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Asset-level assessment of climate physical
risk matters for adaptation finance

Giacomo Bressan1, Anja Đuranović 2, Irene Monasterolo 1,2,3 &
Stefano Battiston 4,5

Climate physical risk assessment is crucial to inform adaptation policies and
finance. However, science-based and transparent solutions to assess climate
physical risks are limited, compounding the adaptation gap. This is a main
limitation to fill the adaptation gap.We provide amethodology that quantifies
physical risks on geolocalized productive assets, considering their exposure to
chronic and acute impacts (hurricanes) across the scenarios of the Inter-
governmental Panel on Climate Change. Then, we translate asset-level shocks
into economic and financial losses. We apply the methodology to Mexico, a
country highly exposed to physical risks, recipient of adaptation finance and
foreign investments. We show that investor losses are underestimated up to
70% when neglecting asset-level information, and up to 82% when neglecting
tail acute risks. Therefore, neglecting the asset-level and acute dimensions of
physical risks leads to large errors in the identification of adaptation policy
responses, investments and finance tools aimed to build resilience to climate
change.

The analysis of climate physical risks, meant as both acute risks
stemming from climate-related hazards and chronic risks from long-
run climate impacts1, plays a key role to inform decision-makers2 and
build resilience to climate change3. However, methodological and
conceptual challenges remain open for assessing the impact of climate
physical risks4, in particular on business and finance5,6. Addressing
these challenges is crucial to identify policy responses7, financing
needs8 and the financial instruments9 to fill the adaptation investment
gap. In particular, the underestimation of climate physical risks leads
to underinvesting in adaptation andmitigation10, which in turn leads to
delayed climate action, larger socio-economic losses and higher risks.
Indeed, while adaptation finance has increased from 30billion (annual)
USD to 46 billion in the period 2017–20208, it still falls short of needs,
estimated to amount to 250 billion USD per year for low-income and
emerging countries alone by 203011. At the same time, the adaptation
finance needs for other countries and regions, including the European
Union’s member states, have still to be clearly identified.

Most often, the assessment of climate physical risks relies on
commercial methodologies. Nevertheless, these methodologies are
proprietary (and thus not easily accessible), not fully transparent, not
fully replicable, and often lead to diverging results12. Moreover, com-
mercialmethodologies provide climate risk scoreswith different levels
of aggregation (e.g., by firm or hazard, depending on the provider).
While scores could be useful for some types of analyses (e.g., investi-
gating themarket premium for physical risk), they cannot be used as a
proxy for the asset-level damages, which in turn are needed to inform
climate financial valuation models and climate financial risk pricing.

To address these limitations, here we develop a methodology for
asset-level climate physical risk assessment that translates the impact
of both acute and chronic risk on the financial value of firms with
productive assets exposed to climate impacts, and on financial secu-
rities (equity) associated with those firms. We apply the methodology
to a sample of 177 listed firms, owning 1820 physical assets located in
Mexico, a country that is highly exposed to physical risks and is amain
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beneficiary of adaptation finance3. In the absence of granular data on
industrial plants and their ownership, previous works on risk assess-
ment have resorted to approximating the location of economic
activities of each firm with its headquarter location. Still, the magni-
tude of the resultingmisestimation of losses using suchproxy data has
been unknown so far. Here, we show that, in our sample, the approx-
imation leads to an underestimation of climate-related losses of up to
70%, in termsof relative difference onValue at Risk (VaR), compared to
the computation based on granular asset-level data. Further, current
analyses of physical risks rely either on scenarios of chronic risks (e.g.,
sea-level rise or water scarcity), or, separately, of acute risks (e.g.,
cyclones13 or floods). Focusing on either acute or chronic risks alone
can lead to an underestimation of losses, but the magnitude of such
underestimation is poorly understood6. Here, we show that neglecting
the component of acute risk can lead to underestimations of financial
losses for investors up to about 82% in terms of relative difference on
VaR. By quantifying these potential underestimations, our methodol-
ogy enables investors and corporations to better integrate climate
physical risks in their internal risk assessment and risk management
processes. Finally, the literature has mainly focused on the impact of
past climate hazards on current prices of financial assets and risk
premia14–16, while the information on future climate scenarios is not
integrated. In contrast, our model provides a scenario-contingent
financial valuation of firms that accounts both for historical informa-
tion (embedded in current prices) as well as future climate scenarios.
In particular, we examine climate acute and chronic risk depending on
the type and location of the firm’s production plants.

Results
Methodological framework
We introduce a methodology to perform the assessment of climate
physical risks at the asset level for individual firms and investors’
portfolios. We define “assets” as the facilities such as mines, power
plants, cement factories, etc., which areoperatedby afirm. “Asset-level
data” represent a set of information collected on such plants, which
include location, capacity, value, prices, residual life, etc. A firm has
“available asset-level data” if information about plants that are relevant
for its business is available. Data on production plants’ type, geoloca-
tion, and capacity are often either missing or fragmented, despite
recent progress in spatial finance (https://www.cgfi.ac.uk/spatial-
finance-initiative/)17. Furthermore, plants’ owners identity is not stan-
dardised, limiting researchers’ ability to reconstruct the ownership
chains fromplants to firms and investors, due to the complexity of the
global ownership network18,19. Here, we provide a procedure that
leverages existing plant data and cross-matches owners’ identity in the
main existing datasets.

With respect to climate risks, we consider both the chronic and
acute components individually and combined, conditional to the
Intergovernmental Panel on Climate Change (IPCC) climate scenarios,
identified as combinations of Representative Concentration Pathways
(RCP) and Shared Socioeconomic Pathways (SSP). For chronic risk, we
use point estimates of losses from a macroeconomic model (see
“Methods”). For acute risk, we consider both the average loss and the
tail of the loss distribution (extreme events). Following the terminology
of the relevant literature, the average yearly loss is referred to as
Expected Annual Impact (EAI) while tail risk is referred to in terms of
return period. For instance, a 100-year return period (RP100) indicates a
value of losses that on average is exceeded only every 100 years.
Equivalently, RP100 is a loss that is exceededwith a probability of 1% (or,
in statistical terms, a 0.99-quantile). Return periods are a measure of
losses (not ameasure of time) and are equivalent to quantiles of the loss
distribution, under the condition that both are computed on the same
sample. Consistently with the risk management literature, this notion of
tail risk corresponds to the Value at Risk (VaR) at a given confidence
level. For instance, the 0.99-quantile corresponds to a 99% VaR.

The methodology is articulated in five steps, which are repre-
sented in Fig. 1. The first block is the databasemodel for asset-level and
business lines data, ownership chain, and financial information (see
“Methods” for a full description). The second block represents the
probabilistic climate acute risk assessment at the asset level that is
performed using theCLIMADAmodel20,21 to assess hurricane damages.
The third block connects the acute impacts with the sector-level
chronic impacts on firms’ business lines, which are computed with a
macroeconomic model (i.e., the Intertemporal Computable Equili-
brium System (ICES)model)22–24. The fourth block connects asset-level
impacts with the performance of the firm owning the asset, and
translates them into an adjustment of the financial valuation of the
securities (equity) issued by the firm by developing a Climate Dividend
Discount Model (CDDM), that builds on standard equity valuation
theory25–29. The adjustment is calculated with respect to a baseline in
which only present acute and chronic risks are accounted for. Finally,
in the fifth block, climate physical risks are translated into financial risk
metrics for the investor who holds the firm’s securities.

Acute risks at the asset level
Weuse CLIMADA to perform aprobabilistic risk assessment of tropical
cyclones’ damages to physical assets in Mexico. Firms’ assets are het-
erogeneously distributed in the country, as shown in Fig. 2a. Assets are
also heterogeneous in terms of sector and productive capacity. In our
sample, mines and power plants are the most represented assets, and
are particularly concentrated on the western coast of the country and
in the central region. Relatively few assets are present on the eastern
coast, especially in the south. Direct damages from tropical cyclones
lead to economic losses that are measured as a percentage of assets’
values. Expected Annual Impacts (EAI) for year 2050 conditioned to
scenario RCP2.6 are low in the whole country, as shown in Fig. 2b. As a
first comparison, tail risk losses, i.e., RP100 (Fig. 2c), are at least ten
times larger than EAI for 37% of assets (in number), conditioned to the
samemild scenario RCP2.6. However, losses from tropical cyclones are
concentrated in certain areas of the country, such as the Jalisco region,
as indicatedby the yellow, orange, and red colours in Fig. 2c, d. Indeed,
other areas, such as the central region, are not exposed to tropical
cyclones as indicated by the grey colour. Finally, we look at more
extreme tail risk, i.e., a higher return period (RP250), in a more severe
climate scenario (RCP4.5): Fig. 2d shows that, in this case, more
numerous assets suffer larger losses. We find that for about 73% of
assets (in number) RP250 losses are at least ten times larger than EAI.
Moreover, for 13% of assets, RP250 losses are five times larger than
RP100. Note that the ratio of RP250 losses RP100 losses cannot be
computed for a subset of 631 assets in the sample with zero RP100 but
non-zero RP250. Differences in losses across scenarios are limited due
to the short time horizon considered, but become more pronounced
toward the end of the century. Thus, it is crucial to take into account
both the RCP scenario and higher return periods to properly quantify
tail acute risks at the asset level.

Acute vs chronic risks at the firm level
The equity value of the firm is a function of chronic and acute losses
(which aremodelled as random variables, seeMethods). In line with the
finance literature, this function is referred to as equity valuation.Wefirst
compute the equity value considering future chronic and acute risks
(conditioned to climate scenarios). Then, we compare this first value
with the result of the computation where only current levels of chronic
and acute risks are accounted for, i.e., a value that only reflects the
current distribution of losses on assets and business lines. Finally, the
equity shock is computed as the relative difference between the two
values. Hence, the equity shock represents the adjustment in equity
valuation when considering the impact of climate scenarios on physical
assets and business lines. In Fig. 3, we show the impact of acute and
chronic shocks on the equity value in a sample of 86 firms with asset-
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level data, conditioned to climate scenario SSP3-RCP4.5. Acute shocks
represent theRP250 losseson theassetsof thefirmwhile chronic shocks
represent the point estimate of losses from themacroeconomic model.
The colour code represents the 99.6% VaR of the equity shock. Four
main results emerge. First, chronic and acute shocks both contribute to
higher equity shocks (see e.g., firm 1, mainly active in the fossil fuels
sector). Second,firms in the samesector canhave similar chronic shocks
but very different acute shocks because their assets are in different
locations (see e.g., firm 2 vs firm 3, active in the renewables sector).
Third, firms may be affected by a similar acute shock but by different
chronic shocks (see e.g., firm 3 and 4, active in the renewables and
mining sectors, respectively). Fourth, firms can have large acute shocks
even if operating in different sectors (see e.g., again firms 3 and 4).

Tail acute risks lead to large economic losses for firms
Figure 4 illustrates the relation between impacts on firms’ equity in
terms of tail risk (RP250) and average losses (EAI), with negative
(positive) values representing losses (gains). AsRP250 losses are always
more negative or equal to EAI losses, dots in the scatter plot are below
the black line, representing points where EAI losses equal RP250 losses.

Note that for 35% of firms in the sample RP250 is at least three
times larger than EAI. This result is robust to changes in value of key
parameters in the model such as discount rate r and long-term divi-
dend growth rate gL (see Supplementary Section 7).

Substantial underestimationof investors’ losses fromneglecting
tail acute risks
We now look at how firm-level losses translate into portfolio losses.
To this aim, we consider an investor owning an equally weighted
portfolio invested in the stocks issued by the firms in our sample. So

far, by means of the valuation model described in “Methods”, for
each firmwe have computed firm-level equity losses, both in terms of
EAI and RP250. We now compute portfolio losses for the investor as
the equally weighted average of all firm-level equity losses. In parti-
cular, the equally weighted average of firm-level EAI and RP250 are
interpreted as the average portfolio loss and the 99.6% VaR on the
investor’s portfolio, respectively. Table 1A shows the point estimates
and the confidence intervals of portfolio losses for five different
combinations of loss metric and type of physical risk. These include
chronic risk only, acute risk only computed using EAI, acute risk only
computed using RP250, the combination of chronic and acute risk
computed using EAI, and the combination of chronic and acute risk
computed using RP250. We compare cases that consider tail risk
(RP250) with cases that do not consider tail risk (EAI). The confidence
intervals are computed using the bias-corrected and accelerated
percentile method (see e.g., ref. 30) on 15,000 samples. In the
absence of precise rules to set the number of samples for the boot-
strap, we determined it iteratively. We started from a small number
of samples and computed the confidence intervals. Subsequently, we
increased the number of samples until we reached a point where the
additional increase in the precision of the estimates was negligible.
The bootstrapped distributions of sample means are shown in Sup-
plementary Fig. 6. We highlight the importance of tail risk by com-
paring the magnitude of the VaR with the magnitude of the mean in
Table 1A. In fact, the VaR is between 5 and 38 times the mean
(comparing rows 3 and 5 (VaR) with rows 2 and 4 (mean), respec-
tively). In Table 1B, we quantify the underestimation of portfolio risk
stemming from neglecting tail risk. Risk underestimation is sub-
stantial. In fact, using chronic risk only instead of tail acute risk leads
to an underestimation of losses up to 82.2% (row 2, column 3). At the
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Fig. 1 | Methodological framework of the asset-level approach to climate
physical risk assessment and financial valuation. From left to right, the blocks
represent consequential steps of implementation. We start with asset-level data
collection and harmonization, and then we feed an asset-level probabilistic risk
assessment for tropical cyclones. Then, we compute the sector-based and macro-
economic impacts of physical risk using the IntertemporalComputable Equilibrium
System (ICES) macroeconomic model. By combining climate impacts at the asset
level and the resulting macroeconomic impacts, it is possible to quantify the

climate financial impacts at the firm level. Finally, we adjust the financial valuation
for equity contracts of the firm that owns the plants, and compute the resulting
adjustment in financial risk for the firm’s investor. Source: authors. For the map in
the second square from the left (below Asset-level probabilistic climate risk
assessment): authors' elaboration on NOAA, historical hurricane tracks data
(https://coast.noaa.gov/hurricanes), underlying map from Mapbox (https://www.
mapbox.com/about/maps, https://labs.mapbox.com/contribute/), and Open-
StreetMap (https://www.openstreetmap.org/about/).
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same time, neglecting the tail of acute risks leads to an under-
estimation of losses up to 97.7% (row 3, column 3).

Neglecting asset-level information leads to a relevant under-
estimation of losses for investors
In the absence of granular asset-level data, a possible approximation,
which we refer to as using “proxy data", consists of replacing the set
of locations where the firm operates by only one location, generally
the country, city or postal code of its headquarter (see e.g., ref. 31).
However, the impact of such approximation on the loss estimates is
still unknown and deserves investigation. Hence, here we compare
the portfolio losses computed using the two approaches: asset-level
data vs proxy data. More in detail, for the same set of firms, we
perform the equity valuation adjustments using asset-level data, and
then using only the firms’ headquarters as proxy for the location of
its operations. By comparing the results, we determine the under-
estimation of losses resulting from neglecting asset-level data. We
show that this loss of information has important implications for
climate financial risk analysis. We illustrate this result in Table 2A, B.
We first compare the losses on equity computed using the asset-level
data to the losses computed using proxy data. We show that the
magnitude of the VaR is 3 to 5.5 times larger when computed using
asset-level data (Panel A, rows 2 and 6, third column) with respect to
using proxy data (Panel A, rows 4 and 8, third column). As shown in
Table 2B, neglecting asset-level data leads to an underestimation of
the portfolio VaR between 67.4% and 92.3% when not considering
chronic risks (Panel B, row 1, last column). The underestimation is
lower when considering also chronic risks, but still in the range from
58.0 to 70.8% (Panel B, row 2, last column).

Discussion
Losses from climate physical risks are expected to increase in the
future due to growing climate change impacts, compounding of cli-
mate physical risks32–34, and insufficient countries’ mitigation efforts.
Our methodology provides an assessment of financial losses from
climate physical risks more robust than those previously available, by
considering firms’ asset-level information and business lines, and by
combining acute and chronic physical risks scenarios. In turn, a better
assessment of firms’ exposure to physical risk can support advances in
academic research in adaptation, as well as the design of policies and
financial instruments aimed to build resilience to climate change and
fill the adaptation gap.

Themagnitude of financial shocks from climate physical risks can
crucially depend on the geolocation of firms’ assets and on their
business lines. For instance, firms that operate in the same economic
sector may have a different exposure to physical risk, and thus a dif-
ferent risk profile, due to their asset-level (climate and non-climate)
characteristics. These factors drive the two main results of our paper.
First, neglecting tail acute risks leads to a large understimation of
portfolio losses, up to 82.2%, in our sample. Second, importantly, using
proxy data instead of asset-level information, leads to a relative
underestimation of the VaR of the investor up to 70.8%. Thus, asset-
level information is key for climate physical risk assessment.

Our results are conditioned to the following limitations, some of
which, however, apply more in general to the field of climate physical
risk assessment. We acknowledge that our analysis does not take into
account all the potential sources of uncertainty. Thus our results
provide a quantification of losses conditional to the following specifi-
cations. First, we rely on point estimates of the characteristics of assets

Fig. 2 | Assets’ distribution and direct impact of tropical cyclones on assets. All
panels: assets are represented asdots. The positionof the dots is determinedby the
latitude and longitude coordinates of the asset. The size of the dots is proportional
to the standardized capacity of the asset (i.e., assets with larger capacity will have
larger dots). aAssets' distribution. The colour of the dot describes the type of asset
(e.g.,mine, power plant, see legend in the bottom left of the panel).b Percentage of
direct damages from tropical cyclones on assets under Expected Annual Impacts
(EAI), Representative Concentration Pathway 2.6 (RCP2.6), year 2050. As expected,
all assets have a nearly zero direct impact under EAI (i.e., grey colour). The red

rectangle delimits the area which is zoomed in (c, d). c Percentage of direct
damages from tropical cyclones under a Return Period of 100 years (RP100),
RCP2.6, year 2050. d Percentage of direct damages from tropical cyclones under a
Return Period of 250 years (RP250), RCP4.5, year 2050. The colour bar to the right
of the chart is common to (b–d) and relates the colour of the dot to the percentage
of direct damages from tropical cyclones. Source: authors' elaboration on data
from Refinitiv Eikon, S&P, and maps from geopandas (https://geopandas.org/en/
stable/) and Open Street Maps (https://www.openstreetmap.org/about).
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(e.g., residual life, monetary value, capacity) because confidence
intervals on those estimates are not available. Second, we take the
point estimate for RP and EAI of tropical cyclones impacts from the
CLIMADA model under the standard setting13. Indeed, there is not yet
an established way to calibrate the set-up that could yield uncertainty
on the estimates of RP and EAI35. In addition, the data needed to
properly calibrate assumptions about uncertainty is not available.
Third, in order to quantify the impact of tropical cyclones,we relied on
traditional approaches in the literature (e.g., refs. 21 and 35) that
interpolate between current (2001–2020) and future (2081–2100)
climate scenarios but they do not take into account the uncertainty on
the evolution of the impacts. Fourth, we use the samedamage function
across all types of assets since data on damages by asset type are not
available. In this regard, publicly available datasets, such as EM-DAT37

only provide damages per event, at the country or (more rarely) at the
subnational level. Finally, we do not consider firms’ adaptation efforts
(such as assets’ relocation, implementation of physical barriers, etc.)
because this information is currently not available38. Further limita-
tions are discussed in “Methods”. We provide an estimate of how
uncertainty and adaptation efforts could affect our results in Supple-
mentary Sections 10 and 11.

Our methodology can be applied beyond the Mexico case pre-
sented in this study. In fact, the presented steps can be tailored to
assess physical risks for different countries (e.g., the US), hazards (e.g.,
floods) and securities (e.g., bonds, after tailoring the financial model).
The main limitation to further applicability is represented by data
availability. Our analysis has important implications for several types
of decision-makers in climate finance. On the one hand, it contributes
to inform policymakers in the design and implementation of

adaptation policies, in particular in the current context of public
budget constraints and risingpublicdebt, both inhigh and low-income
countries. For example, in the EU, the European Climate Adaptation
Strategy called for smarter adaptation and highlighted the need to
translate large volumes of climate information into customized and
user-friendly tools39. In this regard, our methodological framework
sets a blueprint for the use of geolocalized climate data for climate
financeanalysis, and supports the Strategy’s objectives, such as closing
the adaptation gap, integrating climate risks and resilience into fiscal
frameworks, and scaling up finance for climate resilience. In addition,
our framework contributes to inform financial regulators and super-
visory authorities to better assess the impact of climate physical risks
for sovereigns, considering the composition of each country’s econ-
omy (e.g., contribution of firms and sectors to Gross Value Added and
fiscal revenues), the impact on sovereign risk (e.g., via bonds’ yields
and spreads) and the potential financial and regulatory response (e.g.,
monetary and prudential policies40).

On the other hand, our methodology supports financial institu-
tions in avoiding underestimations of exposure to physical risks. In
fact, while some financial actors such as insurers and reinsurers are
relatively well-prepared in catastrophe risk management, others are
less sophisticated41. This is for instance the case of banks’ lending to
firms (which represents on average 40% of EU banks’ total assets,
https://www.eba.europa.eu/risk-analysis-and-data/risk-dashboard)
and of institutional investors (e.g., asset managers, pension funds and
investment funds). Importantly, even awell-diversifiedportfoliowould
bear high physical risks as extreme events are predicted to increase
globally2. Thus, geographic and sectoral diversification have limited
benefits for portfolio climate risk reduction. In contrast, our

1. Diversified firms (Firm 1) have 
both acute and chronic shocks 
depending on share of revenues 
from assets and geolocations

2. Firms can have similar chronic 
shock (because same sector) but 
very different acute shock (due to 
geolocalization, Firm 2 vs. Firm 
3)

3. Firms can have large acute 
shocks even if operating in 
different sectors (Firm 3 vs. Firm 
4)

4. Firms can be affected by similar 
large acute shocks but different 
chronic shock (same pair as 
above)

Firm 1
Revenue shares: Electricity-Fossil (67%), 

Electricity-Hydro (15%), Renew. (8%), Constr. 
(5.59%), Services (4.41%)

Chronic shock: -2.53%
Acute shock: -13.94%

Combined shock: -7.79%

Firm 4
Revenue shares: Mining (100%)

Chronic shock: -0.77%
Acute shock: -51.53%

Combined shock: -23.32%

Firm 3
Revenue shares: 

Electricity-Renewables (100%)
Chronic shock: -3.02%
Acute shock: -54.86%

Combined shock: -25.06%

Firm 2
Revenue shares:

Electricity-Renewables (100%)
Chronic shock: -3.02%

Acute shock: 0.63%
Combined shock: -4.60%

Fig. 3 | Scatter plot showing, for each firm (dot), the acute, chronic and equity
shocks. Selected scenario: Shared Socioeconomic Pathway 3-Representative Con-
centration Pathway 4.5 (SSP3-RCP4.5), year 2040. Sample size: 86 firms with
available asset-level data. X axis: chronic shock, defined as the loss in sectoral
output for the business lines in which a given firm is engaged, weighted by the
respective revenues. A negative number indicates a loss (e.g., −0.04 indicates a 4%
chronic shock) and a positive number a gain. Y axis: acute shock on assets repre-
senting the asset-level losses borne by a firm, described by the average across all

assets of − ηa, as defined in Eq. (9). Amore negative value represents a higher shock
and a value of 0 represents no losses on assets. Colour: equity shock, i.e., final
outcome of the full Climate Dividend Discount Model (CDDM). A negative value
(darker colour) represents a larger negative shock on equity valuation. The figure
highlights four firms with different business lines, chronic, acute, and combined
shocks. The left hand-side box discusses the implications of pairwise comparisons
across these highlighted firms.
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methodology enables investors to better identify physical risks at the
asset andfirm level, considering assets’ location.With this information,
investment strategies, which may include a conditionality on adapta-
tion investments from borrowing or invested firms, can be imple-
mented, improving banks’ and investors’ resilience to physical risks.
Finally, our analysis shows how firms could improve their climate risk
management and facilitate physical risk disclosures under the

Corporate Sustainability Reporting Directive42. This is of key impor-
tance in light of the blind spots that still exist in firms’ assessment of
climate risks and in their adaptation strategies38.

Furthermore, proper climate physical risk assessment matters for
central banks and financial regulators with a financial stability man-
date, to allow for the identificationof policies and regulations aimed to
mitigate systemic financial risk in their jurisdictions.
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Equal shock line
Change in equity value EAI = 0
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Fig. 4 | Scatter plot for the joint Expected Annual Impacts (EAI) and 250-year
Return Period (RP250) equity loss distributions for the year 2040, 86 firms
with available asset-level data, considering acute risks only. Scenarios are
shown in different colours and dot styles, respectively: Representative Con-
centration Pathway 2.6 (RCP2.6; green plus), RCP4.5 (red circle), RCP6.0 (blue
diamond). The marginal distributions for Expected Annual Impacts (EAI) and 250-
year Return Period (RP250) are represented, respectively, on the bottom and right
axis of the chart, approximated as kernel density plots for all scenarios and dis-
tinguished by the respective colours. The scatter plot represents the joint

distribution. The loss is defined as
~V0�V0
V0

, where V0 is the equity value without the
acute shock and ~V0 is the shocked equity value. Thus, a negative value represents a
loss (e.g., −4% represents a decrease in equity value of 4%). The black line labelled
equal shock line represents the pointswhere the loss conditioned to EAI is the same
as the loss conditioned to RP250, implying no exposure to tail acute risks. Firms lie
on the equal shock line (signalling no RP250 exposure) or below it (signalling high
RP250 exposures). The dashed lines represent a 0% change in equity value under
EAI (vertical line) and RP250 (horizontal line). Note that, for readability, the x axis
left limit is set to −0.7%.

Table 1 | Portfolio-level results, conditioned to Shared Socioeconomic Pathway 3-Representative Concentration Pathway
4.5 scenario (SSP3-RCP4.5), year 2040

Panel A: portfolio-level results

Row Case Estimate (%) Confidence interval (%)

1 Chronic only −0.76 (−0.98, −0.59)

2 EAI, asset-level (mean) −0.085 (−0.16, −0.049)

3 RP250, asset-level (VaR) −3.3 (−4.9, −2.2)

4 Chronic + EAI, asset-level (mean) −0.84 (−1.09, −0.66)

5 Chronic + RP250, asset-level (VaR) −3.9 (−5.5, −2.8)

Panel B: underestimation of portfolio losses

Row Compared cases Underestimation range (%)

1 Chronic vs tail acute (asset-level, RP250) 73.2–79.3

2 Chronic vs chronic and tail acute (asset-level, RP250) 78.8–82.2

3 Average acute (asset-level, EAI) vs tail acute (asset-level, RP250) 96.7–97.7

PanelA: portfolio-level results showing themean andValue at Risk (VaR) computed for different cases ofphysical risk. The secondcolumn (Case) shows the selected case. The thirdcolumn (Estimate
(%)) shows the point estimate for the givenmetric and case. The fourth column (Confidence interval (%)) shows the 95% confidence intervals for the statistic in column 3, computed using the bias-
corrected and accelerated percentile method over 15,000 samples. Cases labelled as asset-level are computed considering all data on assets for firms in the sample. Panel B: underestimation of
portfolio losses, comparing cases pairwise. In each row, column 2 (Compared cases) lists the compared cases as case 1 vs case 2. Column3 (Underestimation range (%)) is computed as the range of
relative underestimation of the lower and upper bounds of the confidence intervals. The relative underestimation is computed as the relative difference between the boundaries of the confidence
intervals for the first and second case. For example, in row 3 the underestimation range is computed as “[(confidence intervals, tail acute) − (confidence intervals, average acute)]./(confidence
intervals, tail acute)",where “./" indicateselement-wisedivision. Thus, the last columnrepresents how large theunderestimationof losses iswhenusingcase 1 insteadofcase2: a valueof50% implies
that using case 1 we fail to capture 50% of the risk as quantified using case 2.
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Finally, further investments in climate physical risk models are
necessary to meet the needs of the financial sector5. At the same time,
closer collaboration between climate modellers and economists is
necessary to improve climate physical risk assessment at the asset,
firm, and portfolio levels, ultimately enabling better investment and
policy decisions. However, the quest for better models is no justifica-
tion to delay action by investors and financial supervisors in assessing
physical risks and climate change adaptation on the basis of available
models.

Methods
Database model
We develop a database model to collect and logically connect extra
financial, climate andfinancial informationof individualphysical assets
andfirms. Thedatabasemodel provides a granular and comprehensive
overview of the characteristics of firms by collecting information on
their productive assets, their business lines’ composition and perfor-
mance, and their financial and climate characteristic. We disaggregate
firm-level information by asset and geography, considering the firm as
a portfolio of business lines and geographically distributed assets43.
This enables us to downscale climate risk assessment to the funda-
mental business units of the firm, considering their potentially differ-
ent exposure to climate-related hazards, due to the geographical
location of their productive assets.

First, we collect data on firms’ revenues by business line. We
leverage information on business units, product types, and their
respective sales quantities and prices. Second, we retrieve, clean and
consolidate a database of physical asset exposures from different data
providers, for instance, Refinitiv Eikon (https://eikon.thomsonreuters.
com/index.html), and S&P (https://www.spglobal.com/en/). As differ-
ent databases provide different information on assets (e.g., some
databases provide amonetary value, or a location, and somedo not) as
well as on owners (e.g., databases using different identifiers, or no
identifiers but just firms’ names), we set up a preprocessing pipeline to
overcome these data fragmentation and comparability problems. Our
process attaches to each asset a location, production capacity,
monetary value, useful residual life, technology, operating status and
ownership.We focus on energy-related or energy-intensive assets such

as power plants, liquified natural gas (LNG) facilities, and mines, given
the relevance of physical risk for the energy sector (see ref. 44 for a
comprehensive review) and its consideration as “sin stocks"45. Finally,
we connect assets to business lines and thus firms’ equity valuation.

Our combined databases return 123,340 physical assets globally.
In total, 3493 are located in Mexico and we reconstruct their chain of
ownership. In fact, asset-level datasets generally have information on
direct owners, but not necessarily on the listed owners who issue
financial contracts. To solve this issue, it is necessary tomatch owners’
names and identifiers across multiple databases. By doing so, it is
possible to reconstruct the chain of ownership from the asset to its
listed owners and the issued financial contracts. See also Supplemen-
tary Section 1 for a list of used databases.

Ultimately, we link 1820 physical assets to 177 firms, bothMexican
and internationally owned, that own the assets and are invested in by
European financial actors. To these firms, we link 17,147 individual
equity holdings of 1014 European investors consolidated via 199 dif-
ferent equity instruments. The total exposure value of European
investors amounts to 290.11 billion USD (as of June 30, 2020).

Climate physical risk assessment
Assessing physical risk on corporate securities differs from assessing
physical risk for sovereign ratings or debt, especially in terms of data
availability. In fact, country-level information on past disasters is
available from publicly available databases (e.g., EM-DAT37), but his-
torical firm-level information is missing. Thus, we rely on a probabil-
istic risk assessment approach to assess asset-level and firm-level
losses. In addition, ourmethodology includes a dedicated treatment of
the transmission channels and implications of climate physical risks on
firms’ business lines, on economic sectors and macroeconomic vari-
ables, the latter being captured with the use of a dedicated macro-
economic model (ICES).

Asset-level assessment
We use the CLIMate ADApt (CLIMADA) model (https://wcr.ethz.ch/
research/climada.html)13,20,21,35,46 to perform a probabilistic assessment
of damages from tropical cyclones at each asset location, for different
Representative Concentration Pathways (RCP) scenarios (2.6, 4.5, 6.0)

Table 2 | Portfolio-level results, conditioned to Shared Socioeconomic Pathway 3-Representative Concentration Pathway
4.5 scenario (SSP3-RCP4.5), year 2040

Panel A: portfolio-level results

Row Case Estimate (%) Confidence interval (%)

1 EAI, asset-level (mean) −0.085 (−0.16, −0.049)

2 RP250, asset-level (VaR) −3.3 (−4.9, −2.2)

3 EAI, proxy (mean) −0.013 (−0.056, −0.0028)

4 RP250, proxy (VaR) −0.59 (−1.62, −0.17)

5 Chronic + EAI, asset-level (mean) −0.84 (−1.09, −0.66)

6 Chronic + RP250, asset-level (VaR) −3.9 (−5.5, −2.8)

7 Chronic + EAI, proxy (mean) −0.77 (−1.01, −0.61)

8 Chronic + RP250, proxy (VaR) −1.3 (−2.3, −0.8)

Panel B: underestimation of portfolio losses

Row Compared cases Underestimation range (%)

1 Tail acute (proxy, RP250) vs tail acute (asset-level, RP250) 67.4–92.3

2 Chronic and tail acute (proxy, RP250) vs Chronic and tail acute
(asset-level, RP250)

58.0–70.8

PanelA: portfolio-level results showing themean andValue at Risk (VaR) computed for different cases ofphysical risk. The secondcolumn (Case) shows the selected case. The thirdcolumn (Estimate
(%)) shows thepoint estimate for thegivenmetric andcase. The fourth column (Confidence interval (%)) shows the 95%confidence intervals for the statistics, computedusing the bias-corrected and
accelerated percentile method over 15,000 samples. Cases labelled as asset-level are computed considering all data on assets for firms in the sample. Cases labelled as proxy are computed
considering only proxy data forfirms in the sample. Panel B: underestimation of portfolio losses, comparingcases pairwise. In each row, column2 (Comparedcases) lists thecompared cases as case
1 vs case 2. Column 3 (Underestimation range (%)) is computed as the range of relative underestimation of the lower and upper bounds of the confidence intervals. The relative underestimation is
computed as the relative difference between theboundaries of the confidence intervals for thefirst and second case. For example, on row3 the underestimation range is computed as “[(confidence
intervals, tail acute) - (confidence intervals, average acute)]./(confidence intervals, tail acute)", where “./" indicates element-wise division. Thus, the last column represents how large the
underestimation of losses is when using case 1 with respect to case 2: a value of 50% implies that using case 1 we fail to capture 50% of the risk as quantified using case 2.
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at different years (2035, 2040, 2045, 2050). Supplementary Fig. 3
illustrates the workflow’s schematic.

We consider historical data on tropical cyclones between 1950
and 2021 provided by the International Best Track Archive for Climate
Stewardship (IBTrACS) (https://www.ncei.noaa.gov/products/
international-best-track-archive), for the North Atlantic and Eastern
North Pacific basins. Of 1555 historical events originated from either
basin, 336 crossed Mexico. A map of these events is included in Sup-
plementary Fig. 4. We standardize events’ tracks by interpolating wind
speeds at half-hour time steps. Building on Aznar-Siguan and Bresch13,
we simulate 50 synthetic tracks for each historical event, including
track decay after landfall, for the probabilistic assessment. We remove
duplicate hazards in the set to obtain a final dataset of 16,728 cyclones.
Hazards can be duplicated in the first place as we are using two dif-
ferent basins as reference points, and tracks can cross from one
another.

Tracks are thenmapped to centroids inMexico, i.e., geographical
points where we define a wind speed from the track. The grid is set at
0.2 degrees of latitude/longitude, for a total of 14,076 centroids mat-
ched to hazards.We also tested the effect of using a finer grid on asset-
level damages for the year 2040, see Supplementary Section 4 Asset-
level damages with a finer grid. The comparison shows that using a
finer grid could lead to slightly higher asset-level damages. We use
CLIMADA to perturb the tracks for future climate change impacts for a
given RCP scenario and year. The procedure followed in the model is
based on the results obtained in ref. 47 for RCP4.5. Changes in tropical
cyclones’ frequencies and intensities are then obtained by linear
interpolation fordifferent RCPs andyears. In this study,we useRCP2.6,
4.5 and 6.0, and years 2035, 2040, 2045 and 2050. The choice of RCPs
and years is made to match the set-up of the ICES and CDDMmodels.
For limitations of this procedure, see CLIMADA’s documentation and
references therein (https://climada-python.readthedocs.io/en/stable/
tutorial/climada_hazard_TropCyclone.html).

By combining the wind speed at the centroid closest to a given
asset and a damage function, we obtain asset-level impacts. The
damage function describes the relation between the wind speed and
the damages to a given asset. The formulation used is shown in Eq. (1)48.

Findex =
v3

1 + v3
, ð1Þ

where

v=
maxððWspd �WthreshÞ,0Þ

Whalf �Wthresh
, ð2Þ

Equation (1) enables the translation of wind speed (Wspd) into direct
damages to assets described by the fraction of damaged property
Findex via a cubic power. It also considers a lower bound Wthresh of no
damage occurrence and a value Whalf where half the damage occurs.
We follow the calibration provided in ref. 33 for Mexico and select
Wthresh to be 65 km/h andWhalf to be 253 km/h. Other calibrations exist
in the literature, for example, ref. 49, which sets Wthresh = 92.52 km/h
and calibrates Whalf with two different approaches to either
214.56 km/h or 238.68 km/h. In comparison, the calibration in ref. 33
may overestimate the damages from low-category hurricanes and
underestimate the damages from high-category hurricanes. Both the
calibrations by Dunz et al.33 and Eberenz et al.49 are based on the shape
of the damage function proposed by Emanuel48. However, the former
calibration is performed on disaster damage data from Mexico only,
while the latter is performedondisaster damagedata fromMexico and
theCaribbean (forWhalf), andondisaster damagedata fromtheUS (for
Wthresh, consistentlywith ref. 48).Weuse the calibration byDunz et al.33

for this study, as it is specific to Mexico only. The damage function in
Eq. (1) considers only wind speed. This is a common assumption in the

literature13,33,48. Nevertheless, considering only wind speed limits the
extent of the assessment of those hurricanes where rainfall and storm
surges can account for high damage, despite the storm being less
windy13. Importantly, we keep the damage function constant across
asset types. Calibration of asset-level damage functions is left for
further research.

We use two measures of damages at each scenario-time combi-
nation: Expected Annual Impacts (EAI) and 250 years Return Period
(RP250). These combine the damage functions and the hazards to
obtain measures of average (EAI) or tail (RP250) risks on assets. EAI is
computed as:

EAIj =
XNev

i = 1

xijFðEiÞ, ð3Þ

where xij is the realization of the random variable X representing the
impact, index j denotes a physical asset, Ei is an event, F its annual
frequency and Nev is the number of (independent) events considered.

For cyclones, return periods are defined as “the frequency at
which a certain intensity of a hurricane can be expected within a given
distance of a given location" (https://www.nhc.noaa.gov/climo). For
example, a return period of 20 years for a hurricane means that on
average during the previous 100 years, a hurricane of a certain cate-
gory or greater passed within 50 nautical miles (58 miles) of a given
location about five times. Importantly, a 1-in-100-year event will not
necessarily occur once in a century but may also occur more often, or
not occur.

For more details on the estimation of return periods, see ref. 50.
For the implementation in CLIMADA, the reader is referred to refs. 13
and 20 and the model documentation (https://climada-python.
readthedocs.io/en/stable/index.html).

Macroeconomic assessment
We use the ICES model (https://www.icesmodel.org/) to quantify
macroeconomic impacts of chronic risks23,24, as applied within the
COACCH project (https://www.coacch.eu/)22. We source gross
domestic product (GDP) and sectoral output trajectories under dif-
ferent combinations of scenarios (Shared Socioeconomic Pathways
(SSPs) and RCPs), assumptions on capital mobility, and level of climate
change impact. Trajectories are provided as “baselines”, i.e., without
climate change, and as “impact scenarios”, i.e., including climate
change. Thus the output change from a baseline to an impact scenario
is dependent on climate change only. We use the following SSP-RCP
combinations for our study, at the time horizons 2035, 2040, 2045,
2050: SSP2-RCP6.0, SSP3-RCP2.6, SSP3-RCP4.5, SSP5-RCP4.5. For the
purpose of this study, we use the assumptions of high climate change
impacts and high capital mobility in ICES. The ICES model as used in
COACCH is resolved in 5-year steps until 2070, though for this study,
we use a 2050 horizon. Further description of ICES’ sectors and the
scenario choice are provided in Supplementary Sections 2 and 5.

Climate financial valuation: the Climate Dividend
Discount Model
We quantify climate physical risk adjustments on equity valuation by
developing aClimate DividendDiscountModel (CDDM). It extends the
traditional Dividend Discount Model (DDM) framework25,26 in its three
stages formulation28 to account for acute and chronic risks on firms’
long-term growth. The former depends on assets and extreme events,
the latter on business lines and their economic trajectories. To esti-
mate the market value of equity, DDMs discount the future dividends
using a discount rate to determine their present value. The discount
rate represents the rate of return required by investors. Alternative
formulations of this discounting concept exist, for example, based on
Discounted Cash Flow (DCF). Importantly, our methodology can be
applied to DCFs too. We assume the following:
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• Dividends can be estimated by combining Earnings Per Share
(EPS), their growth, payout ratios, and their respective long-run
trends.

• Long-term climate physical risks are not accounted for in the
current valuation51. Thus, the long-run growth rate used for equity
valuation is not consistent with future climate risks. We assume
this growth rate without climate impacts is constant across
all firms.

• Physical risks are going to impact mostly the long-run part of the
valuation.

• Discount rate is constant for all firms in all periods.

The equity value at time 0 (V0) is computed as:

V0 =
Xt1
t = 1

Dt

ð1 + rÞt +
Xt2

t = t1 + 1

Dt

ð1 + rÞt +
Vt2

ð1 + rÞt2 ð4Þ

whereDt represents the dividend at time t, r the discount rate, and Vt2
the terminal value once the explicit estimation of dividends ends. t1
and t2 are the boundaries of the first and second stages. The following
relation connects the dividends to Earnings Per Share (EPS):

Dt = EPStð1� btÞ, ð5Þ

where EPSt represents the earnings per share at time t, and bt the
earnings retention rate making (1 − bt) the payout ratio. We obtain EPS
and Dividends Per Share (DPS) from S&P. Data are available for a
generally limited number of years. Thus, to complete the dividend
series until t2, we first estimate EPS as:

EPSt = EPSt�1gEPS,t,t�1, ð6Þ

wheregEPS,t,t−1 represents the EPS growth rate between t − 1 and t, and it
holds gEPS,t2

= gL, where gL represents the long-run growth rate of
dividends. Importantly, this relation implies a linear decline of EPS
growth towards gL. Thus, Eq. (6) enables the estimation ofmissing EPS,
and hence dividends from Eq. (5). Then, the three stages in Eq. (4) can
be distinguished as follows. First, a stagewhere dividends are explicitly
estimated by a data provider (for this study, S&P). Second, a stage
where dividends are modelled with linear decline. Third, the estima-
tion of a terminal value.

We can rewrite Eq. (4) for each firm as:

V0,j =
Xtj,1
t = 1

Dj
t

ð1 + rÞt +
Xtj,2

t = tj,1 + 1

Dj
t

ð1 + rÞt +
Dj

tj,2
ð1 + gLÞ

ð1 + rÞtj,2 ðr � gLÞ
: ð7Þ

where gL represents the long-term growth rate of dividends, i.e., the
rate at which the firm reaches an equilibrium where investment
opportunities, on average, earn their opportunity cost of capital. The
index j represents the jth firm. Differently from Eq. (4), we now make
the dependence on j explicit, a necessary step for practical applica-
tions. In fact, dividend data are generally sourced from a provider
whose analysts will perform the in-depth analysis necessary for
dividends’ estimation. Depending on the firm, analysts will use
different assumptions while modelling dividends. The usage of firm-
specific assumptions for the estimation is reflected in the formula by
the j subscript, which shows how dividends are going to differ from
firm to firm (denotedD j

t ) and how the boundaries of the stages are not
fixed a priori but depend on the firm (denoted by tj,1 and tj,2). Note that
dividends are explicitly modelled in the first stage, up to tj,1 and
subsequently reverted to long-run growth rates. This explicit step is
necessary to link the theory of equity valuation to its practical
implementation. For a discussion of the sensitivities of the model to r

and gL, please see Supplementary Section 7. For this study, we set
r =0.09 and gL = 0.06.

Due to climate change, we cannot keep the long-run growth
constant across firms as in e.g., Refinitiv’s StarMine model (https://
www.lseg.com/en/data-analytics/financial-data/analytics/quantitative-
analytics/starmine-intrinsic-valuation-model), as firms will be hetero-
geneously impacted. The growth rate of a firm will ultimately depend
on: the output trajectories of its business lines as impacted by chronic
risks, and the location and characteristics of its assets as impacted by
acute risks. Importantly, our results shall be considered conservative
due to the complexity of asset-level data, the compensation coming
from positive macroeconomic shocks, and the considerations of only
tropical cyclones.

We can now define the long-run growth rate as adjusted by phy-
sical risk considerations, ~gL as:

~gL,ðI,jÞ = gL

XKj

i= 1

Oi,I

Oi,B

1
δj,I,i

si

" #
, ð8Þ

where I denotes a climate change impact scenario, Oi,B and Oi,I the
output trajectories for sector i under scenarios I, impacted by climate
change, and B, without climate change.We define as chronic shock the
ratio Oi,I

Oi,B
� 1, meaning for instance that a loss on output, relative to the

baseline, of 5% corresponds to a shock of −0.05. Note that, when
entering Eq. (7), ~gL is always discounted by ð1 + rÞt2 , regardless of the
considered damage measure for δj,I,i. This implies that, when con-
sidering the RP250 scenario, the discounting for changes in gL is still
ð1 + rÞt2 and not (1 + r)250. The parameter δj,I,i depends on the firm- and
business line-specific loss due to acute risk conditioned to scenario I
for sector (business line) i; si is the applicable revenue share for
business line i, and Kj represents the total number of business lines for
firm j. We design δj,i as a firm- and business line-specific variable
computed asanaverageof all δa,j,i, i.e., the impact for all physical assets
aownedbyfirm j contributing tobusiness line i. In our application, δa,j,i
depends on threemain parameters for the asset: itsmonetary value, its
residual useful life, and the impact from tropical cyclones computed in
CLIMADA.

δa,j,i = 1 +ηa = 1 +
La
Va

f ðRaÞ ð9Þ

whereRa is the residual life of asseta, f(Ra) a coefficient proportional to
the residual life (for the purpose of this application, f ðRaÞ= 1

τ Ra, where
τ equals 1 year), Va is the value of asset a, La is the impact on asset a.
Thus, ηa represents an estimate of the relative impact (i.e., fraction of
the asset value) on assets from tropical cyclones, taking into account
the residual life of the asset. Importantly, δj is floored to 1 and capped
to 2, i.e., we assume that firms do not benefit from having physical
assets less exposed to climate physical risk, hence simply follow the
general sectoral trajectories of their business lines. This assumption is
made for simplicity, since assessing the existence of positive effects
stemming from asset location requires an analysis which is beyond the
scope of the paper. Note that the estimate of δj,I,i is computed on
available assets but applied to the full business line.

Combining Eqs. (7) and (8) we obtain the CDDM formulation for
the adjusted equity value (~V0,I,j):

~V0,I,j =
Xtj,1
t = 1

D j
t

ð1 + rÞt +
Xtj,2

t = tj,1 + 1

D j
t

ð1 + rÞt +
D j

tj,2
ð1 + ~gL,I,jÞ

ð1 + rÞtj,2 ðr � ~gL,I,jÞ
: ð10Þ

Where ~gL,I,j is the adjusted growth rate as per Eq. (8) and ~V0,I,j is
the adjusted equity valuation conditioned to a given impact scenario I.
Thus the combined equity shock, stemming from the revaluation of
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shares considering chronic and acute physical risks, is given by:

ψj =
~V0,j,I � V0,j

V0,j
: ð11Þ

To interpret the equity shock we proceed as follows. The asset-
level impact from tropical cyclones is a random variable Ia. Char-
acterizations of its distribution in terms of EAI and RP are provided by
CLIMADA. Since Ia is a random variable, then ~gL, ~V0,j,I and ψj, being
functions of Ia are also random variables and the distributions of their
values could be generated from the distribution of the values of Ia.

However, this is a computationally expensive procedure. For the
purpose of this paper, we extract selected moments and quantiles of
the distribution of Ia, and compute ~gL, ~V0,j,I and ψj only for those
moments and quantiles. Specifically, we select the first moment, i.e.,
the expected annual impact (EAI) and the99.6thquantile (RP250).Note
that with regard to the estimation of Value at Risk, since the loss on
equity valuation is an increasing function of the economic loss, the
quantiles of the adjusted equity valuation (~V0,j,I) are equivalent to the
adjusted valuation computed on the quantiles. In contrast, regarding
the estimation of expected annual impact, we approximate the average
of the adjusted equity valuation (~V0,j,I) with the adjusted valuation
computed on the average of the impact (Ia). Hence, we assume that
using EAI for the equity valuation leads to computing the average
adjusted valuation. Similarly, we assume that using RP250 for the
equity valuation leads to computing the Value at Risk (VaR) of a firm’s
adjusted valuation. As such, for firms, the equity value computed using
EAI represents an average equity value fromthedistributionof possible
values considering physical risks. Similarly, the equity value computed
using RP250 represents a percentile, or a VaR, of the distribution of
possible equity values considering physical risks. Thus, the inter-
pretation of the adjusted equity value is as follows. The firm has mul-
tiple possible growth paths in the long run. The equity value computed
using RP250 corresponds to a future where the firm suffers damages
from tropical cyclones that are comparable in magnitude to the ones
emerging from an RP250 hurricane conditioned to a given climate
scenario. Similarly, the equity value computed using EAI corresponds
to a future where the firm suffers damages from tropical cyclones that
are comparable in magnitude to the yearly expected damages.
Importantly, also Oi,I is a realization of a random variable and we can
interpret it to be an average chronic risk impact. Analysing the relation
between the two random variables is out of the scope of this paper. As
such, we treat the realization Oi,j as an average of chronic risks. We
assume the equity valuation computed with the product of Oi,j and
average acute risks (EAI) approximates the average equity valuation
considering physical risks. Similarly, we treat the combination of the
realization of Oi,I and RP250 as a (tail) percentile. The interpretation is
the same also in the presence of chronic risks: firms are supposed to be
exposed to effects corresponding to a given hurricane and to chronic
effects as described by Oi,I, conditioned to a given climate scenario.
Also, the adjusted equity value computed combining chronic risk and
EAI still represents an average value, and the adjusted equity value
computed combining chronic and RP250 still represents a VaR.

Importantly, in Eq. (8), δj,I,i is computed using the relative dama-
ges to assets as calculated by the CLIMADAmodel. Thus, in our model
the impact of acute shocks on the firm is captured in a reduced form as
adjustment in the growth rate of the firm. In this treatment, the ratio of
asset damages (as computed in Eq. (1) using the damage function) links
acute risks to the growth rate. Hence, it is not necessary to model the
growth of assets explicitly. This approach is also consistent with the
one followed in the macroeconomic model ICES. In fact, ICES repre-
sents the impacts of climate change either as changes in productivity
or as losses on physical capital and land. Thus, the focus on relative
losses to assets is consistent with the treatment of physical capital in
the macroeconomic model.

The CDDM is computed conditioned to the following scenario
combinations: SSP2-RCP6.0, SSP3-RCP2.6, SSP3-RCP4.5, SSP5-RCP4.5. In
our model, the computation of the value of the firm takes into account
the year span from2022 to2050.Weassumefirms are subject to climate
impacts from 2035 onward, the period which captures the long run in
the current treatment of the model. To proxy these impacts, we use a
reference year for both the ICES model and tropical cyclones, namely
2040 (climatemodels’ estimates at years 2035, 2040, 2045, 2050are not
distinguishable anyway in statistical sense47). In particular, the estimate
of tropical cyclones' impacts at 2040 is obtained following a common
approach in the literature based on a linear approach interpolation of
the impacts between 2020 and 2100 (see e.g., refs. 21 and 36). Thus, for
the valuation conditioned to e.g., scenario SSP2-RPC6.0, year 2040, ICES
data are considered for SSP2-RCP6.0, year 2040, and tropical cyclones
impacts are considered for RCP6.0, year 2040. Other years are not
considered. Finally using a certain year to compute gL does not imply
extending the dividend stream until that year, but only computing Eq.
(8) with values for Oj,I and δj,I,i for that year.

The full CDDM is applied to all firms with at least two datapoints
available for EPS. For non-dividend paying stocks or stocks with
missing data, we compute the equity shock as follows:

• For stocks paying no dividend, orwith no dividend data, we revert
to direct shocks, i.e., ψj = ~gL,I,j � gL.

• For stocks with data available only for the first period, we com-
pute a one period version of the CDDM following ~V0,j =

D0
r�~gL,I,j

.

Analysis using proxy data
Wecompare the portfolio-level results for losses computed using proxy
data vs asset-level data. The purpose of this analysis is to quantify the
relevance of the underestimation of physical risk that stems from
neglecting asset-level data. To compute the results with proxy data, we
replace asset-level data with one location per firm and use information
onphysical risk at this location toproxyphysical risks for thefirm. Thus,
the CDDMmodel is computed for the same firms both using asset-level
data and using only one location (i.e., proxy data). Business lines are
used for comparability, i.e., the valuation is applied only to those
business lines that are adjusted in the asset-level analysis. The single
location is either theheadquarter (forMexicanfirms), the address of the
Mexican subsidiary with highest ownership (for non-Mexican firmswith
Mexican subsidiaries) or Mexico City (for non-Mexican firms without
Mexican subsidiaries). All addresses are geolocalised using Opencage
API (https://opencagedata.com/) and checked manually.

For the one location, the value exposed to acute physical risks is
given either by the firm’s Property, plant and equipment (PPE) (Variable
“property plant & equipment—net total”, sourced from Refinitiv Eikon)
(if larger than 1 million USD) or by its Total assets (TA) (Variable “total
assets", sourced fromRefinitiv Eikon).Using themethodologydescribed
in Subsection Asset-level assessment, we assess impacts fromCLIMADA
on PPE or TA at the single location.We combine the losses from tropical
cyclones with chronic risks computed from ICES and plug them in the
CDDM. For comparability purposes, we use δ only on those business
lines which can be impacted at the asset level. Otherwise, applying δ to
business lines that cannot be impacted would impair the comparability
of the counterfactual analysis. Subsequent statistics (e.g., VaR) are
computed as in the version of the model using all asset information.

Limitations
The following remarks complement the limitations acknowledged in
the Discussion. First, we account for uncertainties on financial port-
folio loss (VaR, mean) estimating the confidence intervals (CI) using
bootstrapping (see e.g., ref. 30). Including the sources of uncer-
tainties mentioned in the Discussion would likely lead to larger CI.
Second, the reader should be aware that there is considerable
uncertainty regarding the effects of climate change on the frequency
and intensity of tropical cyclones for the middle of the century
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especially at less-than continental scale. The methodology we
applied here to quantify damages around the middle of the century
builds on relevant literature in the field and relies on interpolation
(e.g., refs. 21 and 36). Third, we do not consider firms’ adaptation
measures (such as sea barriers or mangroves) due to lack of data on
firms’ adaptation strategies38. Adaptation may vary across firms, and
different firms may follow different schedules to implement adap-
tation measures. Moreover, many adaptation measures generally
considered in the literature (e.g., mangroves for coastal protection,
as in ref. 36) are not relevant for the types of assets that we analyse
here. Similarly, relocation is not feasible for most of the assets we
consider (e.g., mines or power plants must be located where natural
resources are located). Existing calibrations of adaptation measures
are either based on assumptions (e.g., ref. 36 in the case of the effect
of mangroves on tropical cyclones’ winds) or specific to individual
countries and thus not applicable to Mexico (e.g., ref. 21). Further-
more,Mexico invests very little in adaptation52,53. Fourth, information
on assets’ location, ownership, value and residual life is oftenmissing
and has to be estimated. Moreover, some non-core firms’ assets (e.g.,
deposits, warehouses) may be unknown even for firms where asset-
level data are available. Furthermore, for some assets it is not pos-
sible to reconstruct ownership chains, or the unlisted nature of some
of the owners makes the link to equity financial portfolios not pos-
sible. Fifth, in our assessment, we consider only one country (Mex-
ico), one hazard (tropical cyclones), a selection of asset types (mostly
energy-related), and one financial asset class (equities). Thus, our
results in terms of financial risk for investors are conservative. Sixth,
short-term risks are generally downplayed both in the macro-
economicmodel framework used (see ref. 23 for a discussion), and in
the CDDM. Finally, we consider only direct impacts of tropical
cyclones, and not their indirect ones such as supply chain disrup-
tions, damage to infrastructure other than the assets in the sample,
or loss of lives.

Data availability
The data that support the findings of this study are available from S&P
and Refinitiv Eikon, but restrictions apply to the shareability of these
data, which were used under license for the current study, and so are
not publicly available. Data are however available from the authors
upon justified request subject to licensing agreements with S&P and
Refinitiv Eikon.

Code availability
The codes that support thefindings of this study canbemade available
upon request for the purpose of academic research.
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