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Abstract: This paper analyses the solution of a specific quadratic sub-problem, along with its possible
applications, within both constrained and unconstrained Nonlinear Programming frameworks. We
give evidence that this sub–problem may appear in a number of Linesearch Based Methods (LBM)
schemes, and to some extent it reveals a close analogy with the solution of trust–region sub–problems.
Namely, we refer to a two-dimensional structured quadratic problem, where five linear inequality
constraints are included. Finally, we detail how to compute an exact global solution of our two-
dimensional quadratic sub-problem, exploiting first order Karush-Khun-Tucker (KKT) conditions.

Keywords: nonlinear programming; quadratic linearly constrained optimization; KKT conditions

1. Introduction

There are plenty of real problems where the minimization of a twice continuously
differentiable functional f : Rn → R is sought, (possibly) subject to several linear and
nonlinear constraints. Among authoritative textbooks, where such problems are widely
detailed, we can surely find [1–3]. Such general problems typically require the solution to a
sequence of simple sub-problems with the following pattern:

min
x

φk(x)

s.t. x ∈ Dk,
Dk :

{
Akx + uk = 0
Bkx + vk ≤ 0,

(1)

where Ak ∈ Rmk×n, Bk ∈ Rpk×n, uk ∈ Rmk , vk ∈ Rpk , mk, pk ≥ 1 and k ≥ 1. Furthermore,
φk(x) represents a model of the smooth function f (x) at the current iterate xk and the feasible
set Dk represents a linearization of the constraints.

As is well known, affine and quadratic polynomials based on Taylor’s expansion are
often adopted to represent the models {φk(x)}, but valid alternatives also include least
squares approximations, Radial Basis Functions, metamodels based on Splines, B-Splines,
Kriging, etc. [4,5]. We remark that the advantage of solving the sequence of sub-problems (1)
in place of the original nonlinearly constrained problem, within a suitable convergence
framework, essentially relies on their simplicity. In particular, in this paper our focus is on
investigating the role and the properties of the next problem (2), that represents a special
sub-case of the more general problem (1). More specifically, we consider the case where
in (1) the feasible set Dk includes only a finite number of inequalities, and the function φk(x)
is a quadratic functional, i.e., we focus on the sub-problem and drop the dependency on k
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min
α,β

φ(x) =
1
2

xTQx + bTx + c

x = x̄ + αd + βz
a1 ≤ α ≤ b1
a2 ≤ β ≤ b2
ϵ1α + ϵ2β ≤ ϵ3

(2)

where Q ∈ Rn×n, b, x̄ ∈ Rn, c ∈ R, d, z ∈ Rn are given n-real search directions, and a1 ≤ b1,
a2 ≤ b2. Despite the apparent specific structure of (2), a number of real applications
may benefit from its solution, as partly described in Section 4 (see also [6] for a general
perspective and [7] for a more recent similar viewpoint within neural network frameworks).

As an example of versatility for the structure of (2), both in TRMs and LBMs, we will
shortly consider how it may be possibly successfully embedded within the framework of
Truncated Newton’s methods (TNMs—see Table 1).

Table 1. A standard framework for linesearch-based TNMs for large-scale problems. The alternative
of possibly using negative curvature directions allows for convergence to stationary limit points
which fulfill second-order necessary optimality conditions.

Set x0 ∈ Rn

Set ηk ∈ [0, 1) for any k, with {ηk} → 0

OUTER ITERATIONS
for k = 0, 1, . . .

Compute b ≈ ∇ f (xk) and Q ≈ ∇2 f (xk); if ∥b∥ is small then STOP

INNER ITERATIONS
- Compute dk, which approximately solves Newton’s equation

Qd + b = 0, i.e., it satisfies the truncation rule ∥Qdk + b∥ ≤ ηk∥b∥
- Possibly compute a bounded negative curvature direction zk at xk

Use a criterion to either combine dk and zk, or choose between dk and zk

If the directions dk and zk were combined, set vk(α) = ω1(α)dk + ω2(α)zk, and
use a curvilinear linesearch procedure to select α← αk. Otherwise, set vk(α) = αd̄
with d̄ ∈ {dk, zk}, and use an Armijo-type procedure to select α← αk

Update xk+1 = xk + vk(αk)
endfor

Where (see also [8–14])

• d ∈ Rn represents an approximate Newton-type direction, at the current feasible point
x̄ ∈ Rn;

• z ∈ Rn represents a negative curvature direction for the nonlinear function f (x), at
the current feasible point x̄ ∈ Rn;

• Q ∈ Rn×n represents the exact/approximate Hessian matrix of f (x) at x̄;
• b ∈ Rn represents the exact/approximate Gradient vector of f (x) at x̄;
• α and β are steplengths along the directions d, z ∈ Rn (i.e., following the taxonomy

of Table 1, we have α ← ω1(α) and β ← ω2(α)), with −∞ < a1 ≤ b1 < +∞
and −∞ < a2 ≤ b2 < +∞. The constraint ε1α + ε2β ≤ ε3 potentially plays a multi-
purpose role, modeling for instance the gradient-related property for the search direction
αd + βz ∈ Rn at x̄, i.e.,

(αd + βz)T∇ f (x̄) ≤ −c̄∥∇ f (x̄)∥h, (3)
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being 
ε1 = dT∇ f (x̄),

ε2 = zT∇ f (x̄),

ε3 = −c̄∥∇ f (x̄)∥h, c̄, h > 0.

The availability of an (exact) global solution for (2) may also suggest some alternatives
to Table 1, either selecting a TRM or a LBM framework, or combining the two approaches. In
particular, the scheme in Table 2 represents an immediate acceleration scheme for linesearch-
based TNMs with respect to Table 1, in case the global convergence of {xk} to stationary
limit points is simply sought. Note that selecting negative values for a1, a2 and positive
ones for b1, b2 allows us to possibly perform the following:

• reverse the directions dk and zk;
• use (2) in the light of simulating a dogleg-like [3] procedure for TRMs, also in LBM

nonconvex frameworks.

In Table 2, the global convergence to stationary limit points is easily preserved by using
similar results adopted for Table 1.

Table 2. A standard framework for linesearch-based TNMs for large-scale problems which exploits
the sub-problem (2). Differences with respect to Table 1 are quite evident.

Set x0 ∈ Rn

Set ηk ∈ [0, 1) for any k, with {ηk} → 0

OUTER ITERATIONS
for k = 0, 1, . . .

Compute b ≈ ∇ f (xk) and Q ≈ ∇2 f (xk); if ∥b∥ is small then STOP

INNER ITERATIONS
- Compute dk, which approximately solves Newton’s equation

Qd + b = 0, i.e., it satisfies the truncation rule ∥Qdk + b∥ ≤ ηk∥b∥
- Set zk = −b

Compute α∗ and β∗ by solving (2); then, update the trust-region
parameters a1, a2, b1, b2

Set vk = α∗dk + β∗zk, and use an Armijo-type procedure to select the
steplength αk along the direction vk

Update xk+1 = xk + αkvk
endfor

As a further alternative case for considering the exact global solution of (2), with
respect to Tables 1 and 2, we have the scheme in Table 3, where we suitably combine
the strategies used in TRMs and LBMs to ensure global convergence (in particular, TRMs
require the fulfillment of a sufficient reduction of the model in order to force a sufficient
decrease in the objective function, so that they do not need any linesearch procedure,
possibly implying a reduced computational burden with respect to LBMs. Conversely,
LBMs easily compute an effective search direction but they need to perform a linesearch
procedure, because they do not include any -direct- function reduction mechanism based on
the local quadratic model). In particular, if the test Aredk/Predk > ρ is fulfilled, there is no
need to perform a linesearch procedure, since the global convergence for {xk} is preserved
by the trust-region framework. We also remark that, in Table 3, the computation of both
φ(xk) and φ(xk + vk) is required, regardless of the outcomes of the test Aredk/Predk ̸> ρ,
since in any case these quantities must be computed.
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Table 3. A framework for combining trust-region and linesearch approaches within TNMs for large-
scale problems, exploiting the sub-problem again (2). Differences with respect to Tables 1 and 2 are
quite evident.

Set x0 ∈ Rn

Set ηk ∈ [0, 1) for any k, with {ηk} → 0. Set ρ > 0

OUTER ITERATIONS
for k = 0, 1, . . .

Compute b ≈ ∇ f (xk) and Q ≈ ∇2 f (xk); if ∥b∥ is small then STOP

INNER ITERATIONS
- Compute dk, which approximately solves Newton’s equation

Qd + b = 0, i.e., it satisfies the truncation rule ∥Qdk + b∥ ≤ ηk∥b∥
- Set zk = −b

Compute α∗ and β∗ by solving (2); then, set vk = α∗dk + β∗zk,
Aredk = f (xk)− f (xk + vk), Predk = φ(xk)− φ(xk + vk)

If Aredk/Predk ̸> ρ, use an Armijo-type procedure to select the steplength
αk along vk; otherwise, skip the linesearch procedure

Update the trust-region parameters a1, a2, b1, b2

Update xk+1 = xk + αkvk
endfor

Finally, there is a chance to further exploit the scheme (2) in a TNM framework based
on the linesearch procedure, in order to ensure global convergence properties for the
sequence {xk} to stationary limit points satisfying the second-order necessary optimality condi-
tions (namely, those stationary points where the Hessian matrix is positive and semidefinite).
The resulting scheme is proposed in Table 4 and potentially does not require additional
comments. The above examples give an overview of the possible basic contexts where the
solution of the sub-problem (2) is sought. Hence, to some extent, specifically exploiting
issues on its solution may yield a tool for practitioners working in Nonlinear Programming
frameworks. We remark that, both in Sections 3 and 6, the reader may find additional
guidelines for possible alternatives and extensions to the use of global solutions of (2).

Table 4. A framework of linesearch-based approaches within TNMs for large-scale problems: solving the
sub-problem (2) successfully allows for the convergence of the sequence {xk} to limit points satisfying
second-order necessary optimality conditions. Differences with respect to Tables 1–3 are quite evident.

Set x0 ∈ Rn

Set ηk ∈ [0, 1) for any k, with {ηk} → 0

OUTER ITERATIONS
for k = 0, 1, . . .

Compute b ≈ ∇ f (xk) and Q ≈ ∇2 f (xk); if ∥b∥ is small then STOP

INNER ITERATIONS
- Compute dk, which approximately solves Newton’s equation

Qd + b = 0, i.e., it satisfies the truncation rule ∥Qdk + b∥ ≤ ηk∥b∥

Compute a suitable negative curvature direction zk for f (x) at xk
Compute α∗ and β∗ by solving (2); then, set vk = α∗dk + β∗zk. Update the
trust-region parameters a1, a2, b1, b2

Use an Armijo-type procedure to select the steplength αk along vk

Update xk+1 = xk + αkvk
endfor
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We also highlight that our perspective both differs from SQP (Sequential Quadratic
Programming) methods—see, for example, the seminal paper [15], and approaches from
the literature where LSMs and TRMs have been combined. Indeed, in the basic structure of
SQPs (see also [16,17]), inner and outer iterations are performed. At each outer iteration, the
pair given by primal-dual variables is computed, and a problem similar to (2) is addressed.
On the contrary, we do not intend to propose a (novel) framework of global convergence
for Nonlinear Programming, but rather we suggest the generality of the scheme (2) within
a number of cases from the literature. Furthermore, we specifically focus on the exact
solution of the quadratic sub-problem (2) as well.

On the other hand, in the seminal paper [18] and in the more recent ones [19–21],
linesearch and trust-region techniques are integrated in a unified framework. Conversely,
our point of view merely intends to bridge the gap between them.

The structure of the present paper is as follows. In Section 2, we describe the conditions
ensuring the feasibility of our problem. In Section 3, we reveal the basic motivations for
our analysis and outcomes. Section 4 reports relevant remarks, highlighting how general
our proposal can be. Section 5 includes the Karush-Kuhn-Tucker conditions associated
with problem (2), along with precise guidelines to find a global minimum for it. Finally,
Section 6 provides some conclusions and suggestions for future work.

As regards the symbols adopted in the paper, ∥x∥1, ∥x∥2 and ∥x∥∞ are, respectively,
used to indicate the 1-norm, the 2-norm, and the ∞-norm of the vector x ∈ Rn or the
real n× m matrix x. Given the n-real vectors x and y, we indicate their standard inner
product with xTy. Given the matrix A ∈ Rm×n, we then indicate by A+ its Moore-Penrose
pseudoinverse matrix, i.e., the unique matrix, such that AA+A = A, A+AA+ = A+,
(AA+)T = AA+, (A+A)T = A+A. With A ⪰ 0 (A ≻ 0), we indicate a positive semidefinite
(positive definite) matrix A.

2. Feasibility Issues for Our Quadratic Problem

Here, we consider some feasibility issues for the linear inequality constrained quadratic
problem (2). Clearly, (2) just includes the two real unknowns α and β. Moreover, as regards
the existence of solutions for (2), we have the following result.

Lemma 1 (Feasibility). Let the problem (2) be given and assume that the real values a1, b1, a2, b2
are finite, with a1 ≤ b1 and a2 ≤ b2. Then, (2) admits solutions if and only if at least one of the
following conditions holds:

Cond. I : ϵ1 = ϵ2 = 0 and ϵ3 ≥ 0.
Cond. II: ϵ1 = 0 and ϵ2 ̸= 0; moreover,

– if ϵ2 > 0, then a2 ≤ ϵ3/ϵ2
– if ϵ2 < 0, then b2 ≥ ϵ3/ϵ2.

Cond. III: ϵ1 ̸= 0 and ϵ2 = 0; moreover,

– if ϵ1 > 0, then a1 ≤ ϵ3/ϵ1
– if ϵ1 < 0, then b1 ≥ ϵ3/ϵ1.

Cond. IV: ϵ1 ̸= 0, ϵ2 ̸= 0, −ϵ1/ϵ2 < 0, moreover,

– if ε1 > 0 and ε2 > 0, then a2 ≤ −(ϵ1/ϵ2)a1 + (ϵ3/ϵ2)
– if ε1 < 0 and ε2 < 0, then b2 ≥ −(ϵ1/ϵ2)b1 + (ϵ3/ϵ2).

Cond. V: ϵ1 ̸= 0, ϵ2 ̸= 0, −ϵ1/ϵ2 > 0, moreover,

– if ε1 < 0 and ε2 > 0, then a2 ≤ −(ϵ1/ϵ2)b1 + (ϵ3/ϵ2)
– if ε1 > 0 and ε2 < 0, then b2 ≥ −(ϵ1/ϵ2)a1 + (ϵ3/ϵ2).

Proof of Lemma 1. For the sake of simplicity, we refer to Figure 1. The objective function
in (2) is continuous, so that the existence of solutions follows from the compactness and
nonemptiness of the feasible region. In this regard, the compactness is a consequence of
assuming a1, b1, a2, b2 finite. Furthermore, it is not difficult to realize that the feasible set
of (2) is nonempty as long as at least one among the five conditions, Cond. I–Cond. V, is
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fulfilled, where the dashed-dotted line in Figure 1 represents the line associated with the
last inequality constraint in (2). In particular, Cond. IV refers to the corner points A and B
of Figure 1, while Cond. V refers to the vertices C and D.

Figure 1. A graphical representation of the feasible set in (2). The dashed-dotted lines represent all
the extreme choices for the last inequality constraint in (2).

3. On the Use of Quadratic Sub-Problems Within TRMs and LBMs, in
Large-Scale Optimization

Here, we give details about a possible motivation for our proposal, in order to re-
duce the gap between two renowned classes of optimization methods, namely TRMs and
LBMs. We are indeed persuaded that such a viewpoint may suggest a number of possible
enhancements, to improve both the last classes of methods.

In this regard, observe that a TRM for large-scale problems is an iterative procedure
that generates the sequence of n-real iterates {xk}, and seeks at any step k for the solution
of the trust-region sub-problem

min
s

qk(s) = f (xk) +∇ f (xk)
Ts +

1
2

sTQks

∥s∥2 ≤ ∆k,
(4)

where xk is the current iterate, Qk represents the exact/approximate Hessian matrix ∇2 f (xk),
and ∆k > 0 represents the radius of the trust-region, i.e., the compact subset where the
model qk(s) needs to be validated (for an exhaustive description of TRMs for Nonlinear
Programming, the reader can refer to [2]). A number of possible variants of (4) can be
introduced when n is large, including iterative updating strategies for both Qk and ∆k, and
a number of approximate/sophisticated/refined schemes for its solution are available in
the literature.

A distinguishing feature of TRMs, with respect to LBMs, is that at iteration k the
methods in the first class attempt to determine the stepsize αk and the search direction dk at
once, so that xk+1 = xk + sk ≡ xk + αkdk, where sk indeed approximately/exactly solves (4).
Conversely, in LBMs, the computations of αk and dk are independent, as detailed later on
in this paper. In particular, (see also [3]) the effective computation of sk in TRMs properly
attempts to comply with the following issues:

• sk can be computed by either an exact (small- and medium-scale problems) or an
approximate (large-scale problems) procedure;

• In order to prove the global convergence of the sequence {xk} to stationary limit
points satisfying either first- or second-order necessary optimality conditions, sk is
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required to provide a sufficient reduction of the quadratic model qk(s), i.e., the difference
qk(0)− qk(sk) is asked to satisfy a condition like (c > 0)

qk(0)− qk(sk) ≥ c∥∇ f (xk)∥2 min
{

∆k,
∥∇ f (xk)∥2

1 + ∥Q∥2

}
;

• sk can be computed by an approximate procedure, e.g., by adopting a Cauchy step or
using the Steihaug conjugate gradient (see [22,23]), regardless of Qk signature. Then,
the approximate solution of (4) is merely sought on a linear manifold of a dimension of
one or at most two, rather than on the entire subset B ≡ {s ∈ Rn : ∥s∥2 ≤ ∆k};

• Depending on a number of additional assumptions, TRMs can prove to be globally
convergent to either a simple stationary limit point, or to a point which satisfies
second-order necessary optimality conditions [2];

• Finding the exact/accurate solution of the sub-problem (4) is in general quite a cum-
bersome task in large-scale problems, representing a difficult goal that is often (when
possible) skipped.

On the other hand, to some extent, LBMs represent the counterpart of TRMs. Indeed,
to yield the next iterate xk+1 = xk + αkdk, they perform the computation of the steplength
αk and the direction dk as separate tasks. Furthermore, unlike for TRMs, the novel iterate
xk+1 in LBMs can be also obtained by adopting the more general update

xk+1 = xk + αkdk + βkzk, (5)

with dk and zk now being two search directions summarizing different information on the
function f (x), and αk and βk being stepsizes. In particular:

• when zk ≡ 0 (or βk ≡ 0 for any k), then dk represents a Newton-type direction,
being typically computed by approximately solving Newton’s equation ∇2 f (xk)d =
−∇ f (xk) at the current iterate xk. Then, an Armijo-type linesearch procedure is
applied along dk to compute αk, provided that dk is gradient-related (see e.g., [3]) at xk;

• when zk ̸= 0, then dk represents a Newton-type direction again, while zk is typically a
negative curvature direction for f (x) at xk, which approximates an eigenvector associated
with the least negative eigenvalue of∇2 f (xk). The vector zk plays an essential role, when
LBMs’ convergence to stationary points satisfying the second-order necessary optimality
conditions needs to be proved. In the last case, the computation of the steplengths αk
and βk is often carried out at once, (as in curvilinear linesearch procedures—see [24]),
or the steplength computation is carried out by pursuing independent tasks (see, for
example, [25]). We highlight that in (5), when both dk ̸= 0 and zk ̸= 0, we may experience
difficulties related to properly scaling the two search directions.

As a general class of efficient algorithms within LBMs for large-scale problems, we
find Truncated Newton methods (TNMs) coupled with a linesearch procedure (see Table 1).
Similarly to general TRMs, they are evidently based on possibly computing dk and zk after
exploiting the second-order Taylor’s expansion of f (x) at xk. However, a couple of quite
disappointing issues arise when applying linesearch-based TNMs, namely:

• Unlike trust-region based TNMs, at iterate xk, the search of a stationary point for a
quadratic polynomial model of f (x) (i.e., Newton’s equation) is performed on Rn, so
that the quadratic expansion is not trusted on a more reliable compact subset (trust-
region) of Rn. Thus, the search direction dk might show poor performance when the
iterates in the sequence {xk} are far from a stationary limit point x∗. More specifically,
note that in case ∇2 f (xk) ⪰ 0; then, solving Newton’s equation and the trust-region
sub-problem

min
d

qk(d) = f (xk) +∇ f (xk)
Td +

1
2

dT∇2 f (xk)d

∥d∥2 ≤ γk,
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for any γk ≥ ∥[∇2 f (xk)]
+∇ f (xk)∥2 yields the same solutions. Conversely, when

∇2 f (xk) is indefinite, then Newton’s equation provides a saddle point for qk(d),
that might be interpreted as a solution to a trust-region sub-problem (the interested
reader may consider the paper [26] for some extensions). Furthermore, from this
perspective, we remark that in LBMs, solving (2) where dk = −∇ f (xk), zk ≡ 0, and
ε1 = ε2 = ε3 = 0, is to a to large extent equivalent to computing the Cauchy step
when solving (4). Indeed, in the last case, the trust-region constraint in (4), in principle,
can be equivalently replaced by the compact feasible set (box constraints) in (2), after
setting ε1 = ε2 = ε3 = 0. On the other hand, in case ∇2 f (xk) ⪰ 0, and setting (2)
dk = −∇ f (xk) and zk = −[∇2 f (xk)]

+∇ f (xk), along with ε1 = ε2 = ε3 = 0, then,
with similar reasoning, the solution to (2) closely resembles the application of the
dogleg method when solving (4). Finally, since the coefficients a1, a2 in (2) may have
negative values, we may potentially reverse the directions dk and zk when solving (2).
Thus, following the idea behind (3), the scheme (2) suggests that, in case ∇2 f (xk) is
also indefinite, (2) easily generalizes the proposals in [27]. In fact, following (3), we are
able to exactly compute a global minimum (α∗, β∗) for (2), regardless of the signature
of Q, so that the resulting direction α∗dk + β∗zk is gradient-related at xk.

• As in (5), the search directions dk and zk might be suitably combined in a curvilinear
framework (see, for example, [24]). However, to our knowledge, the selection of αk
and βk in the literature is seldom performed with a joint procedure to separately assess
αk and βk, i.e., αk and βk are rarely chosen as independent parameters. Hence, in
the literature of linesearch-based TNMs, the linesearch procedure that starts from
xk and yields xk+1 explores a one-dimensional manifold (regular curve), rather than
considering xk + αdk + βzk as a two-dimensional manifold with independent real
coefficients α and β.

In this regard, using (2) within LBMs tends to partially compensate for the drawbacks
in the last two items, in light of the great success that TRMs have achieved in the last decade.
In particular, using (2) within linesearch-based TNMs, our aim is that of developing a simple
tool which could possibly carry out the following:

1. Combines at iterate xk two independently computed vectors, namely dk, zk ∈ Rn,
by exactly computing a global minimum (we recall that, conversely, a global solution
of the trust-region sub-problem (4) is often only approximately computed) for the
two-dimensional constrained problem (2), being x̄ ← xk, d← dk, z← zk;

2. Adaptively updates the parameters a1, a2, b1, b2 in (2), when the iterate xk changes,
following the rationale behind the update of ∆k in (4), and retaining the strong con-
vergence properties of TRMs. This fact is of remarkable interest, since in (2) the
information associated with the search directions dk and zk is suitably trusted in a
compact subset of Rn (namely, the box constraints a1 ≤ α ≤ b1, a2 ≤ β ≤ b2);

3. Exactly computes a cheap global minimum (α∗, β∗) for (2), so that the vector α∗dk + β∗sk
is then provided to a standard linesearch procedure such as the Armijo rule, to
ensure that the global convergence of the sequence {xk} to stationary (limit) points
is preserved;

4. Allows for the convergence of subsequences of the iterates {xk} to stationary limit
points, where either first- or second-order necessary optimality conditions are fulfilled;

5. Preserves generality within a wide range of optimization frameworks, as reported in
the next Section 4;

6. Combines the effects of dk and zk, skipping all the drawbacks related to a possible
different scaling between these directions. We recall that since dk and zk are gen-
erated through the application of different methods, then the comparison of their
performances may be biased by the latter generating methods.

The TNMs sketched in Tables 2–4 are only examples of proposals in light of the previ-
ous comments.
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4. How General Is the Model (2) in Nonlinear Programming Frameworks?

This section is devoted to reporting a number of real constrained optimization schemes
from Nonlinear Programming, whose formulation is encompassed in (2). We can see that for
some of the following schemes (see Figure 2), it is possible that more than one reformulation
can be considered in the framework (2).

Figure 2. Examples where the structure of the feasible set in (2) is helpful: case (a) is treated in
Section 4.1, case (b) is treated in Section 4.2, case (c) is treated in Section 4.3, case (d) is treated in
Section 4.4 and case (e) is treated in Section 4.5.

4.1. Minimization over a Bounded Simplex

We consider the problem of minimizing a quadratic functional over the simplex
S ⊂ Rn, such that

min
x

1
2

xTQx + bTx + c

x ∈ S,
(6)

where S = {x ∈ Rn : x = ∑3
i=1 λixi, ∑3

i=1 λi = 1, λi ≥ 0, i = 1, 2, 3}. Figure 2a reports an
example of a simplex. In this regard, by simply setting in (2)

• d = x2 − x1, z = x3 − x1,
• x̄ = x1,
• a1 = 0, b1 = 1, a2 = 0, b2 = 1,
• ϵ1 = ϵ2 = ϵ3 = 1,

the problem (6) is a special case of the problem (2).

4.2. Minimization over a Bounded Polygon

We consider the problem of minimizing a quadratic functional over a polygon P ⊂ R2,
described by a finite number m of vertices (observe that the points in the polygon P must
belong to a hyperplane π ⊂ Rn, with π : ωTx + ω0 = 0, ω = (ω1, . . . , ωn)T ∈ Rn, ω0 ∈ R,
so that ωT x̄ + ω0 = 0 for any x̄ ∈ P.), i.e.,

min
x

1
2

xTQx + bTx + c

x ∈ P,
(7)
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where P = {x ∈ R2 : x = ∑m
i=1 λixi, ∑m

i=1 λi = 1, λi ≥ 0, i = 1, . . . , m}. Figure 2b reports
an example of a polygon with m = 5. In this regard, the problem (7) can be split into to
solution of the (m− 2) sub-problems

min
x

1
2

xTQx + bTx + c

x ∈ Si, i = 1, . . . , m− 2,
(8)

where

Si =

{
x ∈ π ⊂ R2 : x = ∑

j∈{1,i+1,i+2}
λjxj, ∑

j∈{1,i+1,i+2}
λj = 1, λj ≥ 0, j ∈ {1, i + 1, i + 2}

}
,

which are of the form (6). Thus, solving the problem (7) corresponds to solve a sequence of
(m− 2) instances of the problem (2).

4.3. Minimization over a Bounded Segment

We consider the problem of minimizing a quadratic functional over a segment L ⊂ Rn, i.e.,

min
x

1
2

xTQx + bTx + c

x ∈ L,
(9)

where L = {x ∈ Rn : x = λx1 + (1− λ)x2, λ ∈ [0, 1]}. Figure 2c reports an example of a
segment. In this regard, by simply setting in (2)

• d = x2 − x1, z ≡ 0,
• x̄ = x1,
• a1 = 0, b1 = 1, a2 = 0, b2 = 0,
• ϵ1 = ϵ2 = ϵ3 = 0,

the problem (9) is a special case of the problem (2).

4.4. Minimization over a Bounded Box in R2

We consider the problem of minimizing a quadratic functional over a box domain
D ⊂ R2, i.e.,

min
x

1
2

xTQx + bTx + c

x ∈ D,
(10)

where D = {x ∈ R2 : ci ≤ xi ≤ ei, i = 1, 2}. Figure 2d reports an example of a box
domain. In this regard, by simply setting in (2)

• d =

(
e1 − c1

0

)
, z =

(
0

e2 − c2

)
• x̄ =

(
c1
c2

)
• a1 = 0, b1 = 1, a2 = 0, b2 = 1,
• ϵ1 = ϵ2 = ϵ3 = 0,

the problem (10) is a special case of the problem (2). As an alternative to the previous
setting, we might also consider treating this case with a setting in (2), given by

• d =

( e1−c1
2
0

)
, z =

(
0

e2−c2
2

)
• x̄ =

( e1+c1
2

e2+c2
2

)
• a1 = −1, b1 = 1, a2 = −1, b2 = 1,
• ϵ1 = ϵ2 = ϵ3 = 0.
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4.5. Minimization Including a 1-Norm Inequality Constraint in R2

We consider the problem of minimizing a quadratic functional subject to the 1-norm
inequality constraint x ∈ N, with N ⊂ R2, i.e.,

min
x

1
2

xTQx + bTx + c

x ∈ N,
(11)

which is N = {x ∈ R2 : ∥x∥1 ≤ a}. Figure 2e reports an example of such a constraint. In
this regard, it suffices to recast (11) as in (8), where

• m = 6
• x̄ = x1 = 0

• x2 =

(
0
1

)
, x3 =

(
1
0

)
, x4 =

(
0
−1

)
, x5 =

(
−1
0

)
, x6 = x2,

so that four instances of the problem (2) need to be solved.

4.6. Minimization Including an ∞-Norm Inequality Constraint in R2

We consider the problem of minimizing a quadratic functional subject to the ∞-norm
inequality constraint x ∈ E, with E ⊂ R2, i.e.,

min
x

1
2

xTQx + bTx + c

x ∈ E,
(12)

which is E = {x ∈ R2 : ∥x∥∞ ≤ a}. In this regard, we obtain similar results with respect
to Section 4.5. Indeed, by simply setting in (2)

• d =

(
a
0

)
, z =

(
0
a

)
• x̄ = 0
• a1 = −1, b1 = 1, a2 = −1, b2 = 1,
• ϵ1 = ϵ2 = ϵ3 = 0,

the problem (12) is a special case of the problem (2).

4.7. Minimization Including a 2-Norm Inequality Constraint in R2

We consider the problem of minimizing a quadratic functional in R2 subject to the
2-norm inequality constraint ∥x∥2 ≤ γ, with γ ≥ 0, i.e.,

min
x

1
2

xTQx + bTx + c

∥x∥2 ≤ γ, x ∈ R2.
(13)

In this regard, it suffices to observe that the solution of (2) provides both a

• LOWER bound to the solution of (13), as long as we set (following Section 4.6)

– d =

(
γ
0

)
, z =

(
0
γ

)
– x̄ = 0
– a1 = −1, b1 = 1, a2 = −1, b2 = 1,
– ϵ1 = ϵ2 = ϵ3 = 0,

• UPPER bound: to the solution of (13), as long as we follow the indications in Section 4.5,
i.e., we recast and solve (11) as in (8), where

– m = 6
– x̄ = x1 = 0
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– x2 =

(
0
γ

)
, x3 =

(
γ
0

)
, x4 =

(
0
−γ

)
, x5 =

(
−γ
0

)
, x6 = x2,

so that four instances of the problem (2) need to be solved.

Note that the dogleg-like methods for the approximate solution of the trust-region prob-
lem (4), in the convex case, equivalently solve the sub-problem (13) with just a couple
of unknowns.

5. KKT Conditions and the Fast Solution of Problem (2)

Replacing the expression of the vector x in (2) within the objective function, we easily
obtain the equivalent problem

min
α,β

φ(α, β)

P :


a1 ≤ α ≤ b1
a2 ≤ β ≤ b2
ϵ1α + ϵ2β ≤ ϵ3,

(14)

where 

φ(α, β) = 1
2

(
α
β

)T( t u
u w

)(
α
β

)
+

(
y
h

)T(
α
β

)
+ q

t = dTQd
u = dTQz = zTQd
w = zTQz
y = (Qx̄ + b)Td
h = (Qx̄ + b)Tz

q =
(

1
2 Qx̄ + b

)T
x̄ + c.

Observe that transforming (2) into (14) only requires the computation of two additional
matrix-vector products (i.e., Qd and Qz), along with six inner products. The problem (14) is
a constrained quadratic problem, such that first-order Fritz-John optimality conditions do
not require additional constraint qualifications (since all the constraints are linear). Thus,
after considering its Lagrangian function

L(α, β, µ1, µ2, µ3, µ4, µ5) =

φ(α, β)− µ1(α− a1) + µ2(α− b1)− µ3(β− a2) + µ4(β− b2) + µ5(ϵ1α + ϵ2β− ϵ3)

we have the next set of equalities/inequalities representing the associated KKT conditions:

(
t u
u w

)(
α∗

β∗

)
+

(
y
h

)
+

(
−µ∗1 + µ∗2 + ϵ1µ∗5
−µ∗3 + µ∗4 + ϵ2µ∗5

)
=

(
0
0

)
(

α∗

β∗

)
∈ P

µ∗1 [α
∗ − a1] = 0

µ∗2 [α
∗ − b1] = 0

µ∗3 [β
∗ − a2] = 0

µ∗4 [β
∗ − b2] = 0

µ∗5 [ϵ1α∗ + ϵ2β∗ − ϵ3] = 0
µ∗i ≥ 0, i = 1, . . . , 5.

(15)

The remaining part of the present section will be devoted to analyze all the possible
solutions of (15), with the aim of possibly computing a global minimum for (2). In this
regard, exploiting the solutions of (15) evidently undergoes a reduction, allowing us to
analyze the cases (I)–(XII) in Figure 3.
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Figure 3. Overview of possible solutions (I)–(XII) for KKT conditions in (15).

Observing that in (15) the multipliers µ∗i and i = 1, . . . , 5 must fulfill nonnegativity
conditions, it is not difficult to realize that computing all the KKT points satisfying (15)
can turn out to be a burdensome task, including a number of sub-cases depending on the
possible combinations of signs for the parameters a1, b1, a2, b2, ϵ1, ϵ2 and ϵ3. Conversely,
a global minimizer for (2) can be equivalently exploited by analyzing all the possible
solutions of (15) uniquely in terms of α∗ and β∗, without requiring the computation of the
multipliers as well. Hence, we limit our analysis to consider the computation of α∗ and β∗

in the cases (I)–(XII) of Figure 3, where

• Cases (I), (II), (III), (IV) are associated with possible solutions in the vertices of the box
constraints;

• Cases (V), (VI), (VII), (VIII) are associated with possible solutions on the edges of the
box constraints;

• Case (IX) represents a possible feasible unconstrained minimizer for the objective
function in (2);

• Cases (X), (XI), (XII) are associated with possible solutions, making the last inequality
constraint in (14) active.

Then, in Lemma 2, we will provide a simple theoretical result which justifies our
simplification, with respect to computing all the KKT points. In this regard, we preliminarily
set i = 1 and consider the next cases from Figure 3, with {yi} being the sequence of tentative
solution points of (14):

• Case (I): We set ᾱ = b1, β̄ = b2. If ϵ1ᾱ + ϵ2 β̄ ≤ ϵ3 , then set

P1 =

(
b1
b2

)
, φi = φ(b1, b2), yi = P1, i = i + 1; (16)

• Case (II): We set ᾱ = a1, β̄ = b2. If ϵ1ᾱ + ϵ2 β̄ ≤ ϵ3 , then set

P2 =

(
a1
b2

)
, φi = φ(a1, b2), yi = P2, i = i + 1; (17)
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• Case (III): We set ᾱ = b1, β̄ = a2. If ϵ1ᾱ + ϵ2 β̄ ≤ ϵ3 , then set

P3 =

(
b1
a2

)
, φi = φ(b1, a2), yi = P3, i = i + 1; (18)

• Case (IV): We set ᾱ = a1, β̄ = a2. If ϵ1ᾱ + ϵ2 β̄ ≤ ϵ3 , then set

P4 =

(
a1
a2

)
, φi = φ(a1, a2), yi = P4, i = i + 1; (19)

• Case (V): We set ᾱ = b1 and possibly compute the solution β̄ = −(ub1 + h)/w of
the equation

dφ(b1, β)

dβ
= wβ + ub1 + h = 0,

so that:

– if w ̸= 0 AND ϵ1ᾱ + ϵ2 β̄ ≤ ϵ3 , then set

P5 =

(
ᾱ
β̄

)
, φi = φ

(
ᾱ, β̄

)
, yi = P5, i = i + 1; (20)

– if w = 0 AND ub1 + h ̸= 0 , then there is no solution for Case (V);

– if w = 0 AND ub1 + h = 0 , then set β̄ ∈ [a2, b2] as any value satisfying ϵ1ᾱ +

ϵ2 β̄ ≤ ϵ3, and compute P5 as in (20);

• Case (VI): We set β̄ = a2 and possibly compute the solution ᾱ = −(ua2 + y)/t of
the equation

dφ(α, a2)

dα
= tα + ua2 + y = 0,

so that:

– if t ̸= 0 AND ϵ1ᾱ + ϵ2 β̄ ≤ ϵ3 , then set

P6 =

(
ᾱ
β̄

)
, φi = φ(ᾱ, β̄), yi = P6, i = i + 1; (21)

– if t = 0 AND ua2 + y ̸= 0 , then there is no solution for Case (VI);

– if t = 0 AND ua2 + y = 0 , then set ᾱ ∈ [a1, b1] as any value satisfying ϵ1ᾱ +

ϵ2 β̄ ≤ ϵ3, and compute P6 as in (21);

• Case (VII): We set ᾱ = a1 and possibly compute the solution β̄ = −(ua1 + z)/w of
the equation

dφ(a1, β)

dβ
= wβ + ua1 + h = 0,

so that:

– if w ̸= 0 AND ϵ1ᾱ + ϵ2 β̄ ≤ ϵ3 , then set

P7 =

(
ᾱ
β̄

)
, φi = φ(ᾱ, β̄), yi = P7, i = i + 1; (22)

– if w = 0 AND ua1 + h ̸= 0 , then there is no solution for Case (VII);

– if w = 0 AND ua1 + h = 0 , then set β̄ ∈ [a2, b2] as any value satisfying ϵ1ᾱ +

ϵ2 β̄ ≤ ϵ3, and compute P7 as in (22);
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• Case (VIII): We set β̄ = b2 and possibly compute the solution ᾱ = −(ub2 + y)/t of
the equation

dφ(α, b2)

dα
= tα + ub2 + y = 0,

so that:

– if t ̸= 0 AND ϵ1ᾱ + ϵ2 β̄ ≤ ϵ3 , then set

P8 =

(
ᾱ
β̄

)
, φi = φ(ᾱ, β̄), yi = P8, i = i + 1; (23)

– if t = 0 AND ub2 + y ̸= 0 , then there is no solution for Case (VIII);

– if t = 0 AND ub2 + y = 0 , then set ᾱ ∈ [a1, b1] as any value satisfying ϵ1ᾱ +

ϵ2 β̄ ≤ ϵ3, and compute P8 as in (23);

• Case (IX): If tw− u2 ̸= 0 , we compute the solution

(
ᾱ
β̄

)
= −

(
t u
u w

)−1( y
h

)
of the linear system 

φα(α, β) = tα + uβ + y = 0

φβ(α, β) = uα + wβ + h = 0;

otherwise, in case tw− u2 = 0 AND ((th− uy ̸= 0) OR (uh− wy ̸= 0)) , then there
is no solution for Case (IX);

otherwise, in case tw− u2 = 0 AND (th− uy = 0) AND (uh− wy = 0) , then we
have three sub-cases:

1. t > 0 : then, recalling that we are in the sub-case where equations φα(α, β) = 0
and φβ(α, β) = 0 yield the same information, we exploit equation φα(α, β) = 0
and we set α = −(uβ + y)/t. Thus, from the bounds and the last inequality
in (14), we obtain 

a2 ≤ β ≤ b2

(ε2t− ε1u)β ≤ ε3t + ε1y

a1t + y ≤ −uβ ≤ b1t + y

which yield the next three cases:

– ε2t− ε1u > 0 : admitting other three sub-cases, namely

* u > 0 , so that we set

β1 = max
{

a2,− b1t + y
u

}
≤ β ≤ min

{
b2,

ε3t + ε1y
ε2t− ε1u

,− a1t + y
u

}
= β2

* u = 0 , so that we set

β1 = a2 ≤ β ≤ min
{

b2,
ε3t + ε1y

ε2t

}
= β2
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* u < 0 , so that we set

β1 = max
{

a2,− a1t + y
u

}
≤ β ≤ min

{
b2,

ε3t + ε1y
ε2t− ε1u

,− b1t + y
u

}
= β2

– ε2t− ε1u = 0 : admitting no solution for Case (IX) as long as the condition

ε3t + ε1y < 0 holds. Conversely, in case ε3t + ε1y ≥ 0 , we have the three
cases:

* u > 0 , so that we set

β1 = max
{

a2,− b1t + y
u

}
≤ β ≤ min

{
b2,− a1t + y

u

}
= β2

* u = 0 , so that we set

β1 = a2 ≤ β ≤ b2 = β2

* u < 0 , so that we set

β1 = max
{

a2,− a1t + y
u

}
≤ β ≤ min

{
b2,− b1t + y

u

}
= β2

– ε2t− ε1u < 0 : corresponding to the three cases:

* u > 0 , so that we set

β1 = max
{

a2,− b1t + y
u

,
ε3t + ε1y
ε2t− ε1u

}
≤ β ≤ min

{
b2,− a1t + y

u

}
= β2

* u = 0 , so that we set

β1 = max
{

a2,
ε3t + ε1y
ε2t− ε1u

}
≤ β ≤ b2 = β2

* u < 0 , so that we set

β1 = max
{

a2,− a1t + y
u

,
ε3t + ε1y
ε2t− ε1u

}
≤ β ≤ min

{
b2,− b1t + y

u

}
= β2

2. t = 0 : then, recalling that we are in the sub-case where equations φα(α, β) = 0
and φβ(α, β) = 0 yield the same information, with tw − u2 = 0, we exploit
equation φα(α, β) = 0 with t = u = 0. Therefore, we have

a2 ≤ β ≤ b2

y = 0

a1 ≤ α ≤ b1

which yield the next two cases:

– y = 0 This case implies that the objective function is constant (i.e., φ(α, β) = q),
so that we set

β1 = a2 ≤ β ≤ b2 = β2

– y ̸= 0 : admitting no solution for Case (IX)
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3. t < 0 : then, recalling that we are again in the sub-case where equations φα(α, β) = 0
and φβ(α, β) = 0 yield the same information, we exploit equation φα(α, β) = 0
and we set α = −(uβ + y)/t. Thus, from the bounds and the last inequality
in (14), we obtain 

a2 ≤ β ≤ b2

(ε2t− ε1u)β ≥ ε3t + ε1y

b1t + y ≤ −uβ ≤ a1t + y

which yield the next three cases:

– ε2t− ε1u > 0 : admitting other three cases, namely

* u > 0 , so that we set

β1 = max
{

a2,− a1t + y
u

,
ε3t + ε1y
ε2t− ε1u

}
≤ β ≤ min

{
b2,− b1t + y

u

}
= β2

* u = 0 , so that b1t + y ≤ −uβ ≤ a1t + y is always fulfilled and we set

β1 = max
{

a2,
ε3t + ε1y

ε2t

}
≤ β ≤ b2 = β2

* u < 0 , so that we set

β1 = max
{

a2,− b1t + y
u

,
ε3t + ε1y
ε2t− ε1u

}
≤ β ≤ min

{
b2,− a1t + y

u

}
= β2

– ε2t− ε1u = 0 : admitting no solution for Case (IX) as long as the condition

ε3t + ε1y > 0 holds. Conversely, in case ε3t + ε1y ≤ 0 we have the three
cases:

* u > 0 , so that we set

β1 = max
{

a2,− a1t + y
u

}
≤ β ≤ min

{
b2,− b1t + y

u

}
= β2

* u = 0 , so that we set

β1 = a2 ≤ β ≤ b2 = β2

* u < 0 , so that we set

β1 = max
{

a2,− b1t + y
u

}
≤ β ≤ min

{
b2,− a1t + y

u

}
= β2

– ε2t + ε1u < 0 : corresponding to the three cases

* u > 0 , so that we set

β1 = max
{

a2,− a1t + y
u

}
≤ β ≤ min

{
b2,

ε3t + ε1y
ε2t− ε1u

,− b1t + y
u

}
= β2

* u = 0 , so that we set

β1 = a2 ≤ β ≤ min
{

b2,
ε3t + ε1y
ε2t− ε1u

}
= β2
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* u < 0 , so that we set

β1 = max
{

a2,− b1t + y
u

}
≤ β ≤ min

{
b2,

ε3t + ε1y
ε2t− ε1u

,− a1t + y
u

}
= β2.

Thus, overall, for Case (IX), if β1 ≤ β2, we set

β̄ = (β1 + β2)/2, ᾱ =

{
−(uβ̄ + y)/t t ̸= 0
(a1 + b1)/2 t = 0,

along with

P9 =

(
ᾱ
β̄

)
, φi = φ(ᾱ, β̄), yi = P9, i = i + 1, (24)

otherwise, if β1 > β2, there is no solution for Case (IX);
• Case (X): We set ᾱ = a1 with ε1a1 + ε2β = ε3, and we distinguish among three cases:

– if ε2 = 0 AND ε3 = ε1a1 , then set β1 = a2 ≤ β ≤ b2 = β2;

– if ε2 = 0 AND ε3 ̸= ε1a1 , then there is no solution for Case (X);

– if ε2 ̸= 0 , then set

β1 = max
{

a2,
ε3 − ε1a1

ε2

}
≤ β ≤ min

{
b2,

ε3 − ε1a1

ε2

}
= β2.

Set β̄ = (β1 + β2)/2 with

P10 =

(
a1
β̄

)
, φi = φ(a1, β̄), yi = P10, i = i + 1; (25)

• Case (XI): We distinguish among the next four cases:

– if ε1 = ε2 = 0 AND ε3 ≥ 0 , then set ᾱ = (a1 + b1)/2, β1 = a2 ≤ β ≤ β2 = b2;
otherwise, there is no solution for Case (XI);

– if ε1 > 0 , then α = (−ε2β + ε3)/ε1 and we analyze three sub-cases:

1. If ε2 > 0 , then set

β1 = max
{

a2,
ε1b1 − ε3

−ε2

}
≤ β ≤ min

{
b2,

ε1a1 − ε3

−ε2

}
= β2;

2. If ε2 = 0 , then set β1 = a2 ≤ β ≤ b2 = β2;

3. If ε2 < 0 , then set

β1 = max
{

a2,
ε1a1 − ε3

−ε2

}
≤ β ≤ min

{
b2,

ε1b1 − ε3

−ε2

}
= β2;

– if ε1 = 0 AND ε2 ̸= 0 , then set β̄ = ε3/ε2, ᾱ = (a1 + b1)/2; if (β̄ < a2 OR
β̄ > b2), then there is no solution for Case (XI);

– if ε1 < 0 , then α = (−ε2β + ε3)/ε1 and we analyze three sub-cases:

1. If ε2 > 0 , then set

β1 = max
{

a2,
ε1a1 − ε3

−ε2

}
≤ β ≤ min

{
b2,

ε1b1 − ε3

−ε2

}
= β2;

2. If ε2 = 0 , then set β1 = a2 ≤ β ≤ b2 = β2;
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3. If ε2 < 0 , then set

β1 = max
{

a2,
ε1b1 − ε3

−ε2

}
≤ β ≤ min

{
b2,

ε1a1 − ε3

−ε2

}
= β2.

Set β̄ = (β1 + β2)/2 and ᾱ = (−ε2 β̄ + ε3)/ε1; if a1 ≤ ᾱ ≤ b1, then set

P11 =

(
ᾱ
β̄

)
, φi = φ(ᾱ, β̄), yi = P11, i = i + 1, (26)

otherwise, there is no solution for Case (XI);
• Case (XII): We set β̄ = a2 with ε1α + ε2a2 = ε3, and we distinguish among three cases:

– if ε1 = 0 AND ε3 = ε2a2 , then set ᾱ = (a1 + b1)/2;

– if ε1 = 0 AND ε3 ̸= ε2a2 , then there is no solution for Case (XII);

– if ε1 ̸= 0 , then set

α1 = max
{

a1,
ε3 − ε2a2

ε1

}
≤ α ≤ min

{
b1,

ε3 − ε2a2

ε1

}
= α2.

Set ᾱ = (α1 + α2)/2 with

P12 =

(
ᾱ
a2

)
, φi = φ(ᾱ, a2), yi = P12, i = i + 1. (27)

The next lemma justifies the role of the last analysis for the computation of possible
solutions of (14).

Lemma 2. Given the problem (14), and let the assumptions of Lemma 1 hold. Consider the sequence
of the m points {yi} and the sequence of the m values {φi}, from (16)–(27), which are relabelled so
that for any index i ≥ 2, we have

φi−1 ≤ φi ≤ φi+1.

Then, if
ß̂ ∈ argmin

1≤i≤m
{φi}

then, the point yß̂ is a global minimum for (14).

Proof of Lemma 2. The existence of a global minimum y∗ and the corresponding value
φ(y∗) for (14) is ensured by Lemma 1. Moreover, each global minimum of (14) naturally
fulfills KKT conditions, so that each global minimum must belong to the sequence {yi}.
Now, assume by contradiction that there exists a point ỹ ∈ {yi}, with ỹ ∈ argmin1≤i≤m{φi},
but ỹ is not a global minimum. This yields the contradictory fact that φ(y∗) > φ(ỹ).

6. Conclusions and Future Work

We have considered a very relevant issue within Nonlinear Programming, namely the
solution of a specific constrained quadratic problem, whose exact global solution can be
easily computed after analyzing the first-order KKT conditions associated with it. We also
highlighted that our proposal may, to a large extent, suggest guidelines for the research
of novel LBMs, by drawing inspiration from TRMs. This last observation represents
a promising tool, in order to provide algorithms which guarantee global convergence
to stationary limit points, satisfying either first- or second-order necessary optimality
conditions. In particular, we can summarize the following promising lines of research, for
large-scale problems which iteratively generate the sequences of points
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{
xk+1 = xk + αkdk
xk+1 = xk + αkdk + βkzk

←− for LBMs

xk+1 = xk + sk ←− for TRMs

which are dk, zk, and sk search directions at the current iterate xk:

• Developing novel iterative LBMs (e.g., linesearch-based TNMs), where the search
direction dk (e.g., a Newton-type direction) is possibly combined with another direction
zk (e.g., the steepest descent at xk, a negative curvature direction at xk, etc.) through the
use of (14). Then, comparing the efficiency of the novel methods with more standard
linesearch-based approaches from the literature could give indications of the reliability
of the ideas in this paper;

• Developing novel hybrid methods where the rationale behind alternating trust-region
or linesearch-based techniques is exploited. In particular, the iterative scheme xk+1 =
xk + αkdk + βkzk (respectively, xk+1 = xk + αkdk) might be considered, where the
search directions dk and zk, along with the steplengths αk and βk (respectively, dk and
αk), are alternatively computed by solving

1. A trust-region sub-problem like (4), so that a sufficient reduction in the quadratic
model is ensured;

2. A sub-problem like (14), so that the solution α∗dk + β∗zk is a promising gradient-
related direction to be used within a linesearch procedure.

In order to preserve the global convergence to stationary points satisfying either first-
or second-order necessary optimality conditions;

• Specifically, comparing the use of dogleg methods (within TRMs) vs. the application
of (14) coupled with a linesearch technique. This issue is tricky, since dogleg meth-
ods are applied to trust-region sub-problems like (4), including a general quadratic
constraint (i.e., the trust-region constraint), while in (14) all the constraints are linear,
so that the exact global solution of (14) is easily computed. Moreover, the last issue
might shed light also on the opportunity (possibly) of privileging an efficient line-
search procedure applied to a (coarsely computed) gradient-related search direction,
in place of a precise computation of the search direction in LBMs, using an inexpensive
linesearch procedure. In other words, it is at present questionable if coupling a coarse
computation of the vectors dk and zk with an accurate linesearch procedure would be
more preferable than coupling the accurately computed vectors dk and zk with a cheaper
linesearch procedure;

• Introducing nonmonotone stabilization techniques (see e.g., [28]) combining nonmono-
tonicity with any of the above ideas, for both TRMs and LBMs.
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