑗 (𝑇 ) = exp

[

−(𝑟 + 𝑥𝑗 )𝑇
]

, where 𝑇 is the time to maturity, 𝑟
s some constant interest rate, and 𝑥𝑗 is the market-implied spread of
eference entity 𝑗. We see that the exposure to variations of the spread
𝑗 is not a constant, 𝜕𝑥𝑗𝐵𝑗 (𝑇 ) = −𝑇𝐵𝑗 (𝑇 ), as it depends on both 𝑇
nd 𝑥𝑗 . Note that in our framework the impact on 𝑖’s balance sheet
ue to exposures to 𝑗’s bonds will affect the hazard rate 𝑥𝑖 over a
imescale 𝛽−1 through the recent history integral. We study the effect of
his simple bond nonlinearity in an approximation by introducing the
actor 𝑀𝑖𝑗 → 𝑀𝑖𝑗 min[exp (−𝑘𝑥𝑗 (𝑡)), 𝑙], with 𝑘 ≥ 0 and 𝑙 ≥ 1 parameters,
here 𝑙 is to upper bound the bond price to roughly its notional value.
umerically it is found that in this nonlinear example the interaction
orrection can be smaller or greater than in the linear case, see Fig. 3, as
ndeed the convexity effect governed by 𝑘 will increase exposures and
n average destabilize the system, while the upper bound on exposures
iven by the maximum factor 𝑙 will accordingly contain it.

1. Eigenvalues

If the interaction matrix 𝑀̂ is such that not all eigenvalues of the
atrix 𝐴̂ have positive real part, then the recent history dynamics ℎ

s not stationary and the network state 𝑥 will diverge exponentially
n the long term. On shorter timescales, however, we see from the
nteraction correction of Eq. (12) that the dynamics depends on other
roperties of the interaction matrix, and we may ask if these are related
o eigenvalues. Take for simplicity −𝛾 = 𝛽−

1
2 ≫ 1 so that 𝐴̂ ≈ 𝑀̂ and

we can directly study the eigenvalues of 𝑀̂ . With numerical simulations
we find that the average eigenvalue of 𝑀̂ , which indeed is equivalent
o the trace 𝑢𝑖𝑀𝑖𝑖, is correlated to 𝑢𝑖

(

𝑀𝑖𝑖 −
1
𝑁 𝑢𝑗𝑀𝑖𝑗

)

which is the
𝛾 order term in Eq. (12). Then we find that the sample variance of
the eigenvalues is correlated to 𝑀𝑖𝑘

[

𝑀 𝑖𝑘 − 1
𝑁 𝑢𝑖𝑢𝑗𝑀 𝑗𝑘

]

which is the 𝛾2

order term in Eq. (12), see Appendix D. These results suggest that not
only the eigenvector of the largest eigenvalue but all eigenvectors play
a role on the short-medium timescale.
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Fig. 3. Effect of nonlinearities. 𝑘 quantifies the dependence of the bond’s delta on the spread, and 𝑙 the maximum increase factor in the exposure. The parameters used here are
𝑁 = 30, 𝜎 = 100, 𝛾 = 3, 𝛽 = 0.01, and 𝑇 = 0.1.
I

D

c
i

D

12. Biased random matrix

The parameters of connectivity between banks may not be drawn
from an uncorrelated random matrix as modeled above. Indeed both
collaboration and competition between two banks 𝑖 and 𝑗 do create

positive feedback loop 𝑀𝑖𝑗𝑀𝑗𝑖 > 0. This means that statistically
he interaction matrix 𝑀̂ has a symmetry, and this can be modeled
n the simplest way by modifying the expectations as E𝑀𝑖𝑗 = 0 and
[

𝑀𝑖𝑗𝑀𝑘𝑙
]

= 𝛿𝑖𝑘𝛿𝑗𝑙+𝜌(𝛿𝑖𝑙𝛿𝑗𝑘−𝛿𝑖𝑗𝑘𝑙), in terms of the correlation 𝜌 similar
o [27,28]. Accordingly, the stress expectation is modified as

𝑦 = 𝜎2𝑡
[

1 +
𝛽𝛾2

3
[𝑁 + 1 + 𝜌(𝑁 − 1)] 𝑡2

]

, (16)

which means a destabilizing effect for 𝜌 > 0 which is mainly driven by
the 𝛾2 order terms 𝑀𝑖𝑗𝑀 𝑗

𝑖 corresponding to feedback loops, see Fig. 1.
The variance is further modified from Eq. (14) by a factor 1 + 𝜌∕𝑁 .

13. Related research

This work studies the risk propagation in a minimal model of
financial networks’ stochastic dynamics on the short-time limit, where
exposures are approximately constant and assumptions on stationarity
are not necessary. However, some qualitative analogies can still be
found with existing results on stationary systems in the long time limit.

Refs. [29,30] consider systemic default explicitly as a low probabil-
ity event in the large deviations framework and find that collaborative
interactions make individual banks closer to the market average (sim-
ilar to the second order term in Eq. (12) here) and therefore safer,
but also that the market average becomes itself more volatile making
systemic default more probable (similar to Eq. (E.1) here). The possibil-
ity of default introduces an incentive to individual banks to trade and
borrow from a central bank in order to minimize the default likelihood
in a nonlinear optimization problem, or a game-theoretic tradeoff for a
regulator [30–32].

For the case of neuronal systems and by employing spectral meth-
ods, Ref. [27] shows that a positive symmetry in the interactions 𝜌 > 0
implies a longer correlation time, in our framework for the history
process ℎ and therefore a more persistent dynamics of the bank states,
which is reflected in Eq. (16) and explained by positive feedback loops.

Ref. [28] shows that random matrix theory can be applied in
the characterization of fluctuation spectra in ecology models. In the
short-time limit studied here the dependence on eigenvalues has been
explored numerically as a side result, while its theoretical characteri-
zation is left for future work.

Although not considering stochastic systems but the linear stability
around fixed points, Ref. [11] highlights the importance of disclo-
sure for unveiling the feedback loops and cycles which may amplify
fluctuations.
4 
14. Discussion

In this paper, based on the definition of a financial network stress
observable in the perspective of regulators, an analytical framework
to estimate the short-medium term impact of interbank exposures
has been introduced, to complement the existing methods concern-
ing the long term stability of complex systems [8–13,27–29,31]. This
short-medium term characterization is particularly relevant when the
interaction matrix describing exposures is time-dependent. The focus
here is on the interbank liabilities only since the effect of overlapping
portfolios is already well-studied, and would enter the model as a
correlation between noise components [15]. Also note that defaults
are not explicitly considered based on the assumption that most of the
bondholders losses will happen as fair price variations in the weeks and
months before the default event [11].

In the proposed framework, the expected stress level was derived as
a function of the interaction matrix, and to leading order it is found that
positive exposures have a stabilizing effect as indeed they are leveling
out returns relative to the market average. Then it is shown that, if
exposures are not exactly known but only their expected strength is,
then this effectively works as an additional noise source to increase
the stress expectation following a quadratic law, and even bigger is
shown to be the impact of the uncertainty about the particular inter-
action matrix realization. The effect of nonlinearities and of stochastic
volatility are also studied for simple examples. These results suggest
the importance of disclosing interbank exposures in the perspective of
financial regulators.
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Appendix A. Derivation of Eqs. (7)–(8)

Consider Eq. (3) in the main text, 𝑥𝑖(𝑡) = 𝜎𝑊𝑖(𝑡) + 𝜎
√

𝛽𝛾𝑆𝑖(𝑡). We
tart by reviewing the standard Brownian motion correlations [15,33]
n our formalism,
[

𝑊𝑖(𝑡)𝑊𝑗 (𝑡)
]

= E
[

∫

𝑡

0 ∫

𝑡

0
𝑑𝑊𝑖(𝑡′)𝑑𝑊𝑗 (𝑡′′)

]

= ∫

𝑡

0 ∫

𝑡

0
E
[

𝑑𝑊𝑖(𝑡′)𝑑𝑊𝑗 (𝑡′′)
]

= ∫

𝑡

0 ∫

𝑡

0
𝛿𝑖𝑗𝑑𝑡

′𝛿𝑡′𝑡′′ = 𝛿𝑖𝑗 ∫

𝑡

0
𝑑𝑡′ I0<𝑡′<𝑡 = 𝛿𝑖𝑗 𝑡, (A.1)

where we used the delta definition ∫ 𝑡
0 𝛿𝑡′𝑡′′𝑓 (𝑡′′) = 𝑓 (𝑡′) I0<𝑡′<𝑡. Similarly

we derive Eq. (6) of the main text as

E𝑀̂
[

𝑊𝑖(𝑡)𝑆𝑗 (𝑡)
]

= ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑗𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙
E
[

𝑑𝑊𝑙(𝑡′′)∫

𝑡

0
𝑑𝑊𝑖(𝑡′′′)

]

= ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑗𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙
𝛿𝑙𝑖𝑑𝑡

′′
∫

𝑡

0
𝛿𝑡′′𝑡′′′

= ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑗𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘

𝑖
𝑑𝑡′′. (A.2)

For Eq. (7) of the main text we have

E𝑀̂
[

𝑆𝑖(𝑡)𝑆𝑗 (𝑡)
]

= ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑖𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙

∫

𝑡

0
𝑑𝑡′′′𝑀𝑗𝑚E𝑀̂

×

[

𝑑𝑊𝑙(𝑡′′)∫

𝑡′′′

0

(

𝑒−𝐴̂(𝑡
′′′−𝑡′′′′)

)𝑚𝑞
𝑑𝑊𝑞(𝑡′′′′)

]

= ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑖𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙

× ∫

𝑡

0
𝑑𝑡′′′𝑀𝑗𝑚𝑑𝑡

′′
∫

𝑡′′′

0

(

𝑒−𝐴̂(𝑡
′′′−𝑡′′′′)

)𝑚𝑞
𝛿𝑙𝑞𝛿𝑡′′𝑡′′′′

= ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑖𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙

× ∫

𝑡

0
𝑑𝑡′′′𝑀𝑗𝑚𝑑𝑡

′′
(

𝑒−𝐴̂(𝑡
′′′−𝑡′′)

)𝑚𝑞
𝛿𝑙𝑞I𝑡′′<𝑡′′′

= ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑑𝑡′′𝑀𝑖𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙

× ∫

𝑡

𝑡′′
𝑑𝑡′′′𝑀𝑗𝑚

(

𝑒−𝐴̂(𝑡
′′′−𝑡′′)

)𝑚

𝑙
. (A.3)

Appendix B. Derivation of Eqs. (13)–(14)

Recall the random matrix expectation definitions E𝑀𝑖𝑗 = 0 and
E
[

𝑀𝑖𝑗𝑀𝑘𝑙
]

= 𝛿𝑖𝑘𝛿𝑗𝑙. Considering the stress expectation equation
(Eq. (12) in the main text), for the random matrix expectation E𝑦(𝑡)
it suffices to evaluate

E
[

𝑀𝑖𝑘𝑀
𝑖𝑘
]

= E
[

𝑀𝑖𝑘𝑀
𝑖𝑘] + E

[

𝑀𝑖𝑘𝑀
𝑘𝑖]

= 𝑢𝑖𝑢𝑘E
[

(𝑀𝑖𝑘)2
]

+ 𝑢𝑖𝑢𝑘E
[

𝑀𝑖𝑘𝑀𝑘𝑖
]

= 𝑢𝑖𝑢𝑘𝑢𝑖𝑢𝑘 + 𝑢𝑖𝑢𝑘𝛿𝑖𝑘 = 𝑁2 +𝑁 ; (B.1)

𝑢𝑖𝑢𝑗E
[

𝑀𝑖𝑘𝑀
𝑗𝑘
]

= 𝑢𝑖𝑢𝑗𝑢𝑘E
[

𝑀𝑖𝑘𝑀𝑗𝑘
]

+ 𝑢𝑖𝑢𝑗𝑢𝑘E
[

𝑀𝑖𝑘𝑀𝑘𝑗
]

= 𝑢𝑖𝑢𝑗𝑢𝑘𝛿𝑖𝑗𝛿𝑘𝑘 + 𝑢𝑖𝑢𝑗𝑢𝑘𝛿𝑖𝑘𝛿𝑘𝑗

= 𝑢𝑖𝑢𝑗𝑢𝑘𝛿𝑖𝑗𝛿𝑘𝑘 + 𝑢𝑖𝑢𝑗𝑢𝑘𝛿𝑖𝑘𝛿𝑘𝑗 = 𝑁2 +𝑁, (B.2)

where standard contraction rules 𝑢𝑘𝛿𝑖𝑘 = 𝛿𝑖𝑖 = 𝑢𝑖 were applied.
Similarly for deriving Eq. (14) of the main text we evaluate

E
[

(

E𝑀̂𝑦 − E𝑦
)2
]

= 𝜎4
𝛽𝛾2

(𝑁 − 1)2
𝑡4 E

[

(

𝑢𝑖
(

𝑀𝑖𝑖 −
1
𝑁

𝑢𝑗𝑀𝑖𝑗

))2]

+ (𝑡5)

= 𝜎4
𝛽𝛾2

𝑡4 + (𝑡5), (B.3)

𝑁 − 1

5 
where we computed

E
[

(

𝑢𝑖
(

𝑀𝑖𝑖 −
1
𝑁

𝑢𝑗𝑀𝑖𝑗

))2]

= 𝑢𝑖𝑢𝑘E
[

𝑀𝑖𝑖𝑀𝑘𝑘
]

− 1
𝑁

𝑢𝑖𝑢𝑘𝑢𝑙E
[

𝑀𝑖𝑖𝑀𝑘𝑙
]

− 1
𝑁

𝑢𝑖𝑢𝑗𝑢𝑘E
[

𝑀𝑖𝑗𝑀𝑘𝑘
]

+ 1
𝑁2

𝑢𝑖𝑢𝑗𝑢𝑘𝑢𝑙E
[

𝑀𝑖𝑗𝑀𝑘𝑙
]

= 𝑢𝑖𝑢𝑘𝛿𝑖𝑘 −
1
𝑁

𝑢𝑖𝑢𝑘𝑢𝑙𝛿𝑖𝑘𝛿𝑖𝑙 −
1
𝑁

𝑢𝑖𝑢𝑗𝑢𝑘𝛿𝑖𝑘𝛿𝑗𝑘

+ 1
𝑁2

𝑢𝑖𝑢𝑗𝑢𝑘𝑢𝑙𝛿𝑖𝑘𝛿𝑗𝑙 = 𝑁 − 1. (B.4)

Appendix C. Derivation of Eq. (15)

The stochastic volatility process is here modeled as a geometric
Brownian motion, 𝑑𝜎(𝑡) = 𝜈𝜎(𝑡)𝑑𝐵, where 𝑑𝐵 are standard Brownian
motion increments independent of 𝑑𝑊 . The solution is well-known,

𝜎(𝑡) = 𝜎 exp
[

𝜈𝐵(𝑡) − 𝜈2

2
𝑡
]

, (C.1)

nd it can be found using Itô’s Lemma [15,33], and we denoted for
implicity 𝜎 ≡ 𝜎(0).

Let us define the stochastic volatility term

(𝑡) ≡ exp
[

𝜈𝐵(𝑡) − 𝜈2

2
𝑡
]

− 1, (C.2)

nd rewrite our financial network dynamics model (Eq. (1) in the main
ext) including it,

𝑥𝑖 = 𝜎 (1 + 𝜉) 𝑑𝑊𝑖 + 𝛾𝑀𝑖𝑗ℎ
𝑗𝑑𝑡, (C.3)

o that the formal solution is

𝑖(𝑡) = 𝑥𝜈=0𝑖 (𝑡) + 𝜎 ∫

𝑡

0
𝜉(𝑡′)𝑑𝑊𝑖(𝑡′)

+, 𝜎
√

𝛽𝛾 ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑖𝑗

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑗𝑘
𝜉(𝑡′′)𝑑𝑊𝑘(𝑡′′), (C.4)

where 𝑥𝜈=0𝑖 (𝑡) is the solution with constant volatility 𝜈 = 0 and the same
ealization of {𝑊 (𝑡′)}𝑡′∈[0,𝑡]. Given that E𝜉(𝑡) = 0 as the process is a
artingale [15,33], the expectation E𝑀̂

[

𝑥𝑖(𝑡)𝑥𝑗 (𝑡)
]

−E
[

𝑥𝑖(𝑡)𝑥𝑗 (𝑡)
]𝜈=0 do

ot involve cross terms with 𝑥𝜈=0𝑖 (𝑡),

𝑀̂
[

𝑥𝑖(𝑡)𝑥𝑗 (𝑡)
]

= E𝑀̂
[

𝑥𝑖(𝑡)𝑥𝑗 (𝑡)
]𝜈=0 + 𝜎2 ∫

𝑡

0 ∫

𝑡

0
E
[

𝜉(𝑡′)𝜉(𝑡′′)𝑑𝑊𝑖(𝑡′)𝑑𝑊𝑗 (𝑡′′)
]

+ 𝜎2
√

𝛽𝛾 ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑖𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙

×E
[

∫

𝑡

0
𝜉(𝑡′′)𝜉(𝑡′′′)𝑑𝑊𝑙(𝑡′′)𝑑𝑊𝑗 (𝑡′′′)

]

+ 𝜎2
√

𝛽𝛾 ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑗𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙

×E
[

∫

𝑡

0
𝜉(𝑡′′)𝜉(𝑡′′′)𝑑𝑊𝑙(𝑡′′)𝑑𝑊𝑖(𝑡′′′)

]

+ (𝑡4)

= 𝜎2 𝜈
2

2
𝑡2 + 𝜎2 𝜈

4

6
𝑡3 + 𝜎2

√

𝛽𝛾𝜈2𝑀𝑖𝑗
𝑡3

6
+ (𝑡4), (C.5)

here we computed
𝑡

0 ∫

𝑡

0
E
[

𝜉(𝑡′)𝜉(𝑡′′)𝑑𝑊𝑖(𝑡′)𝑑𝑊𝑗 (𝑡′′)
]

= ∫

𝑡

0 ∫

𝑡

0
E
[

𝜉(𝑡′)𝜉(𝑡′′)
]

E
[

𝑑𝑊𝑖(𝑡′)𝑑𝑊𝑗 (𝑡′′)
]

= ∫

𝑡

0 ∫

𝑡

0
E
[

𝜉(𝑡′)𝜉(𝑡′′)
]

𝛿𝑡′𝑡′′𝑑𝑡
′

= ∫

𝑡

0
𝑑𝑡′ E

[

𝜉2(𝑡′)
]

= ∫

𝑡

0
𝑑𝑡′

(

𝑒𝜈
2𝑡′E

[

𝑒(2𝜈)𝐵(𝑡
′)− (2𝜈)2

2 𝑡′
]

− 1
)

=
𝑡
𝑑𝑡′

(

𝑒𝜈
2𝑡′ − 1

)

= 𝜈2 𝑡2 + 𝜈4 𝑡3 + (𝑡4). (C.6)
∫0 2 6



A. Auconi Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 188 (2024) 115468 
Fig. D.4. Numerical exploration of the correlation of the expansion terms of Eq. (12)
of the main text with properties of the interaction matrix eigenvalues {𝜆}, with network
size 𝑁 = 30.

and also

∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑖𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙
E
[

∫

𝑡

0
𝜉(𝑡′′)𝜉(𝑡′′′)𝑑𝑊𝑙(𝑡′′)𝑑𝑊𝑗 (𝑡′′′)

]

= ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑀𝑖𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙
𝛿𝑙𝑗𝑑𝑡

′′
∫

𝑡

0
𝛿𝑡′′𝑡′′′E

[

𝜉(𝑡′′)𝜉(𝑡′′′)
]

= ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑑𝑡′′𝑀𝑖𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘𝑙
𝛿𝑙𝑗E

[

𝜉2(𝑡′′)
]

= ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑑𝑡′′𝑀𝑖𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘

𝑗
E
[

𝜉2(𝑡′′)
]

= ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑑𝑡′′𝑀𝑖𝑘

(

𝑒−𝐴̂(𝑡
′−𝑡′′)

)𝑘

𝑗

(

𝑒𝜈
2𝑡′′ − 1

)

= 𝜈2 ∫

𝑡

0
𝑑𝑡′ ∫

𝑡′

0
𝑑𝑡′′𝑀𝑖𝑘𝛿

𝑘
𝑗 𝑡
′′ + (𝑡4)

= 𝜈2𝑀𝑖𝑗
𝑡3

6
+ (𝑡4). (C.7)

We see that the first and second terms in Eq. (C.5) are independent
of the indices 𝑖 and 𝑗 so they have no contribution to 𝑦(𝑡) as it is
immediately seen from the definition of Eq. (5) of the main text. Then
we obtain the stochastic volatility correction to the stress expectation
as

E𝑀̂𝑦(𝑡) = E𝑀̂𝑦(𝑡)𝜈=0 + 𝜎2
√

𝛽𝛾𝜈2𝑢𝑖
(

𝑀𝑖𝑖 −
1
𝑁

𝑢𝑗𝑀𝑖𝑗

) 𝑡3

6
+ (𝑡4). (C.8)

Appendix D. Eigenvalues

The discussion of eigenvalues in the main text is here complemented
with a plot. Given the set of eigenvalues {𝜆} of the interaction matrix
𝑀̂ , we see that the first and second order in the interaction strength
𝛾 of the stress expectation expansion of Eq. (12) of the main text are
correlated respectively with the mean Avg[𝜆] = 1

𝑁
∑𝑁

𝑖=1 𝜆𝑖 and variance
Var[𝜆] = 1 ∑𝑁 (𝜆 − Avg[𝜆])2, see Fig. D.4.
𝑁 𝑖=1 𝑖

6 
Appendix E. Market level uncertainty

Defining the market level as the sample mean over the banks, then
the market level uncertainty 𝑧(𝑡) is

𝑧(𝑡) ≡ E𝑀̂

[

( 1
𝑁

𝑢𝑖𝑥𝑖(𝑡)
)2]

= 1
𝑁2

𝑢𝑖𝑢𝑗E𝑀̂
[

𝑥𝑖(𝑡)𝑥𝑗 (𝑡)
]

= 𝜎2𝑡 +
𝜎2

√

𝛽𝛾
𝑁2

𝑢𝑖𝑢𝑗𝑀𝑖𝑗

(

1 −
𝛽
3
𝑡
)

𝑡2 +
𝜎2𝛽𝛾2

3𝑁2
𝑢𝑖𝑢𝑗𝑀𝑖𝑘𝑀

𝑗𝑘𝑡3, (E.1)

since E
[

1
𝑁 𝑢𝑖𝑥𝑖(𝑡)

]

= 0. We see that to second order (𝑡2) the effect
of off-diagonal terms is opposite to 𝑧(𝑡) compared to 𝑦(𝑡). However, the
interaction correction in the random matrix expectation is destabilizing
also for the market level uncertainty,

E𝑧(𝑡) = 𝜎2𝑡 +
𝜎2𝛽𝛾2

3

(

1 + 1
𝑁

)

𝑡3. (E.2)
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