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Abstract

This thesis is aimed at designing a Trajectory Data Warehouse (TDW) model, hav-
ing the ability to storing and analysing trajectories data. In particular a trajectory
data warehouse is a data warehouse able to store aggregate information related to
trajectories of moving objects, which also offers visual OLAP operations for data
analysis.

The data warehouse model includes both a temporal and a spatial dimensions,
while permits also for several other dimensions. This ensures a flexibility of the
model that results to be general enough to deal with objects that are either com-
pletely free or constrained in their movements. In particular, the spatial dimension
and the associated concept hierarchy reflect the structure of the environment in
which the objects travel. The temporal dimension, on the other hand, reflects the
passing of time, while the other dimensions describe features of the studied moving
objects. The TDW allows one to analyse the behaviour of objects inside a given
area as well as movements of objects between areas in the same neighbourhood.
We investigate in depth some issues related to the computation of corresponding
aggregates, which are useful for the efficient implementation of roll-up operations.

We insert our TDW in a more general framework that offers functionalities in
order to reconstruct trajectories data starting from raw time-stamped locations re-
ceived from external devices, and then use these reconstructed trajectories in order
to feed-up the data warehouse. The framework also provides a visual interface for
easily navigate aggregate measures obtained from OLAP queries at different granu-
larities. The user can get overall views in time and in space of the measures, as well
as a focused view on specific measures, spatial areas, or temporal intervals.

To highlight the usefulness of the entire framework we propose two different
case studies. The first one applies the framework to some trajectory data related
to cars moving in the city of Milan, while the second one applies the system to
trajectories obtained by monitoring some fishing boats sailing on the Adriatic Sea.
The mainly differences between the two cases are related to the type of moving
objects under observation, the available information about the objects, and their
movement constraints, i.e. the road network for cars and freely movements for
boats.
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Introduction

Physical objects have all in common an interesting characteristic. They have a
position in space in every time instance, and this applies to countries, land parcels,
rivers, glaciers, lakes, forests, to cite only some examples. However, for these types
of objects the location in the space changes very slowly, or do not change at all,
along the time. But beside them we can find other types of objects that change
position continuously. Just to name few of them, we can have cars, taxis, boats, air
planes, but also birds, bears, fishes, persons, and so on. An interesting fact related
to these kinds of objects is that while they move around, they follow a path through
space and time, that if stored permits to reconstruct their movements. Each of these
paths is what it is called an object trajectory.

In the past few years the interest in location-aware services has constantly raised
thanks to the increment of GPS-enabled devices available in the market, such as
mobile phones, anti-thefts satellite systems, GPS car navigation systems, and RFID
tags adoption, making this kind of technology available to a vast amount of people.
These technologies allow for continuously tracking moving objects. If you think
at cellular phones, their networks permit to track users with different precisions
depending on the amount of GSM cells available in a certain zone (i.e. GSM network
permits to detect the presence of a device in a certain cell, hence higher is the number
of cells, higher is the precision of the positioning of the device that can be achieved
through triangulation techniques). Car navigation systems can keep track of the
movements of the devices by constantly storing the exact coordinates position of
the device itself. Tracking devices, as for example GPS collars used on wild animals
for monitoring purposes, can constantly register the positions of entire herds or
single individuals, freely moving around open areas, forests and so on.

The analysis of such trajectories data raises opportunities for discovering be-
havioural mobility patterns that can be exploited in many innovative applications.
Analysing GSM trajectories could help in better understanding human behaviours,
or services accessibility. Tracking cars offers new methodologies for the study of
traffic management and monitor. The use of tracking collars on animals can make
it easier the study of migration routes or habits of some species. Monitoring boats
sailing on the sea can be useful for control surveillance to prevent boats collision or
to determine whether a boat has problems, i.e. engine failures.
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An interesting aspect related to trajectories collected in a given scenario is that
they usually have some similar behaviours. Take cars movements as an examples.
Cars move on road networks, that are usually predefined, so either if every object has
different paths, different starting points and different destinations, probably large
parts of the trajectories of these objects behave in the same way. The same thing
could be observed on animal movements, that even if they move on freely areas,
usually follow migrating routes and move in large herds or following a leader. This
characteristic means that trajectories data can somehow be aggregated together
in order to obtain a more interesting comprehension of the phenomena concerning
moving objects.

In this context, we argue that data warehousing technologies can play an im-
portant role in granting very fast, accurate and understandable responses to queries
for analysing mobility data. Data warehouses [33, 10, 34, 35, 41, 42, 77], i.e. tools
designed for handling large amount of data, are nowadays common tools in order to
perform analysis over them. Data warehouses are used for analysing data by means
of OLAP (On-Line Analytical Processing) [12, 41] tools which provide sophisticated
features for aggregating, analysing, and comparing data, converting them into useful
knowledge. These systems differ from traditional databases in the sense they are
designed and tuned for answering complex queries rather than for high throughput
of a mix of updating transactions, and they typically have a longer memory, i.e.,
they do not only contain the actual values (snapshot data) but also historical data.
In data warehouses data are organized as a set of dimensions and fact tables. Di-
mensions contain the analysis axes, whether fact tables contain measures, i.e. the
numerical attributes being analysed against the different dimensions. Thus, data
are perceived as a cube, divided in cells, where each cell contains a measure or a
set of measures of interest. Data warehouse dimensions are further organized into
hierarchies that favour the data aggregation process. A hierarchy is divided into
levels, each of which having a different granularity, going from coarser level, to most
detailed one. The members of one level can be aggregated to form the members of
the next higher level.

Reports generated by OLAP queries on data warehouses are usually in the form
of tables, graphs, texts, numbers. However, trajectories data may not be easy
to understand by using such representations. This kind of data is related to the
territory where they have been collected, so their visualization over a map is not an
optional requirement. Geographical Information Systems (GISs) [64, 79] have been
extensively used in various application domains, ranging from ecological, economical
and demographic analysis, to city planning. Typically a GIS maintains information
in several thematic layers. In these systems, each layer is composed of purely spatial
data, on the one hand, that is combined with classical alpha-numeric attributes on
the other hand. Two main models are used for the representation of the spatial
part of the information within a layer: vector model and raster model. In the vector
model spatial information is represented in the form of geometries like points, lines,
polylines and polygons, defined by some data structures. Non-spatial information
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is associated with these geometries in the form of attributes. The raster model
represents spatial data as pixels or cells, each one having an associated attribute or
set of attributes. Usually these cells form a uniform grid in the plane, and for each
of them the attribute value is associate with, e.g., a number or a colour, denoting a
sample value of some computed function. Often raster layers and vector layers are
used together in order to give different information.

1.1 Main Contributions of the Thesis

The main achievement of the thesis is the definition of a data warehouse model
having the aim to manage spatio-temporal object observations, in the form of tra-
jectories, for an efficiently storing and analysis of these data in order to help users
in mining new knowledge.

The Trajectory Data Warehouse (TDW) model has been developed in order to
be flexible and very adaptive to various scenarios (i.e. sailing boats, people moving,
animals migrating, cars). The main dimensions of analysis in the context of moving
objects are the spatial and the temporal one. More specifically, the spatial domain
can be structured according to the application requirements, from simple sets of
nested grids (like in [55, 50]), to regions with arbitrary shapes, which can also
be used to model a road network. On the other hand, the temporal domain will
represent the data at different time intervals, that can be set to be bigger or smaller
depending on the user needs.

The Trajectory Data Warehouse is the core module of a general framework for
handling trajectories data. The framework collects streams of spatio-temporal ob-
servations related to the position of moving objects. In general these observations
are collected at different or irregular sampling rates, at different times, and data can
be missing or can contain errors. In between time-stamps there is no knowledge of
the movement of the entities, so the information must be inferred in some ways. This
is the task of the first module of the framework, that will reconstruct trajectories
data starting from the raw locations received by the system. These reconstructed
trajectories will then be used in order to feed-up our TDW. During the ETL phase,
reconstructed trajectories are aggregated together, and the measures are calculated
for each cell of the spatio-temporal data cube.

In order to allow for OLAP operations on the Trajectory Data Warehouse, ade-
quate aggregation functions need to be defined for the data warehouse measures over
the defined dimensions. We provide a novel formalisation measures and aggregate
functions. Then we use this formalism in order to prove some analytical properties
of the measures itself. Among the other we introduce the measure Visits, counting
the number of times each base cell of the data warchouse is visited by trajectories.
This measure result to be important since give a good approximation of the holistic
measure Presence, which counts the number of distinct trajectories occurring in a
granule.
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Measures are stored as TDW facts associated with base cells of our TDW model.
A base cell, called base granule in the context of TDW, represents the base elements
in the partition of the spatial, temporal and eventually other available dimensions
domains, and can be aggregated along the available dimensions according to the
associated hierarchies. These measures already represent aggregate information, as
they report some significant features of the sets of trajectories crossing the granules,
whereas single trajectory details, like object identifiers, are not kept in the TDW at
all. There are, in general, good reasons for this design choice. Often individual data
can be highly volatile and require huge memory space. More importantly, in some
cases they cannot be stored due to legal or privacy issues, and anonymization might
not suffice to guarantee privacy of tracked people [69]. In addition, for common
spatio-temporal applications aggregate measures are typically much more relevant
than information about individual moving objects [71].

Visual representation of data are essential for enabling a human analyst to un-
derstand the data, extract relevant information and derive knowledge, that is the
aim of the work proposed in this thesis. It is generally recognized that visual dis-
plays facilitate effective perception and cognition [51], promote ideation [13] and
support analytical thinking [72]. For these reasons, in order to offer suitable tools
for OLAP analysis on the defined Trajectory Data Warehouse, we develop, as last
module of the proposed framework, a visual OLAP interface, able to perform OLAP
analysis, queries and operation in a visual manner. It allows for multidimensional
and interactive analysis, and it permits to overcome the limits of the usual OLAP
operations provided by traditional data warehouses. In fact, the ordinary data ware-
house representation based on relational tables makes it very difficult for the user to
grasp the relationships between areas in the same neighbourhood, the evolution in
time of spatial measures, or the correlations of different values. We believe that, as
for spatio-temporal data, visualisation is crucial: it can be seen simultaneously as
the output and endproduct of a knowledge discovery cycle and as the starting point
for further, interactive and visual, analysis.

To highlight the usefulness of the proposed framework, and in particular of the
TDW and the visual OLAP tool, we present two case studies. The first use case
consists of using our framework in order to analyse data related to cars moving in
the road network of the city of Milan, in Italy. Data have been shared inside the
GeoPKDD! European project, during which part of the research of this thesis has
been done. The goal of the project was to develop theory, techniques and systems
for geographic knowledge discovery, based on new privacy-preserving methods for
extracting knowledge from large amounts of raw data referenced in space and time.
This dataset contains information about a week of movements of a fleet of cars
monitored by an insurance company, and has no other information on the users
despite their spatio-temporal location. The second use case is based on a dataset
containing information about fishing boats sailing in the Adriatic sea. The dataset

!Geographic Privacy-aware Knowledge Discovery and Delivery - http://www.geopkdd.eu
g Y g y y g
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has been given to us during a collaboration with some environmental scientists from
Universita Ca’ Foscari Venezia, that were studying habits of the marine wildlife
and fishermen. This dataset is far richer of information with respect to the first one,
and gives us the possibility to instantiate our TDW model with different dimensions,
other than the spatial and temporal ones. Using our tool the environmental scientists
have been able to obtain meaningful information for their studies, while we had a
confirmation of the flexibility of the proposed system.

1.2 Structure of the thesis

Chapter 2 describes some related work. It will be briefly presented some base con-
cepts on spatio-temporal data and tools to manage them, as moving object databases
and spatial data warehouses.

Chapter 3 introduces the general framework we proposed, and discusses some of
the problems related to the trajectory reconstruction task. It will also present the
ETL phase needed in order to store aggregated trajectory data into the trajectory
data warehouse. We introduce in this chapter also two application scenarios to
which the framework has been applied.

Chapter 4 describes the abstract TDW conceptual model. The chapter illustrates
the spatio-temporal hierarchies, some stored measures and the associated aggregate
functions. Moreover, in this chapter we also discuss the measure V, and devise an
algebraic aggregate function for this measure that is able to exactly answer roll-
up queries, independently from the specific discretization and hierarchies of the
spatio-temporal dimensions. Finally, we discuss the issues related to approximating
measure Presence. The chapter provides propositions and formal proofs in order to
prove the validity of the model and the soundness of the given aggregate functions.

Chapter 5 is devoted to the presentation of the visual framework we developed
in order to permit visual analysis on the TDW and to the illustration of some of its
visual functionalities.

Chapter 6 proposes two applicative scenarios in which we have tested our frame-
work, illustrating the obtained practical results.

Finally Chapter 7 contains some concluding remarks and proposes some topics
for future work.



1. Introduction




Related work

A data warehouses (DW) is a repository of subject-oriented, integrated, and non-
volatile information aimed at supporting knowledge workers (executives, managers,
analysts) to make better and faster decisions [33]. Data warehouses contain a large
amount of information, which is collected from a variety of independent sources and
are often maintained separately from the operational databases. Traditionally op-
erational databases are optimized for on-line analytical processing (OLTP), where
consistency and recoverability are critical. Transactions typically access a small
number of individual records based on primary key. Operational databases main-
tain current state information. In contrast, data warehouses maintain historical,
summarized, and consolidated information, and are designed for on-line analytical
processing (OLAP) [12]. The data in the warehouses are often modelled as a multi-
dimensional space to facilitate the query engines for OLAP, where queries typically
aggregate data across many dimensions in order to detect trends and anomalies [54].
These aggregated data are called facts and each of them consists on set of numeric
measures that are the subject of analysis in a multidimensional data model. Each
of the numeric measures is determined by a set of dimensions. In a census data
warehouse, for example, the measure is population, and the dimensions of interest
are age group, ethnicity, income type, time (year), location (census tract), and so
on. Given N dimensions the measures can be aggregated in 2V different ways. The
SQL aggregate functions and the group-by operator only produce one out of 2V
aggregates at a time. A data cube [27] is an aggregate operator which computes all
2NV aggregates in one shot.

Spatial data warehouses (SDWs) contain geographic data in addition to non-
spatial data. A major difference between conventional and spatial data warehouses
lies in the visualization of the results. Conventional data warehouses OLAP results
are often shown as summary tables or spread sheets of text and numbers, whereas
in the case of spatial data warehouses the results may be albums of maps. It is not
trivial to convert the alpha-numeric output of a data cube on spatial data warehouses
into an organized collection of maps.

Another research field that has been heavily explored is that related to mowv-
ing object databases (MODs), i.e. databases containing information about objects
moving in the space. In the following some of the works that have been done so
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far in these fields will be presented. By making this kind of data available in data
warehouses we instead obtain Trajectory data warehouses (TDWs). TDWs are a
relatively new research topic, and can be considered somehow an evolution of the
well-studied spatial data warehouses.

2.1 Moving Object Databases

Research on MODs is a very active field and started more than a decade ago, based
on previous research on spatial and temporal databases. There is a large amount
of literature on this topic, starting with the works of Erwig [20] and Wolfson [7§].
In the following years, the work of Giliting et al. [30] defines an algebra suitable
to representing and querying moving objects. In order to define such an algebra,
the authors introduce a type system with some basic types as well as some type
constructors. Basic types are the well known int, real, string and bool, whose domains
are extended by the value | with the meaning of undefined. The spatial types and
temporal types introduced in the model are more interesting.

Basic conceptual spatial entities proposed are four different types, called point,
points, line, and region. They are illustrated in Fig 2.1. Informally, these types have
the following meaning. A value of type point represents a point in the Euclidean
plane or is undefined. A points value is a finite set of points. A line value is a finite
set of continuous curves in the plane. A region is a finite set of disjoint parts called
faces, each of which may have holes. It is allowed that a face lies within a hole of
another face. Each of the three set types, points, line and region, may be empty.

(a) A point value  (b) A points value (¢) A line value (d) A region value

Figure 2.1: Spatial data types defined in [30]

Time depending types defined by the authors are divided in two categories: a
time type, called instant, representing a point in time, and a temporal type. The
temporal types are derived from the base and spatial types by the constructor mowv-
ing. This constructor, for each base or spatial types, yields a mapping from time
to the starting type itself, generating what the authors call moving types, namely
mpoint, mpoints, mline, mregion and so on. In other words, given for instance an
object of type line, its moving type mline describes the development of that line
over the time. These temporal types are functions, or infinite sets of pairs (instant,
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value). In order to represent any single element of such a function, i.e., a single
(instant, value)-pair, for example, to represent the result of a time-slice operation
the authors propose the intime type constructor. This constructor converts a given
type into a type that associates instants of time with values of the starting type.
On top of these abstract types, authors define the appropriate sets of operations
in order to form a spatio-temporal algebra. The design of these operations adheres
to three principles: they have to be designed as generic as possible; they have to
achieve consistency between operations on non-temporal and temporal types; finally
they have to capture the interesting phenomena. Defined operations are divided into
two main classes, depending on the kind of types they refer to: non-temporal types
(Figure 2.2) and temporal types (Figure 2.3) operations. In particular, among the
other operators defined, the authors introduced the concept of trajectory of a moving
object, as a sample of tuples in the form of (O;4, x,y, 1), where O,y is the identifier of
the moving object, (z,y) represents its position in the space and ¢ is the timestamp
of the observation, i.e. the time the object was in the given location. This sample
represents a subset of all the positions visited by the moving object itself.

Class Operations

Predicates 1sempty
=, #, intersects, inside
< <, >, >, before
touches, attached, overlaps, on_border, in_interior

Set Operations intersection, union, Minus
crossings, touch_points, common _border
Aggregation min, mazx, avg, center, single
Numeric no_components, size, perimeter, duration, length, area
Distance and Direction distance, direction
Base Type Specific and, or, not

Figure 2.2: Non-Temporal operations defined by Giiting et al. in [30]

Class Operations

Projection to Domain/Range deftime, rangevalues, locations, trajectory
routes, traversed, inst, val

Intersection with Domain/Range atinstant, atperiods, initial, final, present
at, atmin, atmax, passes

When when

Rate of Change derivative, speed, turn, velocity

Figure 2.3: Temporal operations defined by Giiting et al. in [30]

In [29] Giiting et al. present an example of MOD for unconstrained movements,
based on the described algebra, on a platform database prototyping, called SEC-
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ONDO. This prototype DBMS was developed at University of Hagen since about
1995. The main design goals were a clean extensible architecture and support for
spatial and spatio-temporal applications in order to provide a “generic” database
system frame that can be filled with implementations of various DBMS data models.
SECONDQO’s architecture is shown in Figure 2.4. It consists of three major com-
ponents: the kernel, the optimizer, and the GUI. The kernel does not implement a
fixed data model but is open for implementation of a wide variety of DBMS data
models, and it is extensible by algebra modules, describing a set of types and oper-
ators. The optimizer provides as its core capability conjunctive query optimization.
Finally, the graphical user interface (GUI) is an extensible visualization tool that
can be extended by viewers for new data types or models and provides a generic
and rather sophisticated spatial database interface, for the visualization of spatial
types and moving objects, including animation of these ones.

GUI Command Manager

L Query Processor & Catalog

Optimizer

Alg. 1| Alg. 2| Alg. n

SECONDO Kernel Store Manager & Tools

Figure 2.4: SECONDO components (left) and architecture of kernel system (right)

In [59, 60] Pelekis et al. present another example of MOD, referring to the case
of unconstrained movement, based on a real world DBMS, the Hermes system. The
system provides the functionalities needed for handling two-dimensional objects that
change location, shape and size, through four kinds of data types: static base data
types, static temporal data types, static spatial data types and moving data types.
The objects belonging to the moving type are provided with a set of operations:
topological and distance predicates, like within_distance; temporal functions, like
add_unit (a function for adding a new unit of movement), and at_instant (a function
that returns the union of the projection of a moving object at a time instant);
distance and direction operators (for instance, the distance between two moving
objects); set relationships (like intersection). Also, numeric operations on objects
are supported, like area or length. Hermes supports four query types. A user can
make queries on stationary objects, like point, range, distance-based, topological,
and nearest neighbour queries. Or s/he can make queries on moving reference objects
(distance-based and similarity queries). Finally Hermes permits join queries and
queries involving unary operators (as travelled distance, speed and so on).

With a few year delay with respect to the corresponding results for unconstrained
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movement, several works have presented data models to represent movement in con-
strained spaces, and in particular in networks. In [67] Speicys et al. present a
hybrid model, combining a graph representation and a two-dimensional represen-
tation to allow the support of different kinds of queries regarding statical spatial
objects. This work is focused on data modelling, and does not describe methods to
compute query answers. On the other hand, in [57], Papadias et al. describe how
to solve, for statical objects, nearest neighbours queries, range queries, closest-pairs
queries, and e-Distance joins queries on spatial network databases. Finally, Giiting
et al. in [31] introduce both a data model and a comprehensive query language for
network constrained moving objects, such as cars forced to move along roads.

The evolution of MOD was accompanied by an uninterrupted effort to improve
efficiency and scalability through the use of indexes [62]. Spatial objects constrained
to a network can be indexed more efficiently than free objects [61]. This is mainly
due to the dimensional reduction entailed in restricting the 2D space to a set of line
segments. Thanks to the dimensional reduction, the position of a moving object can
be represented by a real number, and 3D spatio-temporal indexes can be replaced by
traditional 2D indexes. A similar advantage can be observed when using symbolic
positions instead of 2D ones, for example to represent the movement of the user
revealed by proximity detectors in indoor spaces, as proposed by Jensen et al. in [37].

What happens in all the described approaches is that data are completely stored
in the MODs. Despite the efficiency these tools can achieve by using indexes, either
with [61, 37] or without [14] movement constraints, or techniques to reduce the
size of data related to a trajectory while preserving error bounds [9], storing all
moving object trajectories is simply unfeasible in case the amount of data to manage
is unbounded. Even using aging methods combined with line simplification, as
described in [9], would only postpone the exhaustion of storage. A possible solution
to this kind of problems is to put off-line part of the historical data in order to
make space for newer ones. However, this kind of solution makes it really difficult to
use MODs in order to build up to them analytical applications for massive mobility
datasets, such as the one generated by cellular phone tracks; indeed this kind of
application needs to access the entire datasets, while an off-line policy forces the
user to focus his/her attention only on a restricted timespan, e.g. making it really
difficult to perform combined analysis between actual and historical data.

2.2 Spatial and Temporal Data Warehouses

Problems related to data storing requirements is really frequent in non-spatial con-
texts, and has been largely studied. In these contexts, it is common for analytical
applications to make use of dedicated collection of subject-oriented, integrated, non-
volatile, and time-variant data, i.e. data warehouses. In cases involving unbounded
or very large amount of data, the original detail data are replaced by aggregated
ones, at a granularity level that is a trade-off between analytical needs for pinpoint-
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ing situations discovered at macro level and system resources. By the way, the
efficient implementation of aggregate queries is a challenging task. Tao and Papa-
dias in [71] propose a technique based on the combined use of specialised indexes
and materialisation of aggregate measures. Choi et al. in [11] try to overcome the
limitations of multi-tree structures by introducing a new index structure that com-
bines the benefits of Quadtrees and Grid files. However, the above frameworks focus
on calculating simple measures (e.g. count customers) and they do not cope with
trajectories.

Han et al. in [32] extended the concept of data warehousing to spatial data and
introduced the concept of spatial data cube. They propose a logical model based on a
star-schema that allows the definition of different kinds of dimensions and measures.
For the dimensions they identify three cases:

1. Non-spatial dimensions are dimensions containing only non-spatial data. For
example one can have two dimensions, temperature and precipitation, which
contain non-spatial data whose generalization are non-spatial, such as hot and
wet.

2. Spatial-to-spatial dimensions are dimensions whose primitive levels and all
of their high-level generalized data are spatial. For example the Italian map
for administrative areas, such as municipalities, is represented by spatial data,
and all of its generalized data, such as cities, regions, ..., are also spatial.

3. Spatial-to-non-spatial dimensions are dimensions whose primitive levels
data are spatial but whose generalizations, starting at a certain high level,
become non-spatial. For example, the European countries are associated with
spatial data, but each country can be generalized to some non spatial value,
such as 'Monarchy’ in the case of a 'government type’ level on the hierarchy.

On the other hand, as far as measures are concerned, authors distinguished two
different cases, namely:

1. Numerical measures are measures containing only numerical data. For ex-
ample, one measure in a spatial data warehouse could be monthly revenue of
a region, and a roll-up may get the total revenue by year, by country, etc.

2. Spatial measures are measures which contain one or a collection of pointers
to spatial objects. For example, during the generalization (roll-up) in a spatial
data cube having temperature and precipitation mentioned before, the regions
with the same range of temperature and precipitation will be grouped into the
same cell, and the measure so formed contains a collection of pointers to those
regions.

According to Gray et al. [27], numerical measures can be categorized into three
classes, with respect to the complexity of the aggregate functions needed for com-
puting the super-aggregates of the measures, starting from a set of already available
sub-aggregates:
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o distributive: measures using distributive functions are those for which super-
aggregates can be computed by summing up the sub-aggregates at finer gran-
ularities. An example of this kind of measures could be the total revenue for
a shop: given the revenue for every product, the total revenue is composed by
simply summing up all the available revenues.

e algebraic: measures using algebraic functions are those for which super-aggre-
gates can be computed from the sub-aggregates with a finite set of auxiliary
measures. An example of this kind of measures are all those related to an
average quantity. In this cases the average total could be computed by sum-
ming up the single quantities (first measure), and by dividing this value by
the amount of the objects involved (second measure).

e holistic: measures using holistic functions are those for which super-aggregates
cannot be computed from sub-aggregates, even if we employ auxiliary mea-
sures. An example of this kind of measure could be the amount of customers
that have visited a shop. There is no possibilities to distinguish the same cus-
tomer visiting the shop twice if only the total amount of customers is available
for each time frame (i.e. you need to keep track of every customer id).

Region name
dimension

probe location

district BC_weather

city
region :
province time
temperature

Time
dimension region_map
- area
time

count

day
month

1‘egi011711-ame

precipitation
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temp_range
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Precipitation
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Figure 2.5: Star model of a spatial data warehouse [32]

Figure 2.5 represents an example of a star schema for a spatial data warehouse
related to the analysis of the weather in the British Columbia, as well as the regions
represented in the corresponding SDW. In the schema one can notice four different
dimensions, temperature, precipitation, time and region_name, and three different
measures. Region_map is a spatial measure which represents a collection of spatial
pointers pointing to the corresponding regions; area is a numerical measure which
represents the sum of the total areas of the corresponding spatial objects; count is a
numerical measure which represents the total number of base regions accumulated
in the corresponding cell. The authors present a method for the computation of the
data cubes. Their goal is to balance the storage requirements and cost of aggrega-
tions at query-time by enhancing the performance of the most frequently accessed
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queries, either directly by precomputing them, or indirectly, by precomputing an
intermediate result shared among several queries. Pedersen et al. in [58] also focus
on pre-aggregation in SDW. Both [32] and [58] present methods suitable only for
aggregating facts whose measures are distributive over the aggregation operator.
Malinowski et al. in [49] present a conceptual multidimensional data model for spa-
tial data allowing for spatial dimensions, spatial hierarchies, and spatial measures.

In order to introduce the ability to cope with temporal evolution of dimension
data, Mendelzon et al. in [52] introduce a model and developed a prototype and a
Datalog-like query language, based on a temporal star schema. This model supports
changes to the structure and/or the instances of the dimension tables by using the
concept of transaction and valid time, respectively. Some structural changes also
yield different fact table versions. Also, Eder et al. in [17] propose a data model for
temporal OLAP supporting structural changes.

In 2001, Rivest et al. [65] introduced a paradigm aimed at exploring spatial data
at different levels by using maps as normal data warehouses do with table and charts.
They propose a set of features and operators such a system should have, but they
do not present a formal model for it, although the concept and operators proposed
in [65] have been implemented in a commercial tool called JMAP.

In [36] Jensen et al. present a conceptual model for moving objects with impre-
cise position allowing for dimensions with partial containment, an algebra (selection,
union, aggregation), and a method to evaluate the effect of imprecision on aggregate
query results. The proposed model is presented in the use case of location based ser-
vices, where DW dimensions are space, time, and user, but can also be instantiated
with different dimensions, hierarchies and measures. It is not possible, however, to
explicitly account for constrained movement, for example due to the presence of a
road network.

In [15] da Silva et al. introduced a framework able to offer an open and extensi-
ble system with the analysis capabilities available in both analytic and geographic
processing tools. The idea under this framework was to classify dimensions in geo-
graphic and hybrid ones, depending on whether they represent only geographic and
non-spatial data, respectively.

Timko et al. in [73] present a multidimensional model for the representation
of data related to location based services (LBS) for vehicles moving along a road
network. The proposed model is specific for LBS and allows to represent even the
lower level detail of the road network, such as the parts of a crossroad that are
actually crossed by cars, the lanes of a segment of road and the possible exchange
of traffic among different elements (eg: if it is possible to change lane or to do a
U-Turn). As the authors observe, their work is tailored to the requirement of LBS
for objects moving on a network and thus it is not generic.

In [76] Wan et al. present an OLAP system for network-constrained moving
objects. The proposed system is based on the efficient indexing of individual trajec-
tories, and thus it is able to answer detail queries. On the other hand, this approach
makes the system unsuitable for very large databases.
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Liu et al. in [47] present a method to efficiently process large scale, real-time,
traffic data and update aggregate summaries related to road segments. It should
be observed, however, that the contribution of this work is mainly focused on the
aggregation of raw data to feed a database, and not on the efficient aggregation of
previously computed aggregates to answer complex user queries.

Finally, in [26], Gémez et al. present an extension of the Piet Spatial DW
framework to deal with trajectory data. This framework, introduced by Gémez et al.
in [25], makes use of overlay pre-computation for answering spatial queries (aggregate
or not). Piet supports four kinds of queries: standard GIS queries, standard OLAP
queries, geometric aggregation queries (like “total population in states with more
than three airports”), and integrated GIS-OLAP queries (“total sales by product in
cities crossed by a river”, with the possibility of further navigating the results).

[ Ijempgral ] [ OLAP ] [ QIS ] [ Moving Data ]
Dimensions Types
I A I I I I I

[ TOLAP ] [ SOLAP ] [ Spatio-Temporal ]
Data
B— |
I

Spatial Spatio-Temporal
TOLAP OLAP

Spatio-Temporal
TOLAP

Figure 2.6: A taxonomy for spatio-temporal data warehousing [75]

)

Despite all the works presented so far, as for now, as stated in [75], there is
still no commonly agreed definition of what a Spatio-Temporal Data Warehouse
(STDW) is and what functionalities it should support. In [75] the authors proposed
a conceptual framework for defining STDWs and a taxonomy, shown on Figure 2.6,
for spatio-temporal OLAP queries, through which they classify the approaches in
literature. The authors start by considering four basic classes: temporal dimensions,
OLAP, GIS, and moving data types. As a derived basic class, adding moving data
types to GIS produces Spatio-Temporal Data, typically allowing trajectory analysis
in a geographic environment. Providing OLAP with the ability of handling temporal
dimensions produces the concept of Temporal OLAP (TOLAP). The interaction of
OLAP and GIS is denoted by Spatial OLAP (SOLAP). The interaction between
GIS and TOLAP is called Spatial TOLAP (S-TOLAP). Adding OLAP capabilities
to spatio-temporal data results in Spatio-Temporal OLAP (ST-OLAP). Finally, if
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the latter supports temporal dimensions we have Spatio-Temporal TOLAP (ST-
TOLAP).

As said, researches in this topic are still at an early stage, so there are not
many works in this field. Some preliminary works can be found in [55, 50]. In [55],
the authors propose a method in order to model and maintain a data warehouse
for trajectories, and define a simple data cube consisting of spatial and temporal
dimensions, and numeric measures concerning trajectories. In [50] the aim of the
authors was to provide efficient solutions to support the whole process for warehous-
ing, from trajectory reconstruction to trajectory-oriented OLAP analysis. However,
both of these works do not deal with visualizations of the results.

In the taxonomy proposed in [75], the work by Orlando et al. [55] should be
positioned in the ST-OLAP class, whose queries result to be the 2"¢ more expressive
ones, immediately after Spatio-Temporal TOLAP queries, that also allow for slowly
changing dimensions [42].

2.3 Visual Analysis

In visualization and visual analytics, data aggregation is commonly used for dealing
with large amounts of data. In particular, spatial, temporal, and categorical aggre-
gations are used for spatio-temporal data, as proposed by Fredrikson et al. in [23].
In particular, the authors propose for the spatial aggregation, that the space should
be divided into suitable compartments. The events that occurred in the same com-
partment will then be united in an aggregate. For the temporal aggregation, the
time is divided into suitable intervals. The events that occurred during the same
interval are put together. The attributive, or categorical, aggregation unites events
characterized by the same or close values of analysis-relevant attributes. For nu-
meric attributes, the closeness of values is defined by dividing the value ranges into
intervals so that all values within an interval are considered to be close. These three
basic types of aggregation can be used in various combinations.

To study the distribution of movement characteristics over space, movement data
can be aggregated in different ways. For instance in [16] these kind of data are ag-
gregated into continuous density surfaces, while in [22] and [3], spatial aggregations
are done by means of discrete grids. On these techniques, temporal aggregation
appears in the form of temporal histograms where the bars correspond to time in-
tervals and their heights are proportional e.g. to the number of locations visited
or the distance travelled by the objects. For spatial aggregation, the territory is
divided into compartments by means of a regular grid. The results of aggregation,
such as density counts, are represented by colouring or shading the grid cells on
a map display. Analogously to densities, other aggregated characteristics can be
computed and visualized. Spatio-temporal aggregation is done by the grid cells and
consecutive time intervals. The results are shown on an animated map. Brillinger et
al. in [7] aggregate movement data into a vector field using a regular grid: in each
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grid cell, a vector (arrow) is built with the angle corresponding to the prevailing
movement direction and length and width proportional to the average speed and
the amount of movement, respectively, as shown in Figure 2.7. The picture shows
movements of animals in two different moments of the day (6am and 12pm), in a
certain area. The vector field aggregation allows a user to see that animals are more
active early in the morning with respect to what happens at noon, as shown by
longer arrows in the first image. Moreover, it can be noted that there are regions of
the vector fields that converge towards some areas of attractions, eg in the area at
the top left of the picture.
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Figure 2.7: Examples of vector field aggregation showing animals movements at
6am (a) and 12pm (b)

To study links between places, movement data can be aggregated into origin-
destination matrices [28] and flow maps [74, 5]. In the first case, the results are
visualized as a transition matrix where the rows and columns correspond to the
places and symbols in the cells or cell colouring or shading encode the derived at-
tribute values. An example of this kind of visualization is shown in Figure 2.8. A
disadvantage of such visualization is the lack of spatial context. In the second case,
aggregate moves are visualized on a map by bands or arrows connecting pairs of lo-
cations. The widths of the bands or arrows are proportional to the volumes moved
between these locations. An example of flow map is represented in Figure 2.9. Un-
fortunately, such a map may be illegible because of intersecting and overlapping
symbols. In the case of spatio-temporal links, the time can again be divided into
intervals. Aggregates are then built from moves having common origin, common
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Figure 2.8: Example of an origin-destination matrix to visualize spatial interaction
patterns among 10 locations. The two matrices show the same data, with dark
colours representing strong interactions. The right matrix has columns and rows
reordered according to interactions among locations [28]

destination, and common time interval when they occur(which means that the start
and end time of each move lie within this interval). The results can then be rep-
resented by a sequence of transition matrices or flow maps, one matrix or map per
time interval, or by an animation.

Figure 2.9: Example of a flow map for movement representation [74]

A more detailed survey of the aggregation methods used for movement data could
be found in [3]. In particular, depending on the type of movement data analysed, the
authors divide the aggregation methods in three different classes. Spatial, temporal,
and attributive aggregations, and their combinations, could be applied to positions
records treated as independent events. Links or temporal links aggregations could
be applied to data that are treated as straight moves between predefined places while
the actual paths are ignored. Finally route-based aggregation could be applied to
trajectories with close and similar routes.
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2.3.1 Visual OLAP

Visual OLAP is a clear trend in software for business visualization. The tools allow
the user to explore data cubes through traditional visualisation techniques such as
time series plots, scatterplots, maps, treemaps, cartograms, matrices etc., as well as
more specialised visualisations. Polaris [68] and ADVIZOR are two pioneering sys-
tems in this direction. Polaris is a visual tool for multidimensional analysis developed
at Stanford University. Currently, Tableau Software commercialises the pioneering
Polaris work. ADVIZOR represents the commercialisation of 10 years of research in
Bell Labs on interactive data visualisation and in-memory data management [19].

In [66] Shekhar et al. proposed Map
Cube, an operator that inherits ideas from
three different domains, namely data ware-
house, visualization and GIS, as shown in Fig- DW
ure 2.10. Map cube is essentially a data cube _Data Cube
with cartographic visualization of each dimen-
sion to generate an album of related maps
for a dimension power-set hierarchy or a con-
cept hierarchy or a mixed hierarchy. A map
cube adds more capability to traditional GIS
where maps are often independent. The data
cube capability of roll-up, drill-down slicing
and dicing gets combined with the map view. Figure 2.10: Map Cube relationship
Hence, analysis and decision making processes with three parent domains [66]
based on spatial data warehouses can result
easier and benefit.

Visualization of streaming data is a challenging research topic in visual ana-
lytics, as pointed out in the recently published roadmap for the visual analytics
research [39]. To address this problem, visual analytics requires support from the
data management side: architectures for data stream management, stream-oriented
query languages and operators, stream processing and efficient algorithms to keep
an up-to-date online connection to the data sources. It is also necessary to design
efficient algorithms for stream analysis, in particular, algorithms that are able to pro-
ceed in an incremental way and capture both trends and overall insights. Concerning
the visualization of real-time data, the approach used in the existing prototypes is
dynamic update of the display in response to changes of the data. Kim et al. [40]
and Liu et al. [48] show only the most recent data. Krstaji¢ et al. [43] represent
data from a temporal window of a selected length. The application is news stream
monitoring. It is interesting that the tool can not only represent individual news ar-
ticles but also group articles by similarity and represent the groups in an aggregated
way as threads. The grouping and aggregation is done on the fly as new articles
come. Panopticon! is a commercial company suggesting data visualization tools for

http://www.panopticon.com/
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business analytics. The company claims that their tools are unique in their ability
to handle true real-time streaming data feeds from message queues like SonicMQ
and data services like Reuters. The displays change immediately as a change in data
occurs. Real-time data may be combined with historical data. The company uses
an in-memory OLAP data model for very fast data aggregation and manipulating
data cubes.
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The usage of location aware devices, such as mobile phones or GPS-enabled devices
has exponentially increased during the last years, permitting to have access to vast
volumes of spatio-temporal dataset. Since these dataset are referred to object mov-
ing in the space, they describe the development of these objects along time, i.e. they
describe their trajectories, that informally are the path they follow in order to reach
a certain point.

An interesting and important task is to transform this huge amount of data
into valuable and meaningful new knowledge, that can be exploited in different
contexts, from Location-Based Services (LBS) to traffic control management, or for
advertisement purposes, etc.

In order to tackle with these challenging requirements, our proposal consists on
a framework for trajectories management whose core module is a data warehouse
able to handle trajectories data.

In this chapter we will present the general framework for designing a system
that allows Visual OLAP analyses over trajectory data, as well as the modules of
the framework needed for having a working Trajectory Data Warehouses, but that
are not in the aims of this thesis. The framework can be customized according to
different application scenarios. Two example scenarios will be discussed later in
Section 3.1, in order to motivate the use of such a framework, and they will be used
in all the thesis as explicative examples. The first scenario will be related to vessels
sailing on the sea (Section 3.1.1), while the second one refer to cars moving along a

road network (Section 3.1.2).

Section 3.2 will describe in details the various modules of the proposed architec-
ture, and will underline data flow between them. In Section 3.3 we will discuss the
issue of the trajectory reconstruction from a stream of spatio-temporal object obser-
vations. Such reconstructed trajectories will be used in order to load the aggregated
data into the proposed TDW. This process, called ETL, i.e. extract-transformation-
load phase, will be described in Section 3.4. The Trajectory Data Warehouse module,
as well as the visual interface for querying it will instead be described and discussed
respectively in Chapters 4 and 5.



22 3. System Architecture

3.1 Application scenarios

Before defining the model we propose for our TDW, we introduce two significant
application scenarios, with the goal of highlighting issues and heterogeneous needs
that may arise in different contexts. We also exploit the same scenarios as running
examples, to make easier to understand some formal definitions, in this and following
chapters. The first presented scenario is about freely moving objects, namely ships
sailing on the sea. The peculiarity of the second one is the presence of network
constraints on the object movements, such as cars that move along roads.

3.1.1 Vessels sailing on the sea

In this scenario we are interested in analysing the movements of vessels collected
by the Vessel Monitoring System (VMS) or the Automatic Identification System
(AIS). VMS and AIS are intended for specific uses, and have significant technical
differences. By using both, however, each vessel periodically reports its current
position.

Since 2005, the European Union legislation has required that all fishing vessels
transmit vessel identification, date, time, position, course and speed hourly. VMS
is mainly intended to monitor the movement of vessels with respect to restricted
fishing areas. AIS transponders have been mandatory for large vessels since 2004
and an optional equipment for smaller ones and boats. Each transponder collects
positions using a GPS receiver and send them to other ships, and to land base
stations, using a VHF transmitter. By the way, these methods are intended as just
two examples of technologies that could be used in order to track boats, and should
not be considered as an exhaustive list.

Although the movement of vessels is not completely free, due to land presence,
reduced water depth, or traffic constraints, ships can move freely in the open sea.
We are interested in modelling and analysing such unconstrained free movements.

In order to reconstruct the trajectories of vessels starting from VMS or AIS
data, i.e., to derive a global function of time to describe the whole trajectory, lo-
cal interpolation can be used. According to this method, objects are assumed to
move between the observed points following some rules. For instance, a linear in-
terpolation function models a straight movement with constant speed, while other
polynomial interpolations can represent smooth changes of direction.

Just to give a rough idea of a possible application, we could be interested in
identifying the areas with higher risk of collision. To this end, we could divide the
sea according to several regular grids with different resolutions. Then we could ask
for queries of this kind “Find the zones with the highest number of ships entering from
different directions per hour”, or “Find the most visited zones during low visibility
hours”, or “Find the zones with minimal distance between ships”.
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3.1.2 Cars moving along a road network

In this scenario we are interested in cars moving on a road network, which is modelled
as a graph embedded in the Euclidean 2D-space. Positions are collected by on-
board GPS devices at irregular rates. In this case the movement is completely
constrained since cars are supposed to stay on the network. When reconstructing
their trajectories, we thus take into account the topology of the road network to
determine the path followed by each car between two consecutive GPS positions
(see e.g., [6]). The reconstruction phase produces a sequence of lines in a 3D space
(T x R?), each representing the continuous “development” of the moving object
during a time interval. Notice that the spatial projection of these lines can be edges
of the road network or portions of these edges.

We assume that the user in this scenario is a city manager that exploits the
TDW to analyse the traffic. Some possible queries are:

o “Which is the number of buses per hour in the morning of a given day in
the meighbourhoods of a given district? Show its temporal evolution using a
temporal granularity of half an hour”

e “From which district does a great number of cars leave in the morning? And
at what hour? Is there a flow exiting/entering the town? Which are the main
differences in the traffic between the working days and the week-end?”

o “What is the total distance covered by car vehicles per hour in the evening of
a giwen day in the neighbourhoods of a given district?”.

The same queries could thus be repeated by referring road segments included in the
district.

3.1.3 Common features and main differences

In general, we want to model the temporal evolution of the position of objects.
To be more specific, we need to discriminate different cases, depending on their
peculiarities. For example the representation of the position of an object, the set of
valid positions, and the constraints on transitions between positions.

Even if we are dealing with similar problems, these distinctions strongly influ-
ence the suitability of design choices. For each object there exists a ’true’, and
usually unknown, trajectory. On the other hand, it is common to have some partial
knowledge of trajectories, for example a set of known positions at given times (sam-
pling of the trajectories), and those positions could be either accurate, imperfect [80]
or symbolic [38]. In some cases any element of the position domain is valid (free
movement), in other cases some positions are not valid for given classes of objects or
cannot be consider as valid since the new position is not reachable from the previous
one (constrained movement).
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Observed position. The observed position of an object could be either continu-
ous or discrete. In the second case the position could be discretized or symbolic (for
example the user is connected to a specific WiFi hotspot and the hotspot identifier is
used to indicate the position). In both cases the position could be free or constrained
to parts of the space. Indeed, part of the space could be unreachable for specific
users or class of users. For example, cars usually move along roads. Depending
on the analytical context, the observed position may be not the same that we are
interested in during the analysis. For example, in the case of vehicles constrained
along a road network, we may be interested in the identifier of the segment of road
containing the vehicle, even if the original position was continuous (and constrained
to the road network).

Movement between positions. The transition from one position to another
could be completely free or constrained. A common kinds of constraint are the ad-
jacency constraints, that restrict the user to move from a location to other locations
that are spatially or topologically adjacent.

In the case of free transitions, any sequence of positions is valid, also those
containing non spatially adjacent consecutive positions. Further, each scenario has
specific analysis requirements that we can classify according to characteristics of
dimensions and measures.

3.2 Trajectory Data Warehouse General Frame-
work

The abstract framework architecture does not depend on the characteristics of the
scenario we are observing and we want to implement. But obviously the realization
of each module composing the framework hinges on the peculiarities of this scenario.

The general framework architecture and the data flow between the modules are
shown in Figure 3.1. A description of these modules can be given as follows.

A stream of object observations, each denoted as (0bjq, time, geometry), arrives
at the system from external sources (i.e. GPS enable devices). Each observation
records an object position at a given time and space, where the spatial type of
geometry depends on the scenario. In our two described scenarios, geometry is
usually a 2D point, whereas in other cases it could be a polygon defining a closed
space, as for example a room, or maybe a 3D point, and so on. The received
observations are then passed to a trajectory reconstruction module in order to be
processed. The trajectory for each moving object, modelled as a continuous function
of time, is approximated by the known observations, by taking into account possible
movement constraints, such as roads in the traffic scenario or possible isles or lands
in the boat one. During this phase, the possible errors on the data, like misplaced
points or others problems due to various reasons, as for example GPS or network
problems, try to be fixed; for instance, if cars are supposed to move on the road and
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Figure 3.1: Framework architecture and data flow.

the position of a car is 20m away from the closest road, then its position is fixed to
satisfy the constraint. Note that this procedure cannot be considered as faultless:
for instance, if the car position results to be at the same distance from two roads,
one of them must be selected. The output of the trajectory reconstruction module is
usually a stream of positions such that for each pair of consecutive positions related
to the same object, the intermediate positions can be safely computed by applying
linear interpolation to the pair (i.e., there is no significant change in movement
speed or direction). Section 3.3 will discuss about this topic. After the phase of
trajectory reconstruction, the obtained trajectories can be used in order to extracting
aggregate measures to load into the data warehouse fact table. This process is
performed by the Eztract-Transformation-Load (ETL) module, and will be discussed
in Section 3.4. The natural choice in order to perform this task is the use of a Moving
Object Database in order to calculate the needed aggregate measures that have to be
store in the Trajectory Data Warehouse (TDW). This is the main component of our
framework, and its aim is to allow for OLAP operations over aggregated trajectory
data. Its multidimensional model, with spatio-temporal dimensions and specific
spatial hierarchies for different application scenarios, the stored measures and the
associated aggregation functions, are discussed in detail in Chapter 4. Once the data
are available in such a data warehouse, a sensitive task is to make them available
to the users that need them. Visual representation of such a kind of data could
be considered essential for enabling a human analyst to understand them, extract
relevant information and derive knowledge. Hence, in order to query and access
the data stored in the TDW, the framework provide the user with a Visual OLAP
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module, based on the Visual Analytics Toolkit, which actually performs on-demand
OLAP queries over the spatio-temporal dimensions. It is based on an interactive
toolkit for Geographical Information Systems (GISs), and permits geo-referenced
and animated views of aggregate trajectory data over a map. The functionalities of
this module will be presented in Chapter 5 and will be demonstrated in Chapter 6 .

3.3 From raw data to trajectories: trajectory re-
construction

As we mentioned before, starting from a variety of location aware devices, a stream
of observations related to the position of such devices is generated and arrives to
the framework we presented in the previous section. Each time-stamped location
is labelled with a unique identifier, associated to the moving object the observation
refers to. Hence, the first step needed in order to obtain meaningful information from
this stream is to reconstruct the path each object has followed, i.e. their trajectory.

From an abstract point of view, a trajectory of an object is a continuous function
Tia : Iiq — R?, where id is a trajectory identifier and I;; = [tfdm, t!as] is the interval
of definition of the trajectory. It is worth remarking that even if we are referring
to objects that move in a 2D spatial domain (R?), we can easily generalise to an
abstract spatial domain S without any conceptual complication.

In real-world applications, object movements are collected through a finite set of
observations, i.e., a finite subset of points either taken from the actual continuous
trajectory or reasonably close to it (the GPS or VMS data in the two presented
scenarios). Such a finite set of observations is called trajectory sample, and is defined
as follow.

Definition 3.1 (Trajectory Sample)
Given a set of time-stamped position in the space, in the form of (t,x,y), related to
the movements of a moving object, then

TS, = {(t?dv w?d? yz(')d)a (tz‘ld’ led’ yild)v SO (t%7 :L“%, y%)}
with 19, < ... < tN, 19, >t and tN < tlost,

Transforming the sampled trajectory TS;; into a continuous function T;; which
approximates 7;4 can be difficult due to several types of uncertainty, such as measure-
ment errors, or unknown trajectory behaviour between consecutive observations. In
some cases, e.g. in scenarios like vehicles moving along a road network, the knowl-
edge about the movement constraints can be exploited in order to reconstruct with
more accuracy the trajectory of the object.

Having in mind that raw points arrive in bulk sets, there is the need to decide
whether a new point is part of an already existing trajectory, or if it is part of a new
one. Depending on the application scenario, this decision can be taken in different



3.3. From raw data to trajectories: trajectory reconstruction

27

ways. In [50] the authors propose some generic trajectory reconstruction parameters
that can be set in order to accomplish this task. In particular, the five parameters
proposed are defined as follow.

e Temporal gap between trajectories (gap,,,.): the maximum allowed time in-
terval between two consecutive time-stamped positions of the same trajectory
for a single moving object. Any time-stamped position of object o;, received
after more than gap,,,. units from its last recorded position, will cause a new
trajectory of the same object to be created. An example for this parameter
is depicted in Figure 3.2, where the temporal distance between the last point
of trajectory t; and the first point of trajectory ¢, is bigger than the selected
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Figure 3.2: Temporal gap parameter example

e Spatial gap between trajectories (gapg,,..): the maximum allowed Euclidean
distance in 2D plane between two consecutive time-stamped positions of the
same trajectory. Any time-stamped position of object o;, with distance from
the last recorded position of this object greater than gap,,.., will cause a new

trajectory to be created for o; (Figure 3.3).
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Figure 3.3: Spatial gap parameter example

o Mazimum speed (Vye:): the maximum allowed speed of a moving object. It
is used in order to determine whether a reported time-stamped position must
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be considered as noise and consequently discarded from the output trajectory.
When a new time-stamped location of object o; is received, it is checked with
respect to the last known position of that object, and the corresponding speed
is calculated. If it exceeds V4, this location is considered as noise and (tem-
porarily) it is not considered in the trajectory reconstruction process (however,
it is kept separately as it may turn out to be useful again - see the parame-
ter that follows). Figure 3.4 illustrates an example for the (V;..) parameter
application.

o.o. »
o ) I(K (> Vi)

X X

Figure 3.4: Maximum speed parameter example

Mazimum noise duration (n0isen.,): the maximum duration of a noisy part
of a trajectory. Any sequence of noisy time-stamped positions of the same
object will result in a new trajectory if its duration exceeds noiseq,. For
example, consider an application recording positions of pedestrians where the
maximum speed set for a pedestrian is V., = 3 m/sec. When s/he picks
up a means of transportation (e.g., a bus), the recorded instant speed will
exceed V.., flagging the positions on the bus as noise. The maximum noise
length parameter stands for supporting this scenario: when the duration of
this sequence of “noise” exceeds noise,q., a new trajectory containing all
these positions is created, as for trajectory ¢5 in Figure 3.5.
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Figure 3.5: Maximum noise duration parameter example
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e Tolerance distance (Dy,;): the tolerance of the transmitted time-stamped po-
sitions. In other words, it is the maximum distance between two consecutive
time-stamped positions of the same object in order for the object to be consid-
ered as stationary. When a new time-stamped location of object o; is received,
it is checked with respect to the last known position of that object, and if the
distance of the two locations is smaller than D,,;, it is considered redundant
and consequently discarded. This situation is depicted in Figure 3.6.

y y

X

R

Figure 3.6: Tolerance distance parameter example

The algorithm that utilizes the aforementioned parameters is thoroughly pre-
sented and evaluated in [50]. It expects as input a set of observations, and a list
containing the partial trajectories processed by the trajectory reconstruction man-
ager; these partial trajectories are composed by several of the most recent trajectory
points, depending on the values of the algorithm parameters.

As a first step, from each observation the algorithm extracts the object identifier
and checks whether the object has been processed so far. If so, it retrieves its
partial trajectory from the corresponding list, while, in the opposite case, creates
a new trajectory and adds it to the list. Then, it compares the incoming point
with the tail of the partial trajectory by applying the above mentioned trajectory
reconstruction parameters. In this way, the algorithm decides if the incoming point
can be considered as part of an existing trajectory or if a new one has to be created.

A second problem to solve in order to obtain reconstructed trajectories starting
from raw data is related to the fact that, given two points of a same trajectory, there
is no information about the movement of the object between them. In this case an
interpolation method is needed in order to have a complete view of the object path.
There are different possibilities depending on the amount of information available for
the dataset and on the application scenario object of the analysis. In the following
two of the most used method will be briefly presented.

Reconstruction in a freely movement scenario. The first presented method is
the linear (local) interpolation reconstruction method. It is a quite standard method
(see for example [62]), that can be used in almost every situation, and that does
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not need of any further information about the scenario or for the dataset. Given
two consecutive points of a trajectory, the linear interpolation method assumes a
constant movement of the object between them, by considering a straight line joining
the two points, covered with a constant speed. This assumption can be done in every
scenarios where objects move in a freely context, and the approach result to be a
good trade-off between flexibility and easiness of fulfilment.

In order to make more precise approximations of the movement, the linear inter-
polation can be substituted with others more general solutions. In particular, linear
interpolation makes use of the last point of a trajectory in order to determine its
path till the new arrived point, by applying a linear function between the two. If
more points of the trajectory are taken into account, a polynomial interpolation or
a spline interpolation can be applied. In the first case, instead of a linear function
a higher degree function is used in order to estimate the object path, finding out
a function going through all the available points. On the other hand, spline inter-
polation uses low-degree polynomials in each of the available intervals, and chooses
the polynomial pieces such that they fit smoothly together, in order to construct a
complete function for all the available points. However it is worth remarking that
higher is the degree of the used polynomials, more expensive is their computation,
and this usually makes the choice of the linear interpolation a better trade-off, in
particular for the cases where the available trajectories sample is quite dense.

Reconstruction in a constrained scenario. In a constrained scenario, usually
objects moves along a network, as could be the road network o a railway. In these
cases a map matching algorithm (i.e. [6]) could be used. The network can be mod-
elled as a graph RN = (V,FE), where V is the set of vertices and £ C V x V
is the set of edges. Each edge corresponds to a network segment connecting ver-
tex pairs. The network RN is embedded in the Euclidean 2D-space R? as fol-
lows: V = {(z;,y:) € R?* | i € {1,...,M}} is a set of points, while each edge
(Vi, Vi) = ((z4,v4), (xj,y;)) is embedded as a straight line between the two vertices.

Given a time instant ¢t € I;q, 7;4(t) is the position (z,y) at time ¢ of the object
associated with trajectory id. Such position can be a vertex of RN or a point in
an edge of RN. Note that, even if the observed position could be not exactly on
a segment of the network due to measurement errors, the reconstructed trajectory
should satisfy the network constraint. We observe that the spatial projection of a
trajectory is a path in RN, i.e., a piecewise linear curve composed of a connected
series of line segments, which are (portions of) RN edges.

Transforming the sampled trajectory TS;; into a continuous function T;; which
approximates 7;4 can be difficult due to several types of uncertainty:

1. The spatial coordinates of some observations may not belong to RN. This can
be due to measurements errors which may affect trajectory observations or to
the fact that in the concrete network roads are not exactly straight lines (e.g.,
they have a width).
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2. The behaviour of a trajectory between two consecutive trajectory observations
is unknown and must be induced.

(a) There could be several paths in RN connecting two consecutive observa-
tions, especially if the sampled observations are loose and irregular.

(b) Information like the speed of the associated moving object must be guessed.

In order to solve these problems, different methods can be applied. By assuming
a simple reconstruction method, point (1) could be taken into account by a data
normalization, that moves the spatial coordinates of each observation on the closest
R? point of RN. Note that in some cases the closest point cannot be determined,
since for example a point is equally distant from two or more edges of the graph.
In this case a heuristic must be applied in order to select the closest point: a
probabilistic algorithm could be used in order to select the most probable network
segment given the previous point or a set of previous points, or a buffer can be used
in order to change the selected points as new points arrive, so that all the constraints
are always verified. Point (2.a) can be solved in a somehow similar way: the Top-k
fastest paths (for reasonably small values of k) can be computed, assigning to them
a decreasing probability for increasing path costs. Then one of the paths can be
randomly selected according to the ranking based probability. An easier solution, in
this case, could be of simply connect consecutive observations along the fastest path,
as it happens in standard car navigators. Finally, for point (2.b), a common solution
is to assume a uniform speed between two consecutive trajectory observations, if no
other information are available.

The reconstruction results in a continuous function T;; defined on the time inter-
val I;g = [t9,,tN] where given a time instant ¢ € I;4, T;4(t) € RN. This corresponds
to determine a sequence of lines in the 3D space (T x R?), each representing the
continuous “development” of the moving object during a time interval. Notice that
the spatial projection of these lines can be edges of the network or portions of these
edges.

Note that when consecutive observed positions are contained into disjoint seg-
ments, the reconstruction process will also compute a route between the two points
and all the segment that are traversed will contribute to the generation of inferred
positions. This also means that the points dataset will be enriched with at least one
point for each traversed segment, associated with the estimated time the moving
object enter in it.

Example 3.1 Figure 3.7 shows a part of a user trajectory, depicted as a solid black
curved line, moving on a road network. The movement of the user is supposed to be
constrained to the roads (in white), whereas grey areas are unreachable. Each point
in the line represents the position T,4(t) of the user at some time instant t. The
diamonds along the line corresponds to observations, i.e. known positions of the
users at specific time instants. The time t of each observation (t,7;4(t)) is reported
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Figure 3.7: Reconstruction of a trajectory with network constraints

close to the corresponding diamond. At the centre of each road, the dashed line and
the small circles represent the embedded edges (labelled ey, . .., es) and vertices of the
RN graph that models the road network.

Finally, the reconstructed trajectory T,;q of the trajectory ;4 is the solid (blue, in
the coloured version) polyline in the centre of the route. The arrows from diamonds
to Ty connect observations (t,7;q(t)) to the corresponding points (t, T;q(t)) on the
reconstructed trajectory.

It is worth remarking that the reconstruction parameters proposed before could
be applied independently of the interpolation algorithm applied to the data. In
particular each parameter should be used according to the application scenario (i.e.
9aP space Should consider the distance between two points on the network, if the case,
or the linear distance if linear interpolation is used).

3.4 ETL

Once trajectories have been constructed, they need to be temporary or permanently
stored, in order to allow for the Extract-Transformation-Load (ETL) process to be
computed and the Trajectory Data Warehouse to be fed-up.

The task of the ETL phase is in fact to periodically load the trajectory data
warehouse dimensions and fact table with the correctly computed selected measures.
In particular, having a stream of trajectories arriving constantly at the framework,
this operation needs to be repeated in different times, in order to update the data
in the data warehouse with the new ones. As for now, we will threat a TDW like a
standard data warehouse with some predefined measures and with a spatial and a
temporal dimensions that will be divided in different partitions. Informally, we will
call each of these spatio-temporal partitions a base granule. Having to model fact
related to moving objects in every base granule, some measures need to be defined.

As an example, some interesting measures that can be taken into account in a
data warehouse modelling fact related to moving objects could be the total distance
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covered by every object in a granule, the sum of the time spent in there, their average
speed. An in depth presentation of our proposed Trajectory Data Warehouse model
will be made in Chapter 4.

In order to calculate the measures to be inserted on the data warehouse data
cube, the portions of the trajectories that fit into the base granules need to be
extracted. Depending on the complexity of the pre-computation to be performed
on the buffered trajectories, either a Moving Object Database or a dedicated small-
footprint software could be used to perform this task.

ETL using a MOD. A Moving Object Database (MOD) (i.e. Hermes [59] or
Secondo [29]), as described in Chapter 2, is a special database able to handle tra-
jectories data and to perform spatio-temporal queries on them. In order to feed-up
our data cube with aggregate information, reconstructed trajectories could be store
in a MOD, and then its capabilities can be used. This choice is made in order to
make the loading phase of the data warehouse as easier as possible. Considering
trajectories related to a fleet of cars, Figure 3.8 illustrates a typical schema that can
be considered as a minimum requirement for such a MOD.

Raw_Locations Objects : :
object-id: identifier object-id: identifier MOD_Trajectories
timestamp: datetime < | model: text w:.idennﬂﬁer

X: numeric engine-type: text object-id: identifier
y: numeric year: datetime trajectory: 3d geomelry
altitude-z: numeric device-type: text

Figure 3.8: An example of a MOD schema

The MOD is composed by three tables. The first one, Objects, includes a unique
object identifier (id), vehicle information (e.g. car model, engine type, registration
year) as well as device-related technographic information (e.g. GPS type). The
second table, Raw_locations, stores object locations at various time stamps (i.e., ob-
servations). This table has the aim to store the punctual yet not processed points
received by the framework from the externa sources. Finally, the Mod_trajectories
maintains the trajectories of the objects, after the application of the trajectory recon-
struction process. Formally, let D = {T},Ts,...,Tx} be a collection of trajectories
of a set of moving objects stored in the MOD. Assuming linear interpolation between
consecutive observations the trajectory T; = ((ziy, Yiy, tiy)s - - 5 (T s Yin, » L, )) CON=
sists of a sequence of n; line segments in a 3D space, where each segment represents
the continuous “development” of the corresponding moving object between consec-
utive locations (z;;,y;;) sampled at time t;,). Projecting T; on the spatial 2D plane
(temporal 1D line), we get the route r; (the lifespan [;, respectively) of the trajec-
tory. Additional motion parameters can be derived, including the traversed length
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len of route r;, average speed, acceleration, etc. Note that the assumption of linear
interpolation in the MOD trajectories could be done since, in case of reconstruction
over a network, the reconstruction module will enrich the point dataset with addi-
tional observations for each segment of the network, as said before. Otherwise, a
MOD with “network-aware” spatio-temporal operators should be used.

Given a MOD, in order to feed-up the Trajectory Data Warehouse, the measure
associated to the base granule can be computed by finding out the trajectories por-
tions that lie inside each base granule, using the MOD spatio-temporal capabilities,
and then calculating the needed values starting from these partial data. This task
can be computed in two different ways [50]. The first approach is called cell-oriented
(COA). In this case for each available base granule, a spatio-temporal query is made
to the MOD, in order to find out which trajectories cross that granule. The MOD
will returns as the query result the trajectories identifier as well as the trajectories
portions laying in the granule. The second approach focuses more on the recon-
structed trajectories, and is called trajectory-oriented approach (TOA). In this case,
for each trajectory the granules in which it resides in are discovered. In order to
avoid checking all the granules, the minimum bounding box of the trajectory could
be used to filter out the (possible) not intersecting ones. Finally the measures are
computed for each granule incrementally. Further details about the two approaches,
as well as a comparison study, can be found in [50].

ETL with a specialized software. Using a MOD makes it really straightfor-
ward to perform the ETL phase in order to feed-up the Trajectory Data Warehouse
with the needed values. However, in some situations the MOD could be substituted
by a specialized software that periodically performs the task of loading the data
into the data warehouse, as proposed in [55]. In particular if there is no need to
permanently store the raw data, the use of a complex tool like a MOD could be
not justified. Other than this, depending on the shape of the base granules, on
their number, and on the amount of trajectories that need to be processed, the use
of such a specialized software can achieve better performances than those obtained
using a MOD. In these cases the choice of a specialized software could be a good
trade-off between the flexibility needed and the performance that can be achieved.
Just to give an intuition on how this software should work, we suppose the avail-
ability of reconstructed trajectories obtained by the reconstruction module. These
reconstructed trajectories should first be broken in segments completely contained
in a spatio-temporal base granule of the TDW. Once all the broken trajectories oc-
curring in a new time interval are buffered, they can be used to compute aggregate
measures and to load the fact table of the TDW, by possibly updating the temporal
dimension tables [55].

It is worth noting that the ETL process is periodic, and depends on the time
granularities of the temporal dimension. Hence, once an entire time interval has
been loaded into the data warehouse, trajectory data related to that interval can be
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safely discarded. Obviously, the specific aggregations to be performed also depend
on the definitions of the various measures to be loaded.

3.5 Synopsis

This chapter introduced the general framework proposed in order to define a Tra-
jectory Data Warehouse with the aim of allowing analyses on trajectory aggregated
data in a visual manner. The chapter presented two different application scenarios,
namely cars moving on a road network and vessels sailing on the sea. They will
be used in the rest of the thesis as working examples in order to clarify issues and
solutions that will be proposed, and to highlight the different needs our framework
should be able to cope with.

In this chapter we discussed the ETL phase, by showing the issues related to the
reconstruction of trajectories and the storing of such data. We presented a state-of-
the-art procedure to reconstruct trajectories from raw spatio-temporal observations
and we illustrated the role of Moving Object Databases and ad-hoc procedures for
storing and loading the Trajectory Data Warehouse.
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TDW Conceptual Model

In the previous chapter of this thesis we have presented the general framework
we proposed in order to allow for the efficiently analysis of the huge amount of
trajectories data available nowadays, and coming from a variety of different sources,
like mobile phone networks, GPS-equipped devices and so on.

Such an amount of data coming from many different heterogeneous fields calls
for powerful tools able to adapt themselves to various situations. As an example,
referring to the scenarios presented in section 3.1, if we are dealing with information
related to vessels sailing on the sea, the sea itself can be partitioned in squared
regular areas. On the other hand, if we are dealing with information related to
road traffic, the spatial domain can be associated with segments of the road net-
work, or again to regions with arbitrary shapes representing some administrative
division of the territory. Having this in mind we develop a model for our Trajectory
Data Warehouse (TDW), that in fact represents the central module of the proposed
architecture.

The data model we proposed results to be very flexible and general, allowing to
handle different spatio-temporal domains with associated dimensions and hierar-
chies as those described so far.

Some previous works on the proposal of a Trajectory Data Warehouse model
can be found in [45, 63, 50, 55]. However the model that will be presented in
this chapter significantly extends and generalize those proposals. In particular,
the main limitations of the approaches presented in those works are the fact that
they are restricted to freely moving users and spatial hierarchies induced by regular
grids, and the absence on some of them of a visual user interface for querying and
analysing data. On the other hand, the model presented here overcomes these
limits by allowing for a general spatial hierarchy and propose a visual OLAP tool
for querying needs.

The rest of this chapter is organized as follow. Section 4.1 will introduce our
proposal, as well as some design choices and problems involved in the design of
such a data warchouse. In Section 4.2 the conceptual model of our Trajectory Data
Warehouse will be presented, as well as the measures and hierarchies such a model
should contain. Section 4.3 will formally define such hierarchies and measures. On
Section 4.4 we will propose the aggregate function needed in order to correctly com-
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pute roll-up operations on the proposed measures starting from their sub-aggregates.
On Section 4.5 we will introduce and formally define the measure Presence, and we
will describe a method in order to approximate this measure giving an estimation
of the error this approximation introduce. Finally, Section 4.6 will give some hints
related to the actual implementation of the TDW model and on its translation into
a logical model.

4.1 Introduction

In order to develop a Trajectory Data Warehouse model, some choices need to be
made. The first of these choices is relative to the kind of data that need to be handled
in it. A distinctive characteristic of our TDW model concerns the measures that
are stored in the TDW facts associated with base granules, which are a collection of
elements, forming the base granularity, obtained by partitioning both the spatial and
temporal dimensions. Informally, a granule can be defined as a contiguous spatial
region during a given time interval, that can be aggregated along the spatio-temporal
TDW dimensions according to the associated hierarchies. The measures associated
with the base granules already represent aggregate information, as they report some
significant features of the sets of trajectories crossing the granules, whereas single
trajectory details, like object identifiers, are not kept in the TDW at all. There
are, in general, good reasons for this design choice. Often individual data can be
highly volatile and require huge memory space. More importantly, in some cases
they cannot be stored due to legal or privacy issues, and anonymization might not
suffice to guarantee privacy of tracked people [69]. In addition, for common spatio-
temporal applications aggregate measures are typically much more relevant than
information about individual moving objects [71].

Together with the measures, suitable aggregate functions must be defined in
order to complete the conceptual model of our Trajectory Data Warehouse and
allow for OLAP operations over the spatio-temporal hierarchies on the proposed
measures. We will show that algebraic and distributive functions [27] can be used
to compute roll-up queries, by linearly combining sub-aggregates stored in the lower
levels of the hierarchy.

An interesting measure in a spatio-temporal context is the so called measure
Presence, that counts the number of distinct objects (i.e. trajectories, for a TDW)
occurring in a spatio-temporal partition of the respectively domains. The problem
with this measure is that its aggregate function is holistic [27], and thus causes hin-
drances in OLAP roll-up operations. In fact, due to the distinct count requirement,
Presence cannot be computed in an exact way by means of an aggregate function,
unless we use an unlimited amount of memory to store the trajectory identifiers in
the base granules of the hierarchy.

By removing the “distinct” requirement for the measure Presence, we obtain a
value counting the number of times a given granule has been visited by the various
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moving objects. We call this measure Visits. With respect to the measure Presence,
Visits keeps track of the fact that an object can return in a place many times.
An important property of this measure, that we will show in the following, is that
its algebraic aggregate function can be shown to exactly answer roll-up queries.
Moreover, this new measure can be used as a very good approximation for the
holistic measure Presence. Computing holistic functions in an approximate way
is thus a common solution and we will demonstrate that Visits provides a more
accurate approximation than other state of the art techniques. On this side, we will
show how we can give a formal limit on the error that could be committed on its
approximation.

4.2 Multi-cube conceptual model

In Figure 4.1 we present a multi-cube conceptual model for trajectories built by using
the Dimensional Fact Model formalism [24]. Facts, focus of interest of the decisional
process, are represented by boxes containing the fact name and a list of associated
measures (quantitative aspects interesting for analysis). We recall that a granule is
a couple composed by a temporal interval and a contiguous spatial region. In the
model we consider two facts, namely INTRA-GRANULE FACT and INTER-GRANULE
Fact. Here we introduce such facts and a set of significant measures, which will
be formally defined in the next sections. It is worth remarking that the presented
measures are not an exhaustive collection, but they correspond to a set of common
measures which we found interesting and useful in almost any different scenarios.

INTER-GRANULE
FACT

from time from space

Cross

to time / to space

SPATIAL

INTRA-GRANULE HIERAI?CHY
FACT
) . 1 visits
: time unit : start space unit
TEMPORAL end
HIERARCHY ) distance
: travel time
speed

object gronp Y-

Figure 4.1: TDW Conceptual model

The INTRA-GRANULE fact models events that are related to a single base gran-
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ule concerning a certain object group. For a given group U and a granule g, the
illustrated measures are:

e visits: the number of trajectories belonging to U which start from or enter
into g;

e start: the number of trajectories belonging to U starting in g;
e end: the number of trajectories belonging to U ending in g;

e travel time: the time spent by all trajectories belonging to U while moving
inside g;

e distance: the distance travelled by all trajectories belonging to U while moving
inside g;

e speed: the average speed of trajectories belonging to U traversing g.

The INTER-GRANULE fact models events that are related to pairs of granules and
are concerned with a specific object group. A measure of interest that we will discuss
is cross, i.e., the number of times the border from a granule to an adjacent one has
been traversed by trajectories belonging to a given group. The measure cross is
interesting only for adjacent granules, since for non-adjacent ones it is invariably 0.
However note that in general, this fact can model events which can be meaningful for
whichever pairs of granules. An example could be the origin-destination measure,
which, for any pair of granules, represents the number of trajectories starting from
the first and ending into the second granule.

Dimensions, i.e. the finest level of granularity for the analysis of facts, are repre-
sented as circles attached to the fact tables by straight lines. As already mentioned,
the dimensions in our model are spatial and temporal dimensions describing geog-
raphy and time, respectively, and a non spatio-temporal dimension (object group).

Dimensional attributes, i.e. the properties of dimensions, are represented as
circles attached directly to dimensions or to other dimensional attributes. A di-
mensional hierarchy consists of a dimension and its dimensional attributes, hence
represented as a rooted tree, having the root attached to a fact table.

For the sake of readability, hierarchies that are common to various dimensions
are shared in the graphical representation. This is indicated using a double cir-
cle for the root node. Moreover, when a dimension appears more than once in a
fact table, it is necessary to indicate a role to define its meaning. For example,
in Figure 4.1 from/to space associated with the spatial dimension of the fact table
INTER-GRANULE denote, respectively, the origin/destination granule of the move-
ment.
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4.2.1 Examples of possible hierarchies

An example of a complex temporal hierarchy is illustrated in Figure 4.2. We consider
minutes as the minimal temporal interval. Every minute belongs to a 10 minutes
interval and to an hour, which is included in one day. A day is contained in both
a week and a month, and it is also a day of the week. The 10 minutes interval is
included in intervals of larger and larger duration.

day of the week 10k min interval

month 1k min interval
100 min interval

hour 10 min interval

minute

Figure 4.2: An example of a temporal hierarchy

Some different kinds of spatial hierarchies are presented in Figure 4.3 and Fig-
ure 4.4. The hierarchy represented in Figure 4.3(a) is based on a collection of regular
grids of increasing size, while the one represented in Figure 4.3(b) is more articu-
lated. In this case the hierarchy has been designed to fulfil some possible analytical
needs for a more complex vessels analysis. The dataset could be composed by way-
points (i.e. sets of coordinates that identify points in physical space) and links
constituting a graph. This graph represents the main traffic flows of the maritime
traffic and is named the maritime traffic network. For the purpose of the analysis,
the spatial extent of a link is a polygon, usually obtained as a buffer around the
segment corresponding to the link. A generic position in the sea may be either inside
or outside a network link.

10Kmx 10Km sea region
grid cell
sea zone
5Kmx5Km
2Kmx2Km grid cell traffic unusual
grid cell network link transit area
500m x 500m T-E
grid cell sea parcel

(a) (b)

Figure 4.3: Two examples of spatial hierarchies for vessels sailing on the sea

To this end, we classified the part of the sea that is not covered by the traffic
network in a generic transit area, and chose as base granules so-called sea parcels,
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which are contained either in some network link or in some (unusual) transit area (T-
E stands for Totally-Exclusively, and thus indicates that all parcels are exclusively
contained in a transit area or in a network link). At a coarser level, those network
links and transit areas are grouped in sea zones and sea regions.

Figure 4.4 represents a possible spatial hierarchy related to road traffic analysis.
The hierarchy represents a tree, where the segment is the smallest spatial unit, and
each segment is contained in exactly one district, which is included in one zone
belonging to a province, and in turn contained in a region and finally in a country.
At the same time, each segment is also contained into a cell of a 200m x 200m grid,
which is contained into a cell of a 1K'm x 1Km grid, and so on.

country

region
5Kmx5Km road
province

district
grid cell

segment

Figure 4.4: An examples of spatial hierarchies for road traffic analysis

Finally, in Figure 4.5, some possible kinds of hierarchies associated with the
object group dimension are proposed. Usually, this kind of hierarchy is much simpler
than the spatio-temporal ones. Figure 4.5(a) is related to a possible classification
of ships. Each ship has a type, for instance 'LPG (Liquefied Petroleum Gas) semi
pressured’, and a main type, for example '"LPG’, that groups several types having
similar peculiarities. Figure 4.5(b) presents instead a hierarchy related to a group
of people. Users, that represent the base granularity, have a gender and belong to
an age groups. Furthermore, a user lives in a town that belongs to a region that lies
in a country.

user

age group
‘/ﬁp type region

ship main type country

(a) (b)

Figure 4.5: Examples of object hierarchies
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4.3 TDW Hierarchies and Measures

In the following we will define a discretization of space and time domains of the pro-
posed Trajectory Data Warehouse into so-called spatio-temporal granules, and then
their organization in hierarchies. We will introduce the concept of trajectory decom-
position according to the discretised spatio-temporal domain. This concept will be
exploited in order to provide a formal definition of the TDW measures presented in
the previous section.

4.3.1 Granules, Granularities and Hierarchies

We need to discretize the space and time dimensions in order to define the TDW
base granularity. We start discussing the discretization of a generic domain.

Definition 4.1 (Granule and Granularity)
Let D be any domain (e.g. temporal or spatial). A granularity G on D is any
partition of D = UgeG g, whose elements g are called granules.

Given two granularities G and G’ we say that G is finer than G’ and write G < G’
if for all g € G, there exists ¢’ € G’ such that g C ¢’. We say also G’ is coarser than
G.

Definition 4.2 (Hierarchy)
A hierarchy over a domain D is a set H of granularities on D, ordered by <, and
with a minimum, called the base granularity, composed of base granules.

In the following we assume that for the spatial domain S a finite hierarchy is fixed,
denoted by Hg, with base granularity BS, and such that for any Gg € Hg and each
granule gs € Gg, gs is topologically connected. Similarly, for the temporal domain
T we fix a finite hierarchy, denoted by Hp, with base granularity B7, and each
granule at any granularity is a temporal interval. Observe that these induce a finite
hierarchy over the spatio-temporal domain T x S, resulting as Hrs = {Gr X Gg |
Gr € Hr N Gs € Hg}. Hereinafter we denote a granule in T x S as a pair (gr, gs)-
In addition, when taking a granularity G € Hrg, we will denote by G and Gg the
corresponding temporal and spatial granularities, such that G = G x Gs. Moreover
we will denote by BT S the base granularity BT x BS.

4.3.2 Trajectory decomposition

In the following we will refer to sets of trajectories indexed by trajectory identifiers
T = {Tia}igqer where Z is the set of trajectory identifiers. For any trajectory identifier
id € T, the corresponding trajectory is a function T;q : I;y — R?. Equivalently, T4
can be seen as a set of points in a 3D space {(t, T;4(t)) | t € L4}, i.e., the graph of
the function. In the sequel we will use these two views interchangeably:.
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As mentioned before, we also assume the presence of object groups, where a
generic group will be denoted as U and, abusing the notation, we will write ¢d € U
to mean that the (object corresponding to trajectory) id belongs to group U.

Definition 4.3 (Trajectory decomposition)

Let T be a set of trajectories and let BTS be a base granularity. For each trajectory
Tia : Lia — R? in T the trajectory decomposition is a sequence of sub-trajectories
8(Tig) = (s, ..., %), with st; : Iy — R? and I}y = [Lsariiy, tendlq), Satisfying the
following conditions:

e sup( iid) = inf(lfjl) forallie{l,...,n—1},
e Ui sig= Tia and sigNsly =0, fori # j,
o for any i € {1,...,n}, there exists a granule g € BTS such that s'; C g.

Informally, 6(T;4) = (s}y,...,s) is a partition of the trajectory T4, where each s,

is a fragment of the trajectory included in a granule of BTS, such that each s,
temporally precedes sﬁjl.

% S3mOmS, gﬁj Om S /=
Lo 2. | = =20
S4
2. 8o z:> =60
Ss
= ] )I( s
) =80 €6 ge7

&es 0 =100
Sy

Figure 4.6: Decomposition of a trajectory.

Example 4.1 Let us consider a road traffic scenario as presented in Section 3.1.
The spatial domain is a road network RN embedded in R?, i.e. RN C R?.

Figure 4.6 shows a part of a user trajectory T4, depicted as a solid polyline in
the centre of the route and the arrows indicate the direction of the movement. Notice
that the movement of the user is constrained to the roads (in white), whereas grey
areas are unreachable.

We assume as base spatial granules {ge1, ..., ges} corresponding to edges of the
road network, while the base temporal granularity consists of reqular intervals of 20
time units starting from 0 ({[0,20),[20,40),...}). Hence according to this spatio-
temporal granularity the decomposition of T;q is

5(Tia) = (51, .., 59)
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The symbols O and X indicate the points (t, Ti4(t)) where the trajectory enters,
respectively, a new temporal granule or a new spatial granule, and the label indicates
the corresponding time t. This happens when t is in a different temporal granule, or
Tia(t) in a different spatial granule, with respect to the immediately preceding point.
These points should not be confused with the trajectory observations (not represented
in this figure), which are only relevant in the reconstruction phase.

4.3.3 Intra-Granule Measures

A first intra-granule measure is visits ()), which represents the number of visits in
g of the trajectories belonging to a certain group U. More precisely, VT (g,U) is
defined as the number of times that any trajectory belonging to U enters into, or
starts from the spatio-temporal granule g.

Definition 4.4 (Visits)
Let G be a spatio-temporal granularity and g € G be a granule, let T be a set of
trajectories and let U be an object group, then

V(g U) = {(id,sjy) | id € U A 6(Tig) = (Sjgs - 85) A
SaCSg N (I=1V 55 Z g}

Informally, a trajectory visits a granule g = (g7, gs) if there exists ¢ € gr such
that the trajectory is in gg at time ¢, but it was not in gg immediately before ¢,
either because the trajectory starts at time ¢, or the trajectory was in another spatial
granule. Moreover, a trajectory can visit g even without any movement: an object,
that stays in gg for a long time period, can enter different spatio-temporal granules
having the same spatial granule gg but different temporal granules gr.

Other intra-granule measures are start (S) and end (£), i.e., the number of
trajectories starting and ending in a granule, distance (dist), travel time (trav_t)
and speed, i.e., the total travelled distance by the trajectories, the total time spent
in the granule and the corresponding average speed. Their definitions, which are
given below, are the natural ones.

Definition 4.5 (Other measures)
Let G be a spatio-temporal granularity and g € G be a granule, let T be a set of
trajectories and let U be an object group, then

ST(g.U) = {id | id € U N6(Tia) = (sigs -+ i) A 8iq S g}
gT(g’ U) = |{Zd | id € U A 5(7_de) - <Si1d7"'78'?d> A S?d g g}|

distT(g, U) = EideU,a(T,-d):@gd,.,., ) Esgdgglen@gd)

Sid

trav-t7(g,U) = Sigev, s(Tuuy=(sly..sm) St cglifespan(siy)
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dist™(g,U)
speed (¢, U) = ———— "~
peed (9, U) trav_t"(g,U)

where Zen(sfd) is the length of the spatial projection of sgd whereas lifespan(s{d) is
the duration of the time interval where s, is defined.

4.3.4 Inter-Granule Measures

The only inter-granule measure we discuss in this thesis is cross (C), the number of
times the border from a granule to another has been traversed by trajectories of a
given group.

Definition 4.6 (Cross)
Let G be a spatio-temporal granularity, let g, € G be two distinct granules, let T
be a set of trajectories and let U be an object group, then

C'(g.g'U) ={id,sy) | id € UNO(Tia) = (sjgy - -, i) A
i<n A s, Cg A st Cg'}

The measure C is not symmetric: in general C'(g,¢',U) # C'(¢', g, U) since the
measure is sensible to the direction of movements and only counts crossings from g
to ¢’. Note that C'(g,¢’,U) = 0 when g and ¢ are not adjacent, where adjacency
relationship is defined in the usual way.

Definition 4.7 (Adjacency)

Let g = (g97,9s) and ¢ = (g4, gs) two granules belonging to a granularity G;
they are adjacent when gr = g A Touch(gs,gs) or gs = gg N Meets(gr, gf) or
Meets(gr, g7) A Touch(gs, gs)

where Meets is Allen’s relation [1] and Touch is Egenhofer’s topological relation [18].

Example 4.2 We still refer to the running example of a TDW for road traffic anal-

ysis. Figure 4.7(a) illustrates portions of two trajectories, Tiqy and Tige, belonging

to the same group U, during a temporal granule gr. The direction of a trajectory

is indicated by an arrow. The trajectory Ty, in light green (light gray in B& W),
passes through the sequence of base spatial granules Gei, Gea, Ge6s o5, Ge2s Jed, Ge8s
whereas Tigo, in blue (black in B& W), travels along ges, Ges, Ge6, Ges-

Note that VT ((gr, ges), U) = 2 since Tiqy enters twice into ges, whereas V' ((gr, ges), U) =

2 since both trajectories enter only once into Geg.



4.4, Aggregation 47
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Figure 4.7: Two trajectories at base (a) and higher (b) spatial granularity

Focusing on the crosses between the granule (gr, ge2) and the adjacent granules,
we have:

CT((gr, 9e2), (975 91), U) = 0
CT((gr 9e2), (97, 9e3), U) = 0
CT((QT, 9e2); (97, Gea), U) = 1
CT((gT,geQ)’ (gTagef))’ U) =0
CT((97:9e1), (97, 9e2),U) = 0
CT((gr, 9e3), (97, 9e2), U) = 0
CT((gT7ge4)7 (gT7962)7 U) = 0
CT((QT, 9es), (91, 9e2), U) = 1

4.4 Aggregation

In order to allow for OLAP processing, our TDW has to offer aggregation capabil-
ities over measures, i.e., operations for computing measures at some higher level of
the hierarchy starting from those at lower level. Efficient OLAP roll-up operations
require that measures at a coarser granularity can be determined using values at a
finer granularity, by applying some defined aggregate functions. According to the
classification given by Gray et al. [27], it is desirable that measures in a TDW use
only distributive or algebraic aggregate functions. We recall that distributive func-
tions use only sub-aggregates of a given measures to compute its super-aggregates,
while algebraic functions make use of a finite number of auxiliary measures in order
to perform this operation. On the other hand, holistic functions need the base data
to compute the result at all levels of dimensions. Hence, measures using this kind
of aggregate functions imply the need of storing the entire dataset into the data
warehouse and, either if this would be possible in terms of available space, it could
not be feasible with respect to other problems like privacy concerns. Moreover, ei-
ther if original data could be available, given their nature, computation of holistic
functions is usually more time consuming with respect to distributive or algebraic
ones. In this section we will define distributive and algebraic aggregate functions
for the measures we presented in the previous section and we will prove that these
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definitions allow to compute in a correct way out measures at all granularities.
The first lemma we propose takes into account the aggregate functions for all
the measures except V.

Lemma 4.1 Let Hys be a hierarchy, let T be a set of trajectories and U be an
object group. For any G € Hys with G # BTS and g,¢' € G with g # ¢’

U) = EgpggST(gpa U)
U) = EgpgggT(gm U)
U) = Sycydist’(gy,U)
Uu) = Egpggtmv,tT(gp, U)
) = Egpgg,gggg’CT(gpa 9;, U)

N N N /N
il
QL = W N =
~— — ~— ~— ~—

where g,, g, € G, with g, # g, and G, X G and G, # G.
Proof.

ST(QJ U) =
by Definition of &
={id | id € U AN§(Tiq) = (s, ..., 80 A 51y C g}
by Definition 4.3, and since BTS < Gp and G, X G
=id | ideU A 6(Tiw) = (slyy-.., s N st C gp
for some g, C g}
since G, is a partition g, is unique
=Xgcol{id [ id €U N6(Tia) = (Sigr -+ 51a) A Sig C gp}|
by Definition of &
= ngggST(gpv U)

The remaining statements are proved in a similar way. O

The case of measure )V is more complex and requires the introduction of an
auxiliary measure B, counting the number of times trajectories cross the border of
a granule.

Definition 4.8

Let G be a spatio-temporal granularity and g € G be a granule, let T be a set of
trajectories and let U be an object group. We denote by B'(g,U) the number of
intersections between the trajectories of object group U and the border of the spatio-
temporal granule g.

BT(ga U) = Eg’EG,g’;ﬁg(cT(ga gla U) + CT(gla g, U))
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The following lemma states how measure B can be computed by using sub-
aggregates of C.

Lemma 4.2 Let Hys be a hierarchy, let T be a set of trajectories and U be an
object group. For any G € Hys with G # BTS and g € G

B(g,U)= > (CT(gp.gpU)+CT(g) 95, V)

9pC9, 9Ly
where gy, g, € G, and g, # g, with G, 2 G and G, # G.
Proof.

B'(g,U) =
by definition of B
= Zg’eG,g’;ﬁg(CT(gﬂ gla U) + CT(glu 9, U))
by statement (4.5) of Lemma 4.1
= Zg/GG,g’;ﬁg(nggg,g;gg’ CT(va g;7 U)_'_
ngggy;,gg’ CT(g;, 9p U))
- Zg’EGvg’ig(ngggygz’,Qg’ CT(gP’ g;,, U) + CT(g;,, 9ps U))
G is a partition
=2 coaze(CT (99, 9, U) +CT (g3, 95, U))

The next lemma provides an inductive characterisation of measure B.

Lemma 4.3 Let Hys be a hierarchy, let T be a set of trajectories and U be an
object group. For any G € Hrs with G # BTS and g € G

BT(ga U) - ZQPQQBT(.Q]M U); -
229;779;2979;)#9; (C"(9p, gz/)? U)+C (9;/37 9, U))

where g, g, € G, with G, X G and G, # G.

Proof. This property easily follows by definition of B. More in detail, for the sake
of simplicity assume g = g, U g,. Then the border of the granule g consists of the
union of the borders of g, and g, minus the common border between the granules
gp and g, As a consequence trajectories crossing the common border remain inside
the granule g and they should not be counted in BT(g, U).

In formulas:

B™(9,U) = B"(9,,U) = C"(9p, 9, U) = C (g}, 9, U)+
BT(géa U) - CT(gglga 9p, U) - CT(gpa g;:n U)
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This is exactly the desired result. O

It can then be shown how the measure V can be expressed analytically in terms

of B, S and £.

Proposition 4.1 Let G be a spatio-temporal granularity, let T be a set of trajec-
tories and let U be an object group. Then for each g € G the following statement
holds:
B'(g,U) +8(g,U) + E7(g. V)

2

Proof. It can be observed that, as obvious from its definition, ¥V can be com-
puted by summing up the contributions given to such a measure separately by each
trajectory. More precisely, let g be a granule and T = {T;;}i4e7 a set of trajectories.
Then VT (ga U) = ZideI V{Tid} (97 U)

Therefore, it can be proved the proposition for a single trajectory T;; and thesis
can be trivially extended to a generic set of trajectories.

Let 6(Tiq) = (sl ..., s%), we prove the thesis by induction on n (the number of
sub-trajectories of the trajectory decomposition).

Vi(g,U) =

[n = 1] In this case §(T;y) = (sk). If s}, C g, then VT(g,U) = 1, BT(g9,U) = 0,
ST(g,U) =1, and £7(g,U) = 1. Thus the thesis holds.
If, instead, si; € g, then V'(g,U) = 0, B'(g,U) = 0, ST(9,U) = 0, and
ET(g,U) = 0 and the thesis holds.
Notice that in both cases the measure B is equal to 0 since at least two sub-

trajectories are necessary to have B > 0 because each sub-trajectory belongs
to exactly one granule.

[n = n+1] In this case §(Tiq) = (sk, ..., sy, ). Let 6(T,) = (sk;,...,s%). We
consider four cases:

[case 57, C g and s%" C g] By definition VT (g,U) = VT (¢,U), ST(g,U) =
S"(g.U), E7(g,U) = €7 (g,U), and BT(g,U) = BT (g,U). Thus, the
thesis holds by inductive hypothesis.

[case 57, Z g and 57! C g] By definition VT(g,U) = V" (9,U)+1,ST(g,U) =
S"(g,U), E7(9.U) = E"(9,U) + 1, and BT(9,U) = B (9,U) + 1. Thus
by using the inductive hypothesis

VT(g,U)=V"(g,U)+1

_ BT(g,U)+S"(9.U)+ € (9. V) o

! 2 ! !
BT (g,U)+1+8"(g,U) +E7(9,U) + 11

9
B'(g,U)+S8"(g9,U) +E(g9,0)
2
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[case s, C g and sttt g] By definition Vg, U) = VT/(Q, U), ST(g,U) =
S™(g,U), ET(g,U) = E7(g,U) =1, and BT(9,U) = B (9,U) +1. As in

the previous case we can conclude.

[case siy £ g and sttt g] By definition VT(g,U) = VT/l(g, U), ST(g,U) =
ST(g,U), ET(g,U) = E7(9,U), and BT(9,U) = BT (g,,U). Thus the
thesis holds by inductive hypothesis.

O
In order to give the aggregate function for the measure V it is worth trying to
give an intuition on how it works, before giving the formal definition. At a coarser
granule g the number of visits in ¢ is obtained by summing up the visits in the
finer granules g, composing g, and subtracting the number of trajectories crossing
the border between two distinct finer granules inside g. This is motivated by the
fact that the border between two finer granules, g, and g, composing g is completely
inside g. Hence trajectories moving from g, to g, (or vice versa) increase the number
of visits of g (or g,) but they should not be counted as visits for the coarser granule
g because the movement is completely inside g, i.e., they do not enter g. The
following lemma will formalise this intuition.

Lemma 4.4 Let Hys be a hierarchy, let T be a set of trajectories and U be an
object group. For any G € Hys with G # BTS and g € G

VT(ga U) = Egpgg(VT(gpv U) - EQQ,QQCT(gpa g;/w U))
where g, € G, with G, < G and G, # G.

Proof. For the sake of simplicity, let g = g, U g, with g,, g, € G), and g, # g,,.

Vi(g,U) =

by Proposition 4.1
_ BT(9.U0) +87(9.0) +£7(.U)
o 2

by Lemma ﬁ and g = g, U g;,

_ BT(gp,U)+B"(g,,U)—2(C" (gp,gp,U)+CT (g},9p,U))+ST (g,U)+ET (g,U)
= 2

By Lemma 4.1, we have
S'(9,U) = 8"(g,,U) + 8'(g, U)

and
5T<g> U) = ST(gpv U) + ST(g;ﬁ U)

By Proposition 4.1

BT(ﬂp? U)+ ST<gp’ U) + ST(gpa U)

VT(.QP) U) = 2
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and T T T
B'(g,,U) +S8"(g,,U) +E'(g,,U)

2

Vi(g, U) =
Hence we can conclude
Vg, U) =V (g, U) + V" (,,U) = C (g, gy, U) = C" (g}, 9, U)
This is the thesis since CT(g,g,U) = 0 for any granule g. O

Finally, by joining together the Lemmas 4.1 and 4.4 we obtain the following
proposition:

Proposition 4.2 Let Hys be a hierarchy, let T be a set of trajectories and U be an
object group. For any G € Hys with G # BTS, g,¢9' € G with g # ¢’

V7(g,U) = nggg(VT(gzn U) - 2gcgC "(9p» 9;;7 U))
ST(ga U) = ngggs T(gpa U)
5T<g, U) = nggggT<gpa U)

CT(ga q, U) = ngggvgggg’CT(gpa g;/w U)
dist T<97 U) = nggg dist T<gp7 U)
trav_t"(g,U) = By cgtrav_tT(g,, U)

where gy, g, € G, with g, # g, and Gp is a predecessor of G, i.e., G, X G and
Gy #G.

Proposition 4.2 suggests the aggregate functions which can be used to compute a
measure m at coarser granularities by exploiting the sub-aggregates for finer granu-
larities. In order to apply them we need to know, for each high level granule, which
base level ones belong to and compose it. A possible solution is to apply a possi-
bly complex spatio-temporal containment condition to the granules of the different
levels, in order to determine whether the desired condition holds or not. By the
way, the spatial and temporal hierarchies in the data warehouse are fixed a priori,
hence for each base granule the temporal and spatial coarser granules it belongs to
can be pre-computed. It follows that it can be constructed a map of values, in the
hierarchies, telling the system, for every higher level granules which lower level ones
compose it, based on the uniquely identifier associated to every granule. In this way,
the containment condition does not require any spatio-temporal query but only an
equality test on the granule identifiers themselves.

With respect to the classification of Gray et al. [27], presented at the begin-
ning of this section, the measures S, &, C, dist and trav_t are distributive, i.e.
super-aggregates can be computed from the sub-aggregates. On the other hand, the
aggregate function for V is algebraic. The same applies to speed. The first can be
computed by using the auxiliary measure C, while the latter is computed by using
the auxiliary measures dist and trav_t.
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Example 4.3 Figure 4.7(b) focuses on the same temporal granule gr of Figure 4.7(a)
whereas the spatial granularity is made coarser by considering two granules g4 =
Je1 U Gea U geg U Ges and 9B = Ge2 U Ge3 U Ges5 U ger

Trajectory T;q1 starts from the granule ga, traverses the granule gg, and finally
ends inside the granule ga, whereas T;qo begins in the granule gg and ends in the
gmnule JA. Thus

((9T79A) )
)

VT ((gr,98),U) =
CT((g7.94), <9T7QB) U)=1
C™((gr,98), (9r,94),U) =2

Now we want to apply Proposition 4.2 to compute VT ((gr,ga),U). The granules
COMPOSING ga AT€ Gei, Geds Je6s Jes aNd
VT((gT,gel) U)=1
V(g1 goa), U) = 2
((gTy geﬁ) ) 2
VT((gr, o), U) = 2
The only non-null crosses between granules contained in g4 are
CT((g7: ge1); (97, gea), U) = 1
CT((g7: ge); (97, ges), U) = 1
CT((QT; 964)7 (gT7 968>7 U) =1

CT((gT7 g66)7 (gT; geS), U) = 1
Hence by summing the V’s and subtracting the C’s we obtain 7 —4 = 3, which is the

exact value for VT ((gr, ga), U).

4.5 Another measure: Presence

A different measure from V is the so called measure Presence, i.e. the number of
distinct trajectories belonging to a certain object group travelling in a given spatio-
temporal granule. The difficulty of handling this quantity inside a data warehouse
is related to the fact that the aggregate function for Presence is holistic: the raw
data are needed to compute the exact result at all granularities. This is due to a
particularity of trajectory data: a trajectory might span multiple granules. Hence
in the aggregation phase we have to cope with the well-known distinct count prob-
lem [70]: if an object remains in the query region for several timestamps during the
query interval, one should avoid to count it multiple times in the result. This is
problematic since, once loaded in our Trajectory Data Warehouse, the identifiers of
the trajectories are lost.

In order to better understand the distinct count problem, observe Figure 4.8.
The picture shows two different scenarios where a trajectory crosses four different
spatial cells in two different ways, showing the two different kind of errors that
can be introduced while computing the measure Presence during a roll-up, because
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Figure 4.8: Overestimate of Presence (a), and underestimate of Presence (b) during
the roll-up.

of the distinct count problem. We will refer to a given temporal granule gr. In
Figure 4.8(a), we have that

P ((9r.91),U) =P ((97,92), U) = PT((97,91), U) = P" ({97, 91), U) = 1

If we group together the granules g; and gs, we obtain, by applying the same aggre-
gate function we proposed for V, that the number of distinct trajectories is

PT((gTMgl)J U) + PT((gTag2)7 U) - CT((gT791)7 (gTag2>7 U) =1+1-0=2

This is an overestimate of the number of distinct trajectories. On the other hand,
in Figure 4.8(b), if we group together g, and g, we correctly obtain

PT((gT,gl), U) + PT((QT,gz)a U) - CT((QT,gl)a (97,02),U)=1+1—-1=1

and similarly by aggregating g; and g4. However, if we group ¢; U g with g3 U g4 we
obtain

PT((g97r,91 U g2),U) + P (97,93 U g4),U)—
CT((97,91 U ga), (97,95 U ga), U) =141 =2 =0

This is an underestimate of the number of distinct trajectories.

Let us now formally define the measure Presence (P).

Definition 4.9 (Presence)
Let G be a spatio-temporal granularity and g € G be a granule, let T be a set of
trajectories and U be an object group, then

P9, U) =id € U | 6(Tia) = (8jas -, sig) A
Jie {1,...,n}.s;, C g}

This measure differs from V since multiple visits of the same trajectory to granule
g are counted once.
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Figure 4.9: Presence and Visits for an agile trajectory

Example 4.4 Consider the Figure 4.9, where we have a trajectory spanning differ-
ent road segments in the same temporal granule gr. By looking at the granule geq4,
we have that PT((gr, ges),U) = 1 whereas V' ((gr, ges),U) = 2, since the trajectory
comes back in the segment two times.

4.5.1 Approximating the measure Presence

Example 4.4 highlights how the measure Presence is always lower or equal to the
value of the measure Visits. Informally, given a spatio-temporal granule g, and a
trajectory T, it is simple to note that if the trajectory is present on the granule g,
the same trajectory should also have visited it (i.e. it has firstly appeared in the
granule or it has entered in it). On the other hand, if the trajectory enters and exits
from the granule g many times, the visits for that granule are highs, but since it
has been visited by always the same trajectory, the amount of the objects visiting it
is just one. Starting from this simple intuition, we propose the use of the measure
Visits as an approximation for the holistic measure Presence. From the definitions
of this two measures V and P it is immediate to see that the first one is an upper
bound for the second. In particular, the following proposition holds.

Proposition 4.3 Let G be a spatio-temporal granularity and g € G be a granule,
let T be a set of trajectories and U be an object group, then PT(g,U) < V'(g,U).

It is worth noting that the errors in the computation of P, i.e. in our method for
approximating the holistic measure Presence, are larger when trajectories are very
agile, i.e., they frequently change their directions. Errors are produced because the
same trajectory can get back to a granule that it already visited. This phenomenon
disappears when we increase the size of granules by rolling-up, since at some point
all trajectories will be completely contained in a granule. This fact is formalised in
the following proposition.

Proposition 4.4 Let G be a spatio-temporal granularity and g € G, let T be a set
of trajectories and let U be a user group, then
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1. if each trajectory visits g at most once then PT(g,U) = V' (g,U);

2. if all the trajectories are inside g then P7(g,U) = V'(g,U).

Proof. The first statement is a straightforward consequence of definitions ) and
P.

In order to prove the second statement observe that if all the trajectories are
inside the same granule, then there are no trajectories crossing its border. Hence
BT(g,U) = 0. As a consequence of this ST(g,U) = £T(g,U) = PT(g,U). So, by
Proposition 4.1, we have that

ST(g,U)+ET(g,U) 28T(g,U)
2 N 2

Vi(g,U) = =P(9,U)
O
According to the first statement if any trajectory visits a granule g at most once
then Presence is computed correctly by computing V. In particular, if VT (g, U) = 0
then PT(g,U) = 0. The second statement suggests that for coarse granularities
Presence could be computed correctly.

Approximation errors

In order to demonstrate the level of accuracy of the proposed approximation method,
we have computed some tests comparing our proposal with other approaches pro-
posed in literature, namely FM sketches [70] and the distributive function that
simply sums the Presence at the finer levels to compute the super-aggregate at a
coarser granularity (e.g., [56]). The results have highlighted that Visits provides a
very accurate estimate of Presence. In the following paragraph it will be first briefly
presented the Flajolet-Martin algorithm for the estimation of the number of distinct
objects in a dataset, and then our experiments will be explained.

FM sketches The FM algorithm is a bitmap-based algorithm devised by Flajolet
and Martin [21] that can be used to estimate the number of distinct items in a set
using a limited amount of memory. Many methods in the literature are based on
this algorithm. The algorithm makes use of a hash function A which take in input an
object identifier ¢ (trajectory identifiers in our case), and gives in output a pseudo-
random integer number h(i) with a geometric distribution, that is, p[h(i) = v] =27
for v > 1. A sketch consists of a bitmap of length r, whose bits are initially set to
0. For every object, the algorithm set the h(i)-th bit of the sketch to 1.

After processing all objects, the most simple version of FM algorithm finds the
first bit of the sketch that is still unset. Hence it approximate the number of distinct
objects in the dataset with the value n = 1.29 x 2¥, where k is the position of the
aforementioned leftmost unset bit. Unfortunately, this approach may entail large
errors in the count approximation, frequently off by a factor of two or more [21].
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For this reason, the authors of [21] propose the adoption of m sketches that use
different and independent hash functions, and averaging the resulting values. Let
ki, ko, ..., k,, be the positions of the first unset bit in the m sketches, then the new
estimate of n is 1.29 x 2% where k, = (1/m) > ", k. In this case, the expected
processing cost of each object increase from O(1) to O(m). To solve this problem and
to have again a constant cost, the authors of FM algorithm propose to use another
algorithm, the Probabilistic Counting with Stochastic Averaging (PCSA ). This new
algorithm applies a second hash function to choose one of the m sketches and only
insert the object into that sketch, reducing the expected insertion cost. Thus each
sketch becomes responsible for approximately n/m (distinct) objects, resulting in
the new formula for estimation n = 1.29m x 2%, with an expected standard error
of O(m~1/2). Algorithm 1 shows the pseudo-code of the FM algorithm with PCSA.

Algorithm 1 Probabilistic Counting with Stochastic Averaging Algorithm for FM

Sketches
INPUT: DS is a dataset; h is a random function such that, given an object ¢ € DS,

plh(i) = v]] = 27%; m is the number of sketches used; 7 is the number of bits in each
sketch.
OUTPUT: the estimated number of distinct objects in DS

. initialize m sketches s1, s9, ... s,,, each with r bits set to 0

1
2: for all doi € DS

3: randomly pick a sketch s; (1 < j <m) s;[h(i)] « 1
4

: end for
k<« 0

5. for j =1 — m do
6: forq=1—rdo
7: if s;[¢] = 0 then
8: k< k+q
9: break > go to the next sketch
10: end if
11: end for
12: end for

13: return 1.29 x m % 2k/™

As shown in [21], a proper value for the number r of bits of each sketch is log U B,
where UB is an upper bound on the number n of distinct objects.

Interestingly, FM sketches can be merged in a distributive way. Suppose that
a pair of sketches are updated according to the IDs of the objects contained in a
different set, and that the intersection of those sets is possibly not empty. The sketch
obtained as the bitwise-OR of the corresponding bitmaps in the original sketches will
be identical to the one directly updated using the union of the sets of items.
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Quantitative evaluation An experimental comparison of the various approxi-
mations, reported in Figure 4.10, has been obtained by using some different dataset.

In order to compare the errors we chose to adopt as an aggregation accuracy
metric the normalised absolute error defined as follows:

Error
Error = 2 (9) =

> |g/ﬁr/es — g.Pres|

>y 9-Pres

>y 9-Pres

where g are granules at a coarser granularity than the base one, g.Pres is the exact

value of Presence in the granule g whereas g. Pres is the approximated value obtained
using one of the discussed methods, i.e. FM sketches, distributive function and the

measure V.
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mation about cars moving in the city of Milan.

Figure 4.10: Cumulative error of roll-up phase

The first dataset, whose results are presented in Figure 4.10(a), contains infor-
An in-depth description of the
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dataset will be provided in Section 6.1. The dataset contains about 200,000 trajec-
tories moving along the city during a week. The spatial extent of the trajectories
has been divided by a regular grid having as base granularity some rectangles, of
size 330m x 440m, while the time extent has been divided into intervals of 1 hour.

The second dataset, used for generate the graph in Figure 4.10(b), contains
information by some fishing boats moving on the Adriatic Sea between January
and September 2007. The dataset contains about 33,000 trajectories, while a more
detailed description of it will be found in Section 6.2. In this case, the spatial extent
of the dataset has been divided by a regular grid of about 430 x 315 cells, having
each a dimension of about 2.5km x 1.5km, while the temporal extent has been split
into 1 days intervals.

Figure 4.10(c) refers to a third dataseti. This dataset is composed by 1100 tra-
jectories obtained by 50 trucks transporting concrete in the area of Athens between
August and September 2002. The dataset is composed by 112,300 position records
consisting on the trucks identifiers, dates and times, and geographical coordinates.
Trajectories have been obtained by splitting the recordings of a truck in subsets if
there was a temporal gap between two consecutive recordings larger than 15 min-
utes, a gap that can indicate a stop of the vehicle not due to traffic or traffic lights.
The spatial extent of the dataset is of about 45km x 55km that has been divided by
a regular grid of about 150 x 180 cells. The time intervals have been divided into
3-hours gaps.

Finally, graph in Figure 4.10(d) has been obtained by using a synthetic dataset.
This dataset has been generated by using the San Joaquin country road map (US
Census TIGER/LINE, country code 06077), through the traffic simulator described
in [8]. It is the largest dataset among the four we use for our tests, and it is
composed by about 151,000 trajectories and more than 10,000,000 raw points. The
spatial extent of the dataset is of about 660,000 x 720,000 spatial units, while the
moving objects have been monitored for a time of 300 temporal units. The spatial
extent has been divided into a grid of 110 x 120 cells, while time extent has been
divided into 20 intervals.

The graphs in Figure 4.10 show the normalised absolute errors as functions of
the granularities. The values indicated for the granularities are relative to the base
one. For example, a value 2 for granularity states that we are considering granules
having double size with regard to the base granules along all dimensions. The
different curves for FM sketches correspond to a different number, m, of bit vectors
(i.e. four, ten and forty).

As shown by the corresponding curves, the distributive aggregate function (the
top curve) quickly reaches very large errors for all the dataset, as the roll-up granu-
larity increases. This is due to the fact that we simply sum the sub-aggregates and
as a consequence trajectories crossing different granules are counted many times:
the number of duplicates becomes higher and higher at coarser granularities.

"http://www.chorochronos.org/Default.aspx?tabid=71&iditem=44
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Looking at the graph in Figure 4.10(a), we can note that, for all granularities, V
also outperforms FM sketches and, for coarser ones, V is no longer an approximation
but it coincides with the measure Presence. On the other hand, on the graphs for the
dataset of Adriatic fishing boats (Figure 4.10(b)) and Athens trucks (Figure 4.10(c)),
this no longer holds for every granularity. In particular, the errors obtained by
the approximation of the value of the Pres with the measure ¥V and with the FM
algorithm are quite similar for low granularities aggregations, with the FM algorithm
having lower errors for one (Figure (b)) or all (Figure (c)) the curves. However,
increasing the number of base cells aggregated together, the error made by sketches
tend to be constant, while the one due to the approximation with the measure V
decrease constantly till reaching zero. The only situation in which this does not
happen is the one reported in Figure 4.10(d). In this case it is interesting to note
that the relative errors for all the approximation methods reported in the graph are
lower than those in the other three dataset. Other than this, we can also note that
the approximation obtained by using the FM algorithm with only four sketches,
outperform the same methods using higher number of bit vectors.

In order to better understand the differences on the errors for the last two dataset,
Athens trucks and Tiger, we try to analyse the characteristics of them. The Athens
dataset contains long cyclic trajectories. This means that trajectories goes around
and often visit the same places, so there are a lot of duplicates identifier per cells.
On the other hand, Tiger dataset contains very long trajectories that rarely visit
the same places, hence duplicates are very few.
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10000 10000

1000 [ 1000

100 100 ¥~

Error (%)

Error (%)

2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256 512 1024 2048
Granularity Granularity
— Approximation by using the measure Visits — Approximation by using the measure Visits
Rollup by using Distributive Aggregate Function - Rollup by using Distributive Aggregate Function
Rollup by using FM Sketches (m=4) = Rollup by using FM Sketches (m=4)
Rollup by using FM Sketches (m=10) @ Rollup by using FM Sketches (m=10)
Rollup by using FM Sketches (m=40) - Rollup by using FM Sketches (m=40)
(a) 580m x 770m cells grid (b) 250m x 330m cells grid

Figure 4.11: Cumulative error of roll-up phase for different granularities

Figure 4.11 presents two graphs obtained by varying the granularities for the
Milan dataset. The first picture has been obtained by increasing the base grid of
the experiments. In particular the minimum temporal interval has been increased
to 3 hours, while the spatial cells has been defined to be of about 580m x 770m. The
second figure has instead been obtained by reducing the cells size to 250m x 330m
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(temporal intervals have been left to one hour). By looking at the graphs it is visible
how the granules dimension is proportional to the error. In particular, by increasing
the granules, the error decrease faster, and vice-versa. This is due to the fact that
larger are the granules, lower is the number of crosses for each trajectory, hence the
second condition of proposition 4.4 is rapidly verified. On the other hand, in order to
reach the stability when the granules are smaller we need to aggregate together more
base cells, so the error decrease slowly. Another thing worth noting is that either
by changing granularities, the overall distribution of the errors for all the methods
compared does not change. In particular each one of the analysed methods reaches
a stability condition in more or less time depending on the granules dimension while
the values of the errors could be considered equals to each other in every graph.
Hence, the quality of the approximate computation of Presence depends mainly on
the features of the dataset and the level of spatio-temporal hierarchy we refer to.

4.6 Trajectory Data Warehouse Implementation
Hints

We would like to briefly describe how the proposed conceptual model has been
translated into a logical model.

The actual prototype has been implemented using Oracle” 11 DBMS suite with
the Oracle Spatial extension, needed in order to allow for spatial queries using the
visual interface described later in Chapter 5.

The main difference between the proposed conceptual model and the adopted
logical model is represented by the fact that in the latter we decided to unify the
two fact tables into a single one, introducing some sort of redundancy but making
it easier the management of the data and the query process. Figure 4.12 presents
a simplified version of the actual implementation of our TDW, where only spatial
and temporal dimensions are taken into account. Other dimensions could be added
by defining a new table having a similar schema to the proposed one.

The SPATIAL_GEOM table contains the Oracle SDO_GEOM? objects repre-
senting the various spatial partitions available in the spatial hierarchy. In particu-
lar, we decided to store all the spatial areas instead of just the base ones, in order
to avoid difficult spatial join queries to determine the geometries of higher spatial
granules. This is possible since each hierarchy must be defined when instantiating
the TDW conceptual model for a certain scenario. With respect to Figure 4.13(a),
the geometries of all the spatial objects represented in the picture are stored in the
table.

The two dimensional tables SPATIAL_DIM and TEMPORAL_DIM define the
hierarchies of the spatial and temporal dimensions respectively. Each column of the
tables represents one level of the hierarchies, starting from the base level, which

2http://docs.oracle.com/cd/E11882_01/appdev.112/e11830/sdo_objgeom.htm
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Figure 4.12: TDW Logical Model

is the primary key of the tables. For example consider the first tuple of the SPA-
TIAL_DIM table shown in Figure 4.13(b), (1,101, 1000). The first value of the tuple
represents the identifier of one of the geometries available in the SPATIAL_GEOM
table. This geometry, g; (i.e. the geometry having identifier 1 in Figure 4.13(a)),
is a base granule of the defined spatial hierarchy. The second value of the tuple,
101, represents the identifier of another geometry contained in the SPATIAL_GEOM
table, gio1 (i.e., geometry with id 101 in Figure 4.13(a)). This geometry represents
the father of the base granule g; in the given hierarchy. This means that gio; is a
geometry that belongs to the second level of the defined hierarchy and completely
contains ¢g;. The same holds for the third value, 1000, representing the geometry
J1000, that belong to the third level of the defined hierarchy and completely contains
g101 (note that in the picture giop is the geometry depicted in red and containing all
other geometries, and its identifier is not written). It is worth noting that only ge-
ometries containing information are stored in the table. The same schema is applied
to each other tuple, and to all the available dimensions.

The fact table contains the values of the various measures available for couples
of base granules. We distinguish two kinds of tuples in the fact table:

1. if the granules (S1,7T1), (S2,72) are equals, then the tuple contains intra-
granule measures for the granule (S1,7'1) and the Cross value (the only inter-
granule measure), is set to 0;

2. otherwise, i.e. (S1,T1) # (S2,T2), the tuple stores the inter-granule measure
Cross, and the intra-granule measures are set to 0.

In the second case we can consider three possibilities. If S1 = S2 and (T'1 # T2),
the information associated to the tuple refers to a certain spatial geometry (S1), but
to two temporal intervals, 71 and T2. If S1 # S2 and (T'1 = 72), the information
associated to the tuple refers to two different spatial geometries (S1 and S2), but
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(a) Example of simple spatial granules (b) Example of spatial dimension ta-

ble

Figure 4.13: A spatial hierarchy (a) and its representation into our TDW implemen-
tation (b)

during the same temporal interval 7'1. Finally, if both S1 # S2 and (T'1 # T2),
the information associated to the tuple refers to two different spatial geometries
(S1 and S2), during two temporal intervals (7'1 and 72). It is worth noting that
this representation is general enough to allow for different kinds of inter-granule
measures. For instance we can store measures between granules which are not
adjacent as required by our Cross measure. In order to clarify the aforementioned
concepts, Figure 4.14 presents an example of a possible fact table, referring to the
spatial hierarchy proposed in Figure 4.13(a). Entries in the table refer to both intra-
granule measures, as the first three rows, or inter-granule measures, as the last two.
It is worth noting that rows related to the first kind of measures contain a 0 value
in the Cross columns, while rows modelling to inter-granule measures contain a 0
value for columns Visits and Distance. Taking the first tuple of the table, we are
able to know that the spatial granule g; has been visited 3 times during the time
interval t1, and trajectories visiting it travel for about 2.5Km during this time. On
the other hand, looking at the last tuple of the table we can know that one trajectory
remained travelling in g; during the first and second time intervals.

Aggregation The proposed logical model allows also for a somehow easy way to
construct aggregate values during the roll up operation. The task is made by a
standard SQL query, containing a SQL UNION operation. The query in the case
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FACT_TABLE
S1|S2 | T1 | T2 | Visits | Cross | Distance (Km)

1 1 1 1 3 0 2.5
1 1 2 2 4 0 3.7
1 1 3 3 1 0

1 9 3 4 0 2 0
919 2 2 6 0 4.1
4 51| 3] 3 0 4 0
3| 3 2 2 5) 0 1.6
2 2 8 8 2 0 1.1
1 2 1 1 0 2

1 1 1 2 0 1

Figure 4.14: Example of fact table

of the model proposed in Figure 4.12 is the following, where s_gran, represents the
base granularity for spatial hierarchy, t_grang represents the base granularity for
temporal hierarchy, and s_grang and t_granr represent the granularity level of the
desired aggregation, respectively over space and time.

SELECT sl1.s_grang AS S1,
sl.s_grang AS S2,
tl.t_granr AS T1,
tl.t_grany AS T2,
SUM(f.Visits) - SUM(f.Cross) AS Visits,
0 AS Cross,
SUM(f .Distance) AS Distance

FROM SPATIAL_DIM s1, SPATIAL_DIM s2,
TEMPORAL_DIM t1, TEMPORAL_DIM t2,
FACT_TABLE f£

WHERE f.S1 = sl.s_grang

AND £.82 = s2.s_grang
AND £.T1 = tl.t_grang
AND £.T2 = t2.t_grang

AND sl.s_grang = s2.s_grang

AND tl.t_grany = t2.i_grang
GROUP BY tl.t_granr,

sl.s_grang
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UNION ALL
SELECT sl1.s_grang AS S1,
s2.s_grang AS S2,
tl.t_grany AS T1,
t2.t_grany AS T2,
0O AS Visits,
SUM(f .Cross) AS Cross,
0 AS Distance
FROM SPATIAL_DIM s1, SPATIAL_DIM s2,
TEMPORAL_DIM t1, TEMPORAL_DIM t2,
FACT_TABLE f£
WHERE f£.S1 = sl.s_grang

AND £.52 = s2.s_grang
AND £.T1 = tl.t_grang
AND £.T2 = t2.t_granyg

AND (sl.s_grang <> s2.s_grang

OR tl.t_grany <> t2.t_granr)
GROUP BY tl.t_granr,

t2.t_granr,

sl.s_grang,

s2.s_grang

The aggregation query could be divided into two parts corresponding to the
two multisets that the union statement puts together. The first part computes
the aggregate values for intra-granules measures, while the second one deals with
inter-granule measures. In the two queries, we do not distinguish between tuples
for intra-granule or inter-granules measures, by summing up all the available data.
This is because every tuple in the fact table sets to 0 measures of one or the other
kind, as we already stated. Hence, summing up their values does not introduce
any issue during the computations. In order to obtain the willing results, we need
to duplicate each dimensional table in the query, and since we pre-compute all the
spatial geometries, we do not need to perform spatial queries in order to obtain
aggregations for the spatial geometry. It is worth noting that the implementation
of the aggregate function is straightforward, starting from their definitions given in
this chapter.

4.7 Synopsis

In this chapter we presented the core module of our framework, i.e. the Trajectory
Data Warehouse. We proposed an adequate conceptual model that results to be
flexible and allows for representing different kinds of scenarios.

As far as data warehouse dimensions are concerned, the model includes two
main dimensions, spatial and temporal, and a number of other auxiliary dimensions
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related to the specificity of the observed objects.

Facts are modelled by two fact tables, intra-granule fact table and inter-granule
fact table, respectively containing information related to a single granule or a couple
of granules. For each of them we proposed some interesting measures that should
be taken into account.

In order to give OLAP capabilities to the model, we defined appropriate aggre-
gate functions for the measures, distinguishing between algebraic, distributive and
holistic ones. We formally proved that the given functions correctly compute mea-
sures at coarser granularities starting from those at finer levels in the hierarchies.
Moreover we gave a detailed discussion of the well-known distinct count problem.
We coped with it by approximating the measure Presence by using the algebraic
measure Visits. We provided analytical and experimental estimations of the error
introduced by this approximation and we obtained good results.

Finally, we gave some hints about the implementation of the model, providing
some information on how the conceptual schema and theoretical aggregate functions
have been developed in our system.



Visual OLAP
with the Visual Analytics Toolkit

A fundamental feature of spatio-temporal data is the fact that this kind of data
acquires a meaning in relation to the spatial area they are referred to. This char-
acteristic make it really difficult to grasp useful knowledge by using standard data
visualization methods available in normal data warehouses, that have been devel-
oped with the aim to show information related to, for example, sales of a shop or
production of a factory. Even if standard, table based OLAP operations could be
used to investigate also this kind of data, the interpretation of results, and the con-
sequent refinement of queries and exploration of results, is not easy. In particular,
representations based on relational tables make it very difficult for a user to grasp
the relationships between areas in the same neighbourhood, the evolution in time of
spatial areas, or the correlations of different measures. It is really more useful to look
at these data in the context they refer to, that means to look at them over a map.
Integrating OLAP tools with Geographical Information Systems (GISs) provides
advanced analysis capabilities. For instance, trajectory data can be geo-referenced
on a map or combined with several layers (such as topographic, demographic, the-
matic). Performing OLAP operations on TDW specialised measures in a visual way
and analyse them with a visual tools make the exploration of the data cube more
rapid and intuitive. For these reasons, we have provided the TDW with an interface
that allows for OLAP visual operations, based on the Visual Analytics Toolkit [4],
an interactive Java' based geographical information system. This toolkit permits
a user to view geo-referenced data over a map and to run analyses on them, for
example to find clusters or to tessellate the space. It also offers functionalities to
handle temporal data, by using graphs or animations, according to the type of data
to analyse.

As stated before, the tool is written in Java", and so can work on different
operating systems. Other than this, the tool supports different kind of database
servers and, among others, it can be connected to Oracle” Server and PostgreSQL
server.

In the following sections of this chapter the tool and its functionalities will be
presented. In particular, Section 5.1 gives some hints about the software architecture
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of the Visual Analytics Toolkit and its implementation. Section 5.2 describes how
to connect the tool to a Trajectory Data Warehouse and how to load the data. Sec-
tion 5.3 discusses about the possible data warehouse operations VA-Toolkit allows
to do. Finally, Section 5.4 focuses on different kinds of analysis and visualization
methods the tool can perform to TDW data.

5.1 Visual Analytics Tool implementation hints

Visual Analytics Toolkit can be considered as a framework containing many differ-
ent tools for the manipulation of spatio-temporal data and their visualization. It
is an evolution of various software, namely Iris, Descartes and CommonGIS, and
it is currently developed by the Fraunhofer Institute for Intelligent Analysis and
Information Systems (IAIS)!. The framework could be customized and extended by
programmers in order to add new functionalities to the software, both for visualiza-
tion methods or tools for data management.

Visual Analytics Toolkit framework is composed by four main modules, each
cooperating with the others, as shown in Figure 5.1.

| VA-Toolkit |

| Common classes for data management |

User interface Visualizer Analysis tools
Package wui Package spade.vis Package spade.analysis

Figure 5.1: VA-Toolkit framework architecture

The common classes for data management module is composed by a set of pack-
ages and classes useful in order to manage different situations common to other
modules, as database connections, use of external tools in order to perform certain
operations, and so on.

The user interface module is the responsible of the user interaction part of the
program. This module defines the windows of the software and manages the events
produced by a user, dispatching them to the classes in charge for their processing.

The visualizer module deals with the visualization methods available for the data.
VA-Toolkit works in an in-memory base, so it needs to have all the data previously
loaded into the tool in order for the user to use its visualizations methods and
capabilities. Spatial data are associated to a number of different layers, each one
containing spatial information of some objects of interest. Each layer is associated

http://www.iais.fraunhofer.de
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to a table containing information related to the spatial objects in the layer. The
visualized objects could be geo-localized figures, signs, or geometries like points,
lines, poly-lines, polygons, defined by the classes in the package spade.vis.geometry.
Different methods of data representation on a map are realized by writing Java"
classes that implement a given Visualizer interface in the package spade.vis.mapuvis.
The classes have the task of defining how to visualize the data they are associated
with, on a map. The basic idea is that a visualizer can be attached to a map layer,
which includes a collection of geographical objects, and that each object on the layer
is responsible to draw itself on the map. Hence, when the system detect that a layer
need to be drawn or refreshed, the visualizer associated with the layer is given as
parameter to each object on it, and each object draws itself through the appropriate
methods of the visualizer. Some examples of visualizers defined in the tool will be
presented in Section 5.4.

As said before, in order to produce visualizations for some spatial objects, the
layer containing the objects needs to be associated with a data table containing the
information that has to be shown. These data are called thematic data. For example,
if a layer contains the geometry representation of the regions of a state, and the
user wants to visualize the average speed of vehicles in each region, the data table
associated with the objects layer needs to contain such information. Thematic data
are organized into tables, implemented by the class spade.vis.database. DataTable.
Each table row corresponds to an object of the layer, while each column represents
a different information, called attribute, related to it. Figure 5.2 illustrates an
example of a VA-Toolkit table containing data related to various Italian regions, as
their population, their area, their average height above mean sea level, and so on.

Country

Total
population
Municipalities #
Height (amsl)
Area (m?)
Density (/km?)
GDP (billion €)

Abruzzo | 1342975 | 305 | 563 | 10753 | 124.89 | 28.7
Basilicata | 586853 | 131 | 633 | 9992 | 58.73 | 11.4

Figure 5.2: VA-Toolkit thematic data table example

A special case of thematic data is time-dependent thematic data also called time-
series. In this case, each attribute associated with a spatial object is defined by sev-
eral values, one for each time moment. For example, suppose to have the population
data of different countries in the world, referred to different years, 2000, 2001, 2002.
In this case, the internal representation of the data table becomes slightly different.
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In particular the attribute associated with the spatial objects, i.e. the population,
becomes what is called a super-attribute (or top-level attributes), while each table
column represents the values of this attribute for a given time moment (low-level
attributes). The same structure is used for any parameter-dependent attributes or
multi-parameters attributes, whether a parameter could be considered as something
that specialize the information contained into an attribute. For instance, in the case
of population, a parameter could be the year (temporal), or the gender and age this
information is related to (i.e. population of males between 14 and 16 years old). This
is a common situation for data warehouses, where a measure depends on different
dimensions. Attributes are implemented by the class spade.vis.database. Attribute,
and could be of type integer, real, character, logical or temporal. Apart the last one,
all the attributes value are stored in the system as strings, while numerical values
are also stored as floats. On the other hand, temporal values are instances of classes
implementing the interface spade.time. TimeMoment, and currently could be both
spade.time. TimeCount for simple values stored as integers, or spade.time.Date for
more complex values representing full dates. Parameters are implemented by the
class spade.vis.database. Parameter, and could be of any type. Figure 5.3 describes
a possible internal table representation of some data related to the population of
several states, by gender, age and year. As one can notice, the top-level attribute is
the population, while the low-level ones describe the possible combination between
the three parameters.

Population (top-level attribute)

EQ% EQS EQ% R | Rl | R Ec?zg
e~ e~ e~ ..H§1 ..Ng ;_.‘N&I ,,Q‘Q
Country | VT | 8V T | gV gV gV gV 5=
555|585 5585 55| 355 | 558 5ES
Tan | O | U2 | O |Od> [T | Gan
Albania | 12630 | 36142 | 17536 | 11536 | 21363 | 17856 | 14536
Austria | 10256 | 21536 | 16321 | 15236 | 11236 | 14536 | 21236

Figure 5.3: Representation of thematic data table with parameters in VA-Toolkit

Finally, a table may contain values of several parameter-dependent (and, in par-
ticular, time-dependent) attributes, for example, “Property crime rate”, “Burglary
rate”, “Motor vehicle theft rate”, etc. In this case, the table will have a list of
super-attributes corresponding with those that have to be stored, each of them as-
sociated with a collection of low-level attributes, one for every value the attribute
can take. Obviously, it is also possible that a table has a mixture of simple and
parameter-dependent attributes.

While the visualizer module is in charge of the visualization of the data stored
in the system, the analysis tools module gives the system the abilities to manipulate
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the data stored in it. In particular a programmer can add a tool to the framework in
order to extend its capabilities of data analysis. Currently available tools permit to
load data from a database, to perform clustering operations to the data, to explore
and load data referred to moving objects (i.e. trajectories), or more simpler, they
allow one to export spatial data to be seen in Google Earth, or to save different
frames of an animation as PNG pictures. In this module we inserted a new tool
in order to add to the system the functionalities for manage the trajectory data
warehouse presented in Chapter 4. This tool is designed in order to permit to load
the data from the TDW into the VA-Toolkit framework to permit their visualization
using its capabilities, and to permit a user to easily navigate into the data cube by
performing visual OLAP operations.

5.1.1 Trajectory data warehouse integration

We extended the VA-Toolkit framework by adding a new data management tool
that allows a user to load a Trajectory Data Warehouse schema, load the data from
the data warehouse into the software and supporting in a visual way data warehouse
operations like roll-up and drill down, showing the resulting data to a user.

One of the aspect that characterize the TDW model presented in Chapter 4 is
that it is very flexible and allows to analyse data related to different scenarios. In
particular the model has no limits on the number of measures that can be taken
into account or on the number of the dimensions that can be analysed. These
characteristics introduce the need to have the same flexibility on the visual tool
developed to manage such a TDW. To obtain this, the tool has been divided in
different classes. The core class is the TDWManager one. This class maintains the
information related to the data warehouse schema currently analysed. Given that
each scenario can have a different number of tables (i.e. dimension tables), and each
table can have a different number of columns (i.e. measures for the fact table and
different granularities for each dimension), this class is needed in order to reproduce
this flexibility into the tool. Figure 5.4 illustrates the complete classes schema. The
manager, shown in the middle of the picture, contains a reference to the main table
of the data warehouse, the fact table, two references to the spatial and temporal
tables, that are common to each TDW schema, and then a reference to a list of
other dimension tables that can be empty or contain a number of table references
to other dimensions of the TDW. The fact table includes the list of the measures
that are available in the loaded schema, and each measure contains a flag indicating
whether it is an intra-granule or an inter-granule measure. Finally each dimension
table contains the list of the different granularity levels associated with it.

From the point of view of the implementation, there are some base classes used to
implement the whole schema. In particular, the Dimension class contains the infor-
mation related to the dimensions and the pointers to the granularities, implemented
by the Granularity base class. The FactTable and Measure classes are two sepa-
rated classes providing functionalities for the fact table and the measures associated
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Figure 5.4: VA-Toolkit TDW internal representation

with, such as information on the primary keys of the table, associations between
table columns and dimensions, and so on. Two particular cases are represented by
the TemporalDimension and the TemporalGranularity classes, both extending their
respective base classes Dimension and Granularity. These two classes add some
features to the base classes in order to make easier the manipulation of temporal
data. The motivation behind this is essentially the fact that temporal data could be
of different types. In particular we can have a single instance of time, as for example
a timestamp, that is a quantitative value, but we can have also time intervals, that
need to be treated in a different way, or we can have some quantitative values (as
for example month or season names) or quantitative interval values that need to be
treated again in a different way. In particular, one can make operations between
quantitative values, and it is easy to understand which one comes before another,
while it is not so easy if the values are quantitative.

Another important class for the implementation of the new tool is the TDWAnal-
yser one. This class is the bridge between the VA-Toolkit framework and the TDW
schema. It is responsible for the management of the physical connection between
the system and the TDW, and to execute the needed queries for the data loading or
OLAP operations. Moreover, the class manages the user interaction giving him/her
the ability to load the data or to make common data warehouse operations such as
roll-up and drill down. Since a user can be interested in managing several trajec-
tory data warehouses at the same time, maybe to compare data, the class is able
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Figure 5.5: VA-Toolkit interface

to handle one or more instances of TDWManager, one for each TDW that must be
loaded into the system. Finally, the class is in charge to visualize the tool summary
window to the user, called TDW Operations Window, shown in Figure 5.7(b) and
presented in the following Section 5.3.

5.2 Data loading

Once launched the tool, the user is presented with the main window of the program,
where the menu with the available operations is shown on top, as illustrated in Fig-
ure 5.5(a). Visual Analitycs Toolkit is very modular and contains many different
functions. The first step a user needs to do in order to analyse data from a Trajec-
tory Data Warehouse consists of selecting the right tool by using the Tools menu
(Figure 5.5(b)). This starts the wizard for the data loading process. The user is
requested to insert some information related to the TDW s/he wants to connect to.
In particular, as shown in Figure 5.6(a), the user is asked to insert the parameters
needed for the connection to the data warehouse, such as its address, port, user
name and password.

In the next step the user has to select the name of the fact table s/he wants to
analyse, from a list (Figure 5.6(b)). At this point the system connects to the selected
TDW in order to analyse the model and find out the various measures, dimensions
and granularities. After this, the user needs to select, for each dimension, the



74 5. Visual OLAP with the Visual Analytics Toolkit

A_BASE_GRANULARITYMILANOCOMP  »

A_DIMT_CHI
- - ; A_DIMXCHISETT
Drriver: oracle jdoc.driverOracleDriver A DIMYCHISETT
(Computer: A_FACTALESETT
A_FACT_APP
Fort: A_FACT_CORRECT
!
Database: CDW_DIM_S_LUCA Spatial Granularity Small (2x2) -

CDW_DIM_T_LUCA
User: CDW_FACT_LUCA Temporal Granularity ADay -
FOW SPACE GEOM 1 1INA

Password: Boats Granularity Single Boat -
Rows number ? )
Tools Granularity Tool -
0K Cancel Cancel Cancel

(a) TDW Connection Panel (b) TDW Fact Table Selector (¢) TDW Granularities Panel

Figure 5.6: VA-Toolkit TDW connection wizard windows

desired granularity that should be loaded (Fig 5.6(c)). The aggregations are then
computed, the tool shows a new map of the whole spatial extent of the loaded TDW
in its main window (Figure 5.7(a)) and the TDW operations window (Figure 5.7(b))
with information about the chosen granularities.

File Display Calculate Tools Omwnst j
Mg TOWAnalysis Area 3
[ -~ ‘ l
{ TDW: ATTREZZI_FACT V3
5 Spatial Gran.: Medium (6x6)
. | Temporal Gran.: Season
N Boats Gran.: Type
Celis Classification Gran.: Class
Tools Gran.: Type
\ TDW Operations | L |
<, ] Open a new TDW |
(a) VA-Toolkit TDW Tool Main window (b) TDW Operations Window

Figure 5.7: VA-Toolkit windows with a loaded TDW

5.3 TDW Operations

One of the key features for a visual OLAP tool is the ability to handle and visualize
the different granularities composing the spatio-temporal hierarchy of the trajectory
data warehouse, and to give the user the ability to navigate through them. The
two main operations in order to explore the different levels of the granularities are
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roll-up and drill-down. In order to perform these operations, the user should select
the TDW Operations button in the TDW Operations Window (Figure 5.7(b)). The
system prompts for the kind of operation, roll-up or drill-down, the user wants to
perform. Now the user is prompted with the Granularities Panel (Figure 5.6(c)) in
order to choose the new granularities. If the operation selected is a roll-up, then the
user will be able to choose only granularities bigger than the actual one, otherwise
only lower granularities will be available.

If the roll-up or the drill-down operations involve the spatial dimension, visually
these affect the partition of the spatial domain. Figure 5.8(a) illustrates a roll-up
operation where the base granularity consists of segments of the road network, while
the coarser granularity represents a partition of the territory based on administrative
areas. On the other hand, in Figure 5.8(b) is illustrated the effect of a drill-down
operation on a grid partition of the space. In this case, from a coarser grid a more
detailed one can be obtained.
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(b) Drill-down

Figure 5.8: Effect of data warehouse operations on the spatial dimension

It is important to remark that the user can choose the spatio-temporal hierarchy
which is more adequate for his/her needs. Further, there is no constraint on the
spatial type of dimensional attributes of the spatial hierarchy. For example the
spatial dimension could be a road segment, i.e a line, which is contained in a city
district, a polygon. The visual tool reproduces faithfully this choice.

5.4 Data Analysis

After the user has selected the granularities s/he wants to analyse, the data loaded
in the TDW need to be analysed. In a TDW, each measure contained in the fact
table is referred, at least, if no other dimensions are available, to a spatio-temporal
granule, that visually is translated into a geometry with a value associated to it
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that changes for every available time interval. So, different methods can and should
be used in order to show these changes to the user, depending on the kind of the
measure or the kind of geometry has to be represented. The Visual Analytics Toolkit
offers several visualization styles and graph representations in order to see how values
change along the time. Some of them will be presented in the following, divided into
three classes: methods for intra-granule measures will be presented in Section 5.4.1;
multi-dimensional measures will be treated in Section 5.4.2; finally inter-granule
measures will be illustrated in Section 5.4.3.

5.4.1 Intra-granule measures

In this section we are going to discuss methods to visualize intra-granule measures,
i.e. measures related to a single spatial granule.

Choropleth Maps

(a) Unclassified Choropleth Map (b) Classified Choropleth Map

Lot o BN AL

Figure 5.9: Different kinds of Choropleth Maps

The first two visualization styles have the name of choropleth maps (Figure 5.9).
Given a measure having a value associated with each spatial granule of our TDW,
this visualization produces a map animation. Each granule on the map is filled
by a colour that represents the value associated with it. Figure 5.9(a) shows a
single frame of the animation produced by the so called unclassified choropleth map
visualization. In this version of the choropleth map, a colour shade is used for the
visualization. Darker is the colour in a granule, higher is the value associated with it.
On the other hand, Figure 5.9(b) shows a frame obtained by the classified choropleth
map. Unlike the unclassified version of the map, in this case data are divided into
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a finite set of classes, and each class is associated with a colour. Then each granule
is filled in with respect to the colour of the class the value belongs to.

Time series
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(a) Time Graph (b) Classified Time Graph

Figure 5.10: Examples of time graphs

Time series represents a useful tool in order to have a comprehensive view on
what happens along the entire period of time the user is taking into account. Unlike
the animations, where the user should look at different frames in order to see differ-
ences during the time, time series give an overall view of the phenomena along it,
but are less focused on the space, so the ideal thing is to use them in combination
with other visualization methods. Visual Analytics Toolkit has a really powerful
time series tool, that allows the user to have various views of the data.

Figure 5.10(a) shows the simplest time graph available in the tool. Time is
represented on the y-axis of the graph, while on the x-axis one can find the value
of the measure the user is analysing. Each curve on the graph identifies the time
series of the value associated to a spatial geometry. By moving the mouse over one
of these curves, the corresponding geometry in the main window is highlighted. The
user can decide to show in the graph also other useful information as the average
time series or some quantiles, calculated on the fly starting from all the available
values.

As for the choropleth maps, it is possible to have a classified version of the time
graph, as shown in Figure 5.10(b). In this case the window is divided into 2 different
sections. The graph on the top shows the progress of the values as in the previous
graph, enriched with some coloured band representing the classes obtained from the
classification of the time series. Note that in the picture, instead of all the time
series available, only the average series is shown (in black) together with the value
flows of the series. On the other hand, the graph at the bottom visually shows the
number of spatial granules belonging to a given class, for each time intervals the
period has been divided into.
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A similar kind of visualization is the one shown in Figure 5.11(a). Each time
graph related to a spatial granule is displayed directly inside the corresponding
geometry. In this case the user can see immediately what is the progress of the
selected value for each spatial granule, and directly compare it with others.

& A - | TV / o \ S tbettoms |

(a) Time graphs in spatial granules (b) Line thickness

Figure 5.11: Examples of visualizations techniques

Line Thickness

If the geometries associated with a given spatial dimension correspond to simple
lines, the use of the choropleth maps could not be feasible. In this case VA-Toolkit
permits to associate the values the user wants to visualize with the thickness of the
corresponding line, as shown in Figure 5.11(b).

In this case, the thickness of each line is depicted proportionally to the value
associated with that geometry. Also in this case the tool permits to obtain an
animation along the time, if needed.

Symbol Maps

Another way to visualize the measures contained in our TDW is illustrated in Fig-
ure 5.12(a). In this case the values are associated to the dimensions of circles that
are drawn inside each spatial granule. The bigger are the circles, the higher are the
values associated with them. The user can select different shapes: circles, as in the
picture, bars, images.

Triangles

A useful visualization technique in order to compare different measures to see if
there is, for instance, any correlation between them, is the triangle visualization
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Figure 5.12: Symbols map (a) and triangles visualization (b)

(Figure 5.12(b)). In this case a triangular symbol is shown inside each spatial
geometry. The base and the height of the triangles are proportional respectively to
one of the measures the user wants to visualize. Again, the map could be animated
and the variations of the values are reflected on the shapes of the triangles, in order
to let the user see any possible correlation between the values along the time.

5.4.2 Multi-dimensional measures

All the visualization methods presented so far permits the visualization of a measure
that is directly related to a spatial granule. This is not always the case. Our TDW
model can be composed of many different dimensions other than the spatial and the
temporal one. Suppose, for instance, to have a dimension containing information
about the users, and one of its dimensional attribute is the gender. Suppose now
that an analyst is interested to visualize a measure, observing the differences between
genders. For example s/he could be interested in observing the average speed of the
males and females in a certain zone. In this case VA-Toolkit allows to depict some
small graphs, like those seen before for the time series, inside each spatial granule,
in order to show values related to different characteristics at the same time.

Figure 5.13 illustrates three kinds of visualization that can be used in these
situations, related to the same data. In Figure 5.13(a), parallel bars are used. Each
bar corresponds to a characteristic of the measure we are observing (three in the
figure). In Figure 5.13(b) pie charts are used. In this case the area of the circle is
proportional to the sum of all the available values. Then the circle is divided into
pies, whose sectors are proportional to the corresponding values of the measure for
each feature. Finally Figure 5.13(c) shows the dominance classification visualization.
In this case, a colour is assigned to each available feature. Then each spatial granule
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Figure 5.13: Multi-dimensional measures visualizations techniques

is filled in with the colour corresponding to the characteristic with the higher value.

5.4.3 Inter-granule measures

The main difference between intra-granule measures and inter-granule ones is that
while the former are measures related to single granules, the latter are related to
pairs of granules. Hence, in order to visualize them, pairs of geometries need to be
shown or connected together in some ways. The only inter-granule measure that
has been taken into account is the cross measure.

The user can choose between two methods to load the measure cross from the
TDW by VA-Toolkit, depending on the situation and needs. Directional crosses
take into account the direction of the cross between two granules, so having two
different granules, a value will be present for the number of crosses from the first
to the second geometry, and another value for the opposite direction (from the
second to the first one). On the other hand, aggregated crosses are useful when the
direction is not important. In this case each directional cross value is summed up
in order to obtain a single cross value for all the geometries involved. For example,
consider a crossroad where several road segments meet each other. In this case, the
visualization of directional crosses should be difficult, since in a small space, i.e. the
point of conjunction of all the segments, many different values should be visualized,
while for the aggregated cross a single value representing all the crosses on that
point is required.

Figure 5.14 shows different kinds of visualizations for the measure cross. Fig-
ure 5.14(a) illustrates how directional crosses are displayed. Each cross value be-
tween two different geometries is associated with an arrow representing the direction
of the cross itself. The thickness of the arrow is proportional to the value of the
cross. The user could also decide to draw each arrow with a different colour, depend-
ing on its direction. In this case arrows compass directions are calculated on the
fly and aggregated together in eight different classes, i.e. N-NE-E-SE-S-SW-W-NW.
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Figure 5.14: Cross visualizations

On the other hand, Figure 5.14(b) and Figure 5.14(c) show how aggregated crosses
could be represented. The first picture models the case of crosses between different
polygons. In this case the thickness of the borders between the polygons is used in
order to represent the value of the measure. In the second case, aggregated crosses
among several lines are visualized. Here the dimension of the point where all the
segments intersect is proportional to the value of the measure.

5.5 Synopsis
The chapter described the tool to provide users a visual interface for performing

visual OLAP operations. We discussed the functionalities and the architecture of
VA-Toolkit, and presented the module we developed in order to connect VA-Toolkit
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to a Trajectory Data Warehouse and to support the users with visual OLAP. The
chapter then illustrated various kinds of analyses we can perform interacting with
the TDW, given some hints on which visualization techniques can be used for the
different kinds of measures stored in the TDW.



Case Studies

In this chapter we will applied the proposed framework to two different real world
datasets. The first one, discussed in Section 6.1, is a dataset containing location
information related to a fleet of cars, hence the movements of the objects are con-
strained in a road network. Unfortunately this dataset has no information related to
moving objects, other than their positions. On the other hand, the second dataset,
presented in Section 6.2, contains information about boats sailing on the sea, hence
their movement could be consider free and not constrained in any way. The dataset
contains the positions of the moving objects, as well as many descriptive information
for any observed boat.

6.1 Analysis of cars in Milan

In this section the Trajectory Data Warehouse presented in the past chapters will
be used in order to analyse some traffic data related to the city of Milan in Italy.

6.1.1 Dataset acquisition and description

Data contained in the Milan dataset have been collected by an insurance company,
that gives discounts to clients who voluntarily install a GPS device in their cars,
and submit all GPS data to the insurance company (to decease the burden of proof
in case of an accident). The data have been made available, after an anonymization
process, in the context of GeoPKDD European project, to which we have taken
part, and are not publicly disclosable.

The dataset consists of two millions of time-stamped location records, sampled
at irregular time intervals, representing the movement of seventeen thousand objects
moving during a week period from Sunday, April 1st to Saturday, April 7th 2007.
The structure of each record is in the form (Vi4,t,lat,long), where T;; represents
the unique identifier of each moving object, while (¢, lat, long) represents its time-
stamped location.

Due to the anonymization process applied to the data, this dataset has unfortu-
nately no information about the identity of the moving objects. Only data about
the movement are kept.
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Figure 6.1: Milan dataset extension

The overall area covered by the data can be approximated as a rectangle of size
32km x 35km, and is shown in Figure 6.1

6.1.2 Data Warehouse description

In order to load the dataset described in Section 6.1.1 in a TDW a correct instan-
tiation of our proposed model has to be done, defining adequate dimensions and
associated hierarchies. Since, as already pointed out, the dataset does not contain
any demographical information concerning moving objects, the dimensions of the
data warehouse will be only the spatial and the temporal ones as shown in Fig-
ure 6.2. However, even in this case where the schema results to be really simple,
our framework does not loose in expressive power, as it will be demonstrated in the
following sections.

Since the time span of the data is one week the temporal dimension is based
on a simple collection of regular intervals of increasing size as shown in Figure 6.3.
The base granularity consists of one hour intervals. Coarser granularities sum up
these base intervals in order to obtain 3-hours intervals, 24-hours intervals (i.e. an
entire day) and 168-hours intervals (i.e. a week), covering the whole time period of
interest.

On the other hand, the spatial dimension is composed by a more complex
hierarchy. Figure 6.4 describes the tree representing this dimension. In particular,
the figure shows three different kinds of aggregations available, all having the same
shared base granularity. A natural choice for the base granularity, in the context
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Figure 6.2: Actual TDW schema for Milan traffic scenario
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Figure 6.3: Actual temporal dimension hierarchy for Milan traffic scenario

of traffic analysis, is road segments as the smallest spatial unit to observe. These
segments are shown in Figure 6.5(a). The first branch of the hierarchy proposed
in order to aggregate together the road segments is based on a regular grid that
becomes coarser along the hierarchy. The smallest grid is composed by 330m X
440m rectangles, and it is shown in Figure 6.5(b). These smallest cells are then
aggregated in groups of 10, 20, 40 and 80 spatially adjacent rectangles, by forming
respectively grids composed of 3.3Kmx4.4Km, 6.6 Kmx8.8Km, 13.2Kmx17.6Km
and 24.4Km x 35.2Km cells.

The second branch takes into account the administrative areas the territory of
interest is divided in. The first level represents the districts the city is partitioned.

924.4Km 6.6Km
) 8 8>I<{ J90m - @ municipality Voronoi
35.2Km ORI o Level 2
13.2Km district eve

X 3.3Km
17.6Km y rond

4.4Km segment

Voronoi
Level 1

Figure 6.4: Actual spatial dimension hierarchy for Milan traffic scenario
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Figure 6.5: Different spatial partitions for the Milan dataset

This division is visible in Figure 6.5(c). Districts can then be further aggregated
and they form municipalities.

One of the problems of having regular grids or user defined regions partitioning
the space is that the obtained areas do not bear any semantics and do not correspond
well to the real geographic and topographic properties of the data, and this can
led to misleading results. The third branch of the hierarchy has been defined to
cope with this problem. In particular, the space has been divided by using the
Voronoi tessellation technique [2]. Given a set of points P in the plane, the Voronoi
tessellation is a partition of the space into regions such that for each point p € P
there is a region R(p) which consists of all points of the plane that are closer to
p than to any other point in P. Hence, the region R(p) describes some kind of
“neighbourhood” of p. Also in this case the hierarchy is composed by two levels
(further the base one), and each polygon of the lower level is completely contained
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into a polygon of the higher one. The lower level polygons have been constructed
starting from the raw data of the trajectories observations. The points have been
clustered together in clusters of spatially near points, and clusters centroids have
been used in order to generate the polygons. On the other hand, since there is
no defined ways to generate a hierarchy of Voronoi polygons, a heuristic has been
applied in order to generate the second level of this branch of the hierarchy. We
have generated a Voronoi tessellations with a radius bigger than the one used for the
lower level. Then, using this second partitioning, we have aggregated together all
the Voronoi polygons of the first level, contained for at least 50% of their area in a
bigger polygon. It is worth noting that applying this heuristic we do not obtain any
longer genuine Voronoi polygons. The result of the low level tessellation is shown in
Figure 6.5(d).

In order to complete the definition of the TDW we have to specify the measures
we want to load. Measures are needed in order to grasp information about the tra-
jectories crossing a given spatial cell in a given time interval. As shown in Figure 6.2,
the measures we are interested in for this dataset are those already presented and
discussed in Chapter 4, i.e. visits, start, end, travel time, distance and speed for the
intra-granule fact table, and crosses for the inter-granule fact table.

6.1.3 Trajectories reconstruction and data warehouse load-
ing

In order to obtain the trajectories needed to feed-up our TDW from raw data, a
process of trajectory reconstruction has been applied. As the base granularity of
the data warehouse is composed by single road segments, the reconstruction process
needs to cope with this constraint, as described in Chapter 3.3.

The first task to perform consists of the so called map matching process: during
this phase, each point of the dataset has been associated with one of the road
segments composing our base granularity, i.e. the segment nearest to the point.
After this step, point coordinates correspond to those of a point in the road network,
so the second step could be performed. Since there is no information about the
route each object follows, in order to concatenate different road segment to create
a complete trajectory, a shortest path algorithm coded in Java has been used. It
has been assume that between two different points in the dataset, the speed was
constant. In order to determine trajectories, from raw data, we have use some of the
parameter discussed in Section 3.3. In particular, we have imposed a maximum speed
between two consecutive observations of about 200km/h. Moreover, we have fixed a
maximum temporal gap of 15 minutes between one to its consecutive points. Higher
delays between consecutive observations led to the creation of a new trajectory,
supposing that in this case the GPS device was simply switched off.

At the end of the task, the total amount of trajectories obtained has been of
about 200,000, i.e. 11 trajectories per vehicle composed by eight points each.
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Then, the TDW has been built and loaded with the described measures, accord-
ing to the spatial and temporal dimensions described.

6.1.4 Data analysis

In the context of traffic data analysis, there are some interesting questions that
traffic managers could be interested in answering. Some example could be “From
which district does a great number of cars leave in the morning? And at what hour?
Is there a flow exiting/entering the town? Which are the main differences in the
traffic between the working days and the week-end?”. In this section it will be shown
how a traffic manager could use the proposed TDW in order to find an answer to
these questions.
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Figure 6.6: Visits at different granularities and hierarchies on Tuesday (3-hours
intervals)

Figure 6.6 represents the measure wisits (V) on Tuesday. Temporal dimension
has been aggregated in 3-hours intervals, while the picture shows two different kinds
of aggregation for the spatial dimension, i.e. 6.6km x 8.8km cells (Figure 6.6(a)) and
municipalities (Figure 6.6(b)). Despite the two figures represent the same measure,
there are some differences between them. Both the pictures show how the traffic
starts increasing from early morning reaching the maximum values between 6am-
9am and 3pm-6pm, and then decreases on the nightly hours. On the other hand,
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Figure 6.7: Visits at road segment granularity on Tuesday

by looking for example at the interval 6am-9am, in the two pictures, one can note
how in the cells partition it results that the mostly trafficated area is the one in the
centre of the city; on the contrary, in the municipalities partition the situation is
slightly different, showing that the traffic is concentrated on both the Milan down
town and in the external suburbs on the top left of the city. This is because the
second spatial partition is tighter with the territory while the grid groups areas with
a small number of streets together with those having a lot of streets.

By applying a drill-down operation, we obtain a view of the same data at the base
granularity, i.e., street segments. In this case in order to visualise the measure visits
the line thickness technique is used. The corresponding frames, shown in Figure 6.7,
allow the user to perceive a very different image of the traffic distribution of the
town: the information about the visits is connected to the roads, i.e., thicker lines
indicate a higher value for the measure visits. We can distinguish several rings
around the centre and some radial streets that are used to enter to the centre, or to
exit from it. This allows us to answer queries about the situation of traffic at the
road network level. For example, we can discover that the high number of visits in
the suburbs during rush hours, visible in Figure 6.6(b), is mainly due to the traffic
in the external ring highway. It is interesting to note also that from Oam to 3am
there are few cars moving around, and there is no dense area. Then, as time goes by,
the outer ring of the town becomes denser and after the inner rings and the radial
roads too.

In order to have a complete view of what happens during the whole week, a
graph could be a very helpful tool. The time series display in Figure 6.8 summarizes
the temporal variation of the measure Visits over the whole territory, divided in
3.3km x 4.4km cells. The temporal granularity chosen is of 1-hour intervals. The
appearance of the display shows a clear subdivision of the whole time period into
days. We can observe that the visits are much higher in the day hours than in
the night and noticeably higher on the working days than on Sunday and Saturday
(respectively last and first day of the period). On each of the working days, there
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are two peaks of the number of cells with high visits, signified by the shades of red.
These peaks correspond to the morning and afternoon rush hours, which occur in
the intervals 6 — 9am and 3 — 6pm. Interesting is the increase of traffic intensity on
Sunday afternoon. It is also visible that the traffic on Friday is less intense than on
the previous working days: there are no cells with the values lying in the upper two
classes of the values of visits.

Comparing the display of the visits with the display of the speed of objects at
the same granularity, shown in Figure 6.9, one can immediately realise that visits
and average speed are inversely proportional. During the early and late hours of the
day the speed is high whereas from 6am up to 6pm the speed decreases significantly,
exhibiting a dual behaviour with respect to the visits.

The composite time series displays representing the temporal evolution of the
measures need to be combined with cartographic visualisations showing the data
in the spatial context. For example, Figure 6.10 is a screen-shot of the animation
representing the values of the speed and the visits by triangular symbols. The height
of the triangle is proportional to the speed and the base to the visits. One anima-
tion frame corresponds to one hourly interval and the whole animation shows the
variation of the visits and speed over the week. This reveals additional information
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with respect to the time series displays. Thus, the image shows that the visits are
higher in the centre and this has a strong impact on the speed of cars, which is very
low. On the other hand, it highlights that along the ring roads, the speed is higher
except in the north-east zone where the larger number of cars slows down the traffic.

As shown on Figure 6.10, the combination of different measures in order to
visualize them together could bring new information available to a traffic manager.
Another example of this fact is represented in Figure 6.11. The picture shows three
different screenshots of the flow balance at municipality granularity using a thematic
map. The time granularity is of 1-hour intervals, and the screenshots are related
to three different intervals, two in the early morning and one on late afternoon, on
Monday. Each municipality is coloured depending on the difference between the
overall number of starting (S) and ending (€) trajectories in it. Zones painted in
blue has a positive balance, that is the number of trajectories starting from the zone
is bigger than the number of those ending in it. On the other hand, green represents
a negative balance, that is the number of trajectories ending in the zone is bigger
than the number of those starting in it. Finally, white represents zones where the
number of starting and ending trajectories is almost the same. One can clearly
observe the duality of patterns in early morning hours with respect to those in the
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evening and it can be discovered at what time usually people start moving or they
turn back and from which zones. It is interesting to notice also that between 7am
to 8am there are many zones where the balance is almost zero and this is due to
the fact that at that hour people are usually travelling, hence their trajectories do
not appear in the S or £ measures (i.e. they are not starting their trip and neither
ending it).

Figure 6.11 represents in some ways an overview of what can be the movements
of the cars in the city, but does not give any information about the directions these
movements have. In order to cope with this task, and better understanding this
kind of phenomena, the Visual Analytics Toolkit can be used in order to represent
the measure Crosses (C), that in fact represents how the trajectories in the original
dataset move between the granules of our TDW.

Figure 6.12 shows two different visualizations of this measure, for two different
branches of our spatial hierarchy. Both the pictures refer to the city centre of Milan,
and not to the entire spatial extension. Figure 6.12(a) represents the number of
trajectories crossing the borders of two spatially adjacent granules (in this case two
cells of our 330m x 440m grid). Crosses are summed up together regardless of their
direction, and are visualized by the thickness of the border between two granules.
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On the other hand, Figure 6.12(b) shows the measure C between different districts,
with respect to their direction. In this case the flow of the traffic is more visible,
and one can note also some different dominant directions between some districts,
identified by huger arrows.

Using user defined spatial hierarchies could on identify phenomena related to
features that are interesting for an analyst. By the way, this kind of hierarchies is
not always the best choice for some kind of situations. For example, these hierarchies
could produce hardly understandable or even misleading results. Looking at the
crosses showed on both the images in Figure 6.12, in the case of the regular grid,
the major directions of the movements are greatly distorts, since all the crosses are
divided in only 4 different directions, either by choosing directional crosses instead
of aggregated ones. In the case of user defined granularities, as can be the districts,
the problem is related to the fact that a single road can be situated between two
granules, crossing between them many times. This could then generate a high
number of crosses between the two areas, producing a misleading information.

In order to solve this problem, one can try to partition the space according to
the density of the points in the dataset. Figure 6.13(a) shows the measure crosses
by using Voronoi polygons. In this case the arrows representing the crosses are
coloured depending on the directions they have (8 directions have been considered,
namely S, SW, W, NW N, NE, E, SE). One can easily comprehend the overall flow
of moving objects. For example, it is easy to see two flows from South to North and
vice-versa on both left and right part of the figure, corresponding to two ring roads,
and another flow with direction SW/NE starting from the bottom of the picture
and reaching almost the city centre. Other flows are clearly visible on the top of the
picture.

The aggregates obtained by OLAP operations should not be considered as final
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Figure 6.12: Crosses visualizations at two different spatial hierarchies

products that only need to be nicely represented for reporting but rather as data
that need to be further explored. The analysis could require the application of
additional computational techniques such as clustering and statistical analysis of
time series. Using the Visual Analytics Toolkit one can analyse measures with the
help of clustering on the basis of the time series of the measure values. Informally, a
comparison between the time graphs of the measure is made, then they are clustered
together in classes containing similar graphs, and a colour is assigned each of them.
Applying the technique to the cross measure, we can analyse, in particular, the
differences in the temporal variation of the traffic between two regions (or along a
road) in opposite directions. In Figure 6.13(b) the crosses between adjacent Voronoi
regions are shown. Arrows between areas are coloured according to the similarity of
the time series of the cross measure. Distinct colours of the opposite arrows between
two areas mean that their temporal variation patterns are rather different. Same
or similar colours of successive links going along a road mean that the temporal
variation patterns are similar on rather long parts of the road. In this case the
behaviour of trajectories could clearly be seen. Movements in the outer ring road
are really similar for both the directions of the cars, as those in the centre of the
cities. These two kinds of movements are anyway really different between them. In
order to better understand how these movements proceeds along the week, a graph
as the one presented in Figure 6.14 could be used. It shows the temporal variation
of crosses for two of the clusters: each coloured band indicates the evolution of
the maximum and minimum values of the cross measure for all the region borders
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(a) Crosses between Voronoi polygons  (b) Clustering of crosses based on their time
series

Figure 6.13: Different visualizations of Crosses between Voronoi polygons

belonging to the corresponding cluster.

6.2 Analysing Boats Sailing on the Adriatic Sea

During a collaboration with the environmental science department of our university,
we have been asked from environmental scientists to use our TDW and analysis tool
in order to analyse a dataset containing information about fishing boats sailing in
the Northern Adriatic Sea. This dataset is not available for public disclosure, and
we have been allowed to publish obtained results only in this thesis. In this section
we will present these results.

6.2.1 Dataset acquisition and description

Data contained in this dataset have been collected during a joint work with the
Venice Coast Guard Operations Centre in the period between January and Septem-
ber 2007. In order to track the boats to obtain their location over the sea during
their fishing activity, information provided by the Vessel Monitoring System has
been adopted. This system is used for security purposes and permits to track every
boat in real time, while data are successively stored in a database and kept for one
month. Each boat is equipped with a device called blue boz, composed by a GPS
receiver and a satellite transmitter. Each blue box transmits its GPS position to a
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Figure 6.14: Variation intervals for the time series belonging to two selected clusters

Land Earth Station (LES) via the INMARSAT-C satellite at regular time intervals.

The LES then sends the information to the Fishing Control Centre, where they are
stored. Figure 6.15 describes this process.

INMARSAT ‘
Satellite g

GPS
(@

Satellite

o~

Boat

: Land Earth
@ Station
Figure 6.15: VMS operation

The total number of boats that have been tracked is 270 units sailing on the Adri-

atic Sea. These boats produced a dataset of about 326800 records. Each message
sent from a boat to the LES contains the following information:

e Protocol number of the message

e Date and time of the message

o INMARSAT satellite identification number
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e Boat identification number in the fleet register

e Plate of the boat

e Speed of the boat

e Direction of the boat

o Latitude of the observation

e Longitude of the observation

e Date and time of the observation

e Report type, i.e. information about anomalies on the boat

Only the field in italic has been taken into account. Some other fields could have
been used too, as speed or direction, but during the phase of data clean-up and
reconstruction of the data, we noticed that there was some inconsistency with other
data, so we decided to calculate such values starting from the GPS positions.

To obtain information related to each boat as the name of the boat, the navy
it belongs to, the fishery tools it is equipped with, the Community Fishing Fleet
Register on-line site ' has been consulted. Inside this database further information
is available, as the boat power, dimensions, weight, name of the owner; since those
pieces of information do not give any additional knowledge with respect to our study,
we decided not to take them into account. Unfortunately, the register does not give
any information related to the tool each boat has aboard, other than the class it
belongs to. Hence, in order to have more accurate information related to it, it has
been needed a visual check at the docks for each boat.

Finally a third dataset has been used, containing information about the amount
of fish caught by each boat every day. This dataset has been obtained by taking
information from the fish market, together with direct observations at the docks
for the real caught of each boat. This database contains around 141000 records.
Each record includes the date of the sale, the fish species, the boat in charge for the
captures, and the amount of fish sold (in kilos). This information has then been used
in order to estimate and distribute the catches along each boat path, as described
in Section 6.2.3.

Figure 6.16 represents the spatial extent of the available data obtained from the
datasets described so far.

6.2.2 Data Warehouse description

In order to cope with the task of analysing this kind of data, our TDW has to model
facts related to multitudes of ship trajectories moving in the Adriatic Sea. The first

'http://ec.europa.eu/fisheries/fleet/
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Figure 6.16: Northern Adriatic Sea Map with the base grid.

task that has to be accomplished is to adequately instantiate our framework, i.e. to
choose right dimensions and hierarchies, select measures, to solve the given problem.
Figure 6.17 presents the resulting schema for the TDW. Six different dimensions have
been defined, each with a given hierarchy. For the spatial dimension the proposed
hierarchy divides the space into a collection of regular grids of increasing size. The
base grid is composed by 2x2 nautical miles (nm) squares. The intermediate grid
groups together three base cells, in order to compose a grid of 6x6 nm cells. Finally
the largest grid is composed of collection of 6x6 base cells composing a grid of 12x12
nm cells. The temporal dimension has been defined with a hierarchy having
as base granularity a one day interval. Coarser granularities divide the time into
7 days intervals, 14 days intervals, months, trimesters and seasons. In this case
the hierarchy, as shown in Figure 6.18, is a tree, and contains both numerical and
descriptive levels. This second types of levels are more difficult to handle since
containment operations must be manually defined, while on numerical levels they
can be computed with some operation. The boat dimension contains information
about boats that generate the data. The proposed hierarchy identifies at the base
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Figure 6.17: Actual TDW schema for ships scenario

level each single boat, that can then be aggregated accordingly to the navy the boat
belongs to. The fishes dimension gives information about the caught fishes. The
lower level of the hierarchy defined for this dimension identifies each kind of fish that
lives in the Adriatic Sea. Fishes can be grouped by their species and again by their
taxonomy. The tools dimension divides the data according to the fishing gear used
by a boat (i.e. coccia, volante and rapido). Since each boat can use just a single tool
a time, and each tool can catch only some kinds of fishes, these three dimensions,
boat, tool and fishes, are tied each other. The associated hierarchy consists of
the single root (base level). Finally, the activities dimension determines which
activity a boat performs when it crosses a cell in our spatio-temporal grid, namely if

year

trimester

14 days season

month

day

Figure 6.18: Actual temporal dimension hierarchy for ships scenario
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the boat is fishing or moving to reach a certain place or to go back to the harbour.
Even in this case the hierarchy is formed only by the base granularity.

Let us now describe the measures. As we have already stated, measures give
information about trajectories crossing a given spatial cell, in a chosen time interval,
having the characteristics selected by defining a single granularity for each of the
available dimensions. Beside the standard measures already presented in Chapter 4,
that are visits (1), crosses (C), total distance covered into a cell (dist), total time
spent in a cell (trav_t) and average speed of boats in a cell (speed), we add the
measure weight. This measure indicates the amount (in terms of kilograms) of fish
caught in a cell.

In order to clarify the selected dimensions, hierarchies and measures, informally
we can say that at the base level, given a measure, for example V, the value associ-
ated with that measure defines the number of times a certain cell has been visited
by a given boat (identified by a plate) during a single day of the year. Moreover, we
also know that the boat visited that cells while making a certain activity (i.e. if it
is for fishing, or if it is just moving somewhere), equipped with a certain tool and,
in the case it is fishing, the kind of fish caught.

6.2.3 Trajectories reconstruction and data warehouse load-
ing

As already stated, data about the movements of the vessels in the Adriatic Sea have
been collected using the Vessel Monitoring System, a security system which uses
a GPS transmitter in order to know the exact GPS location of a boat in the sea.
Points collected using these transmitters must be processed in order to reconstruct
the trajectories followed by each boats. It has been assumed that between two points,
a boat travels at a constant speed, so that a linear interpolation model has been
applied in order to obtain the complete path. Moreover, the sampling concerning
a single boat has been split into several trajectories after a 16 hours time interval.
This is due to the fact that it is really difficult that a fishing boat stays away for
a time longer or lesser than this time. In this case using limiting the temporal
interval between two consecutive observations would not be a good choice, since
sometimes VMS observations are lost or the transmitter could be temporally turned
off. Moreover, during this trajectory reconstruction phase a clean-up process of the
data have been applied, by removing observations landing on earth, duplicated, or
implying too big speed values.

Finally, in order to distribute the catches along each trajectory, each of their
portions has been classified labelling whether the boat was fishing or simply sailing
on the sea. This has been done by means of speed values [44]. In particular,
depending on the tool used by each boat, it has been considered fishing if its speed
was lower than 2.5 nodes for volante and coccia, and lower than 5 nodes for rapido.
We have also considered as non-fishing trajectories portions within three miles from
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each harbour. This choice has been taken since usually in those areas boats speed is
low either if they are not fishing. After this classification, the total amount of daily
catches related to a boat has been uniformly distributed along all its trajectories
portions classified as fishing.

After this cleaning and transformation step the loading phase is performed for
the about 33,000 trajectories obtained, and the TDW is built and loaded according
to the described dimensions.

6.2.4 Data analysis

Let us now present some meaningful analyses we accomplish by using the TDW.
The environmental scientists were mainly interested on analyse two aspect of the
fishing activity, namely the fishing effort index and the distribution of the species
on the sea. In order to reply to their question, we have produced, using our tool,
two different kinds of maps that will now be described.

Fishing Effort

The first set of maps is related to the so called fishing effort index. This index
consists of a value that indicates how much a given area has been exploited by the
boats fishing in it. It is calculated as the ratio between the sum of the swept area
by each boat in the cell and the area of the cell itself. The swept area is the total
area that a boat has used for its fishing activity. It is calculated as the product
between the area occupied on the sea by the tool used for fishing (one can think at
the tool as a net that occupies a certain area) and the total distance that the boat
has covered inside the cell. By formulas, we have:

5 25 54 25 TS < d;
‘ CA CcA

where F; is the fishing effort index, SA is the swept area, C'A is the cell area, T'S is
the tool surface and d is the total distance spent by each boat inside a cell. Since
the surface occupied by a tool is always the same, it could be consider as a constant
in our index creation, so we simplify the formula using the following to obtain the

index: "
Z j=1 dj
CA

In the context of analysing the fishing effort for the Adriatic Sea, some questions
of interest are “What is the fishing effort the area has been subjected to during
200777, “How is this effort divided during the year?”, “What effort is due to a boat
of a given navy?”, “How is the effort affected by the kind of tool used by the boats?”.

Figure 6.19 shows the fishing effort the Northern Adriatic Sea has been subjected
to during 2007, at the lower level of our spatial granularity. Cells in darker colours
are the most exploited, by the means that they have been completely explored more
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Figure 6.19: Fishing effort distribution in the period January-September 2007

than 1.5 times during the entire period. Since the fishing effort index is obtained
by a ratio between areas, this means that each of these cells have been completely
swept by boats sailing in it about two times in the considered period. While it is
visible that the whole area has been explored during the period, from the Italian
coast to the Croatian territorial waters, we can observe that the most exploited one
is the area that goes from the Italian coast line to the first half of the entire distance
between the two countries.

One can now wonder if the aforementioned scenario is the same during the year
or change during the months. By using a drill-down operation on the temporal
dimension of our TDW, we can inspect the situation to a higher level of detail.
Figure 6.20 represents the fishing effort in the Adriatic Sea, divided into trimesters.
What can be noticed is that during Winter (Figure 6.20(a)) the explored area is
somehow reduced compared with the other months, while one can see higher values
for the effort in the areas nearest to the harbours. This is due to the fact that
boats tend to avoid going on open seas during the cold season, when days are
shorter. During Spring (Figure 6.20(b)) boats reach also southern areas, and the
effort results to be more uniformly distributed over the space. Finally, it is worth
noting that during Summer (Figure 6.20(c)) fishing activities are less intense.

A different analysis in order to see how boats belonging to a particular navy
contribute to the total fishing effort we have just observed, we can make a slice on
our data cube selecting the navy we are interested in. In Figure 6.21 we can see
the effort due to Chioggia navy’s boats. Looking at this picture we can notice that
along the year some Chioggia boats change their base harbour in order to reach far
places for fishing. In particular we can see that in Winter the fishing area is more
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Figure 6.20: Fishing effort distribution by trimesters

extended on South thanks to the use of Rimini harbour. During Spring boats reach
Northern areas and leave southern ones; finally during Summer when the explored
area is reduced with respect to the other seasons, due to laws that block fishing
activities on these months, many boats use some more Southern harbours for their
activities. During all the given periods, the areas nearest the coasts are the most
exploited, while during Winter also farthest areas are reached.
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Figure 6.21: Fishing effort distribution of Chioggia boats by trimesters

By making a drill-down operation on the tools dimension we can observe how
the different tools are used for fishing activity. Figure 6.22 represents the fishing
effort obtained by using the different fishing tools, namely coccia (Figure 6.22(a)),
rapido (Figure 6.22(b)) and volante (Figure 6.22(c)). By looking at this picture we
can remark how the distribution of the effort changes depending on the used tool.
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(a) Coccia (b) Rapido (c) Volante

Figure 6.22: Fishing effort distribution related to the used tools (January-
September)

Figure 6.22(a) shows that coccia is used for fishing in an area that recalls a triangle
whose head point is on the Chioggia harbour. One can also identify two different
areas, one close to the coast, and another a bit far from it, where the fishing effort
results higher.

Referring to Figure 6.22(b) the distribution of the fishing effort related to rapido
appears to be different than the previous one: most exploited areas appear to be two
belts close to the coast, one on the North and the other on the South of Chioggia
harbour; the rest of the exploited area appears to be uniformly visited, and this area
results to be wider than the one observed for coccia.

Finally Figure 6.22(c) describes the distribution of the effort related to wvolante.
Recalling that the picture refers only to Chioggia boats, one can observe that some of
the boats using this tool are visible also on different harbours than the Chioggia one.
The same behaviour could be observed also on Figure 6.21(b) and Figure 6.21(c). So
we can say that boats using Volante are also those using different harbours during
the hot season. Finally, observing the figure we can see that all the area exploited
with this tool is somehow uniformly explored, with the exception of an area between
the Italian coast and the Croatian territorial waters where the values for the fishing
effort is somehow high.

Species distribution

The second set of maps we created is intended to give environmental scientists an
overall view on how each fished species in the North Adriatic Sea is distributed. In
this case the data related to the sale at the fishing market have been distributed over
each boat path, and then data have been aggregated in order to obtain information
regarding each species. Our TDW, and the Visual Analytics Toolkit have been
revealed to be useful tools in order to obtain this information. By aggregating
data over the fishes dimension at the species granularity and by defining the desired
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spatial and temporal levels for the corresponding hierarchies, we can obtain different
snapshots about the distribution of the fishes.

Figure 6.23: Spatial distribution of anchovies in the period January-September

Figure 6.23 represents the spatial distribution of anchovies, by means of the
amount of fishes caught in a given spatio-temporal cell, during the whole period
of interest(January-September 2007). Analysing the picture we can see how the
density of this kind of fishes is considerable in all the areas of the Northern Adriatic,
and reaches its maximum values in an area at South of Chioggia. In that area many
important rivers, as Po, Brenta and Adige, have their mouth and reach the sea. By
making a drill-down on the temporal dimension we can have a more precise view
concerning seasonal changes of fishes. Figure 6.24 shows how the distribution of the
anchovies varies during the first three trimesters of the 2007. This figure depicts a
different scenario than the one given by Figure 6.23. During Winter (Figure 6.24(a))
the anchovies are mostly concentrated near the coasts, while the density results
lower, either if relevant, on open waters. During Spring (Figure 6.24(b)) the area
occupied by the anchouvies is reduced, while the density of this area is generally very
high. This could suggest that shoals of anchovies usually compact themselves in
this season. Finally, during Summer we can notice further reduction of the area
occupied by the species, while the density in the occupied territory remains high.

Similar results have been obtained for every kind of fishes in the Adriatic Sea,
and this can be done by simply changing the fish species on which we slice our data
cube.
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Figure 6.24: Spatial distribution of anchovies by trimesters

A comparison with environmental science techniques

Beyond the results obtained using the analysis proposed so far, it is important to
strength which are the benefits environmental sciences could have by using and
adopting a tool like the proposed TDW.

Fishing Effort Indexes One of the most popular indexes for fishing effort cur-
rently used is the CPUE (Catch Per Unit Effort). This index has the advantage of
giving information about the efficiency of a given fishing technique and the exploita-
tion of a certain environment. On the other hand, the disadvantage of this kind of
indexes is that they are based on the catches, and so they are not always suitable in
order to give information for the management of the fishing effort. The effort index
proposed in Section 6.2.4 presents two main advantages over this kind of indexes:

1. it is a measure of the effort based on swept area and not on catches

2. since it is based on boats trajectories, the information are related to a specific
location and time, giving high resolution data that permit both to monitor
the fishing effects on the species and to elaborate more precisely strategies for
fishing management based on effort limitations [53].

By using our TDW and visual analysis tool it is anyway possible to obtain infor-
mation as those given by the CPUE index, by bringing together catches and effort
data as shown in Figure 6.25. These pictures show, with the help of triangles, the



6.2. Analysing Boats Sailing on the Adriatic Sea 107

EEEEE - | feearr /“ [l /“
S e iy e o B - o e g = o I - << T o =
. A - - . - - - - - - A - - -
| | | | | a|la|a|allals s | A A A|a]a
P PN PPN N7 DN PN PP N1V 1N A P R
ol A s e s PP N (G B Y ¥ NIVN
MMMMMM = S 5 :
- . i
- i i
o A -
(a) Any fish (b) Anchovies (c) Cuttlefishes

Figure 6.25: Correlation between catches (height) and fishing effort (base) in the
period January-September

relation between the amount of catches in a given cell (height of the triangle) and
the effort computed for that cell (base of the triangle). In particular, Figure 6.25(a)
illustrates the correlation between the two values related to the total of the catches
independently from the fish species, while Figure 6.25(b) and Figure 6.25(c) repre-
sent the situation related to anchovies and cuttlefishes. Figures refer to data for the
whole period of interest, and spatial cells have been aggregated to form 6x6 nautical
miles squares. By observing the three figures we can note that in general to a higher
effort corresponds more catches. By the way, in some cells we can see how either
with a high value of the effort, the number of catches is not commensurate. In this
case we have triangles with a large base but a small height. On some other cells,
mostly those farthest from the coast, in the picture related to cuttlefishes, we have
the opposite situation, where lots of catches can be made either with little effort.

Fishes Distribution Currently, the most used techniques in order to estimate the
distribution of the species on the sea are based on annual samplings made with trawl
nets and respecting defined protocols. An example of results obtained with one of
this campaign is shown in Figure 6.26, that presents some maps obtained during
a MEDITS (Mediterranean Trawl Survey) campaign, that is done exactly in this
way. Maps are related to four different kinds of fishes, cuttlefishes (Figure 6.26(a)),
eledones (Figure 6.26(b)), cods (Figure 6.26(c)) and squids (Figure 6.26(d)).

On the other hand, our results are based on fishery dependent data, i.e. the data
are affected to the fishing strategies each boat adopts: areas with a high presence
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of fishes will be more exploited than those where the presence is low. Despite this,
the high availability of such data, combined with the high spatial and temporal
resolution they have, really compensate this limit.

Figure 6.27 represents the map obtained by our TDW for the same species pre-
sented in Figure 6.26. A first thing to remark is how the detail level one can achieve
by our tool is deeper than the one obtained by the MEDITS campaigns. This bigger
detail level gives environmental scientists the ability to find out also small variations
on the density of a given species. For example considering the map of Cuttlefishes
(Figure 6.27(a)), one can observe a high density area around the middle of the figure,
that is not present in Figure 6.26(a).

Comparing Figure 6.26(c) and Fig 6.27(c) can be noted how the MEDITS data
and the data exploited by our TDW are contradictories: TDW data show how the
bigger part of caught of cods are in areas where the density of this species is minimum
with respect to MEDITS data. This contradiction is either more evident comparing
Figure 6.26(d) with Figure 6.27(d). Here one can see how the catches of squids
result to be higher where MEDITS map reports a lower presence of the species, and
vice-versa. Recalling that maps related to MEDITS campaign are based on single
annual samplings, these differences highlight the higher accuracy we can obtain with
fishery dependent data, that results to be also more precise, environmental scientists
said.

Finally, while MEDITS maps can give information only in an annual base, data
given by the TDW approach can be analysed also on different time levels, so that
also small variations in time can be achieved. This can be helpful in order to propose
new rules for the preservation of fish species, for instance by introducing limitation
on the amount of fish that can be caught in a given area during a given period to
help those species to reproduce.

6.3 Synopsis

In this chapter we presented two different case studies in order to highlight the
usefulness of the proposed framework and various kinds of analysis. The first case
study shows a constrained scenario in which objects of interest are cars moving along
the road network of the city of Milan, in Italy. The second case study concerns fishing
boats sailing on the Adriatic Sea without any constrained movement. For both use
cases we illustrated the preprocessing step for obtaining trajectories and how to
instantiate our framework to build an adequate TDW. Finally, we discussed some
interesting analyses taking into account requirements of the two scenarios, and drew
some conclusions about what can be obtained by using our framework.
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Conclusions

In this thesis we have proposed a theoretical and general framework for the manage-
ment and analysis of trajectories data. The framework can be exploited in different
application scenarios and is able to handle time-stamped locations that arrive in
streams from variety of moving objects, from cars to boats.

The core module of the framework is the Trajectory Data Warehouse, a data
warehouse aimed at storing aggregate measures computed over trajectories of moving
objects. The model supports a flexible discretization of the spatial and temporal
domains, along with the associated hierarchies, and allows for any number of other
dimensions to be created. In this way users can obtain a more suitable model and
representation of the reality where moving objects are embedded.

Concerning the model, we have formally defined abstract spatial and temporal
dimensions, as well as some significant measures to be stored in the facts of the
data warehouse. Moreover, we have provided adequate aggregate functions for the
proposed measures, in order to support OLAP capabilities. Among the measures,
we have introduced and analysed in depth the aggregation function of the measure
Visits (1), which represents the number of times a given granule has been visited by
all the various trajectories. With respect to the measure Presence (P ), which counts
the number of distinct trajectories inside a certain granule, Visits keeps track of the
fact that an object can return in a place different times. We have formally proved
that Visits can be computed in an exact way by our TDW, and it provides a very
good approximation of Presence. This result is independent of the discretization
of the spatio-temporal domains and the specific hierarchies adopted in the TDW
according to the application scenario. This fact is definitively of interest, since the
aggregate function for Presence is holistic [27] and such a kind of functions represents
a big issue for data warehouse technology (i.e., there is the need to maintain original
data in order to correctly compute aggregate values for this kind of measures).

In order to feed-up the data warehouse with trajectory data, the framework
has been designed with a trajectory reconstruction module, that is in charge of
processing the raw location data received as a stream of points from external devices.
Trajectories are the output of this module, modelled by taking into account possible
movement constraint or other parameters trajectory related. These trajectories are
then used to compute aggregate measures to be stored in the data warehouse facts,
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during the ETL phase.

In order to query the TDW and perform OLAP operations, the framework pro-
vides users with a visual interface. This module can be exploited in order to perform
OLAP operations over the data, as roll-up queries, and permits to analyse the infor-
mation contained into the data warehouse with the help of visualization techniques
like graphs or animated maps.

Finally, in order to demonstrate the functionalities of our framework we have
experimented it with two large real world datasets. The first dataset has been used
in order to perform some traffic analysis. It contains in fact data related to cars
moving in the city of Milan, collected during a week. The second dataset has been
used to perform analysis on fishing activity in the North Adriatic sea. This second
data collection contains more descriptive information related to the observed moving
objects (i.e. boats), so it has been helpful in order to test both the trajectory data
warehouse and the visual interface on a model with different dimensions other than
the spatial and the temporal one.
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Figure 7.1: Example of indoor space

An interesting topic for future research consists of applying our framework in a
different kind of scenario. In fact, in the last few years researcher started putting
more attention to indoor movements, as those made by users inside buildings, such
as airports, malls, museums. These scenarios concern objects/people moving in in-
door spaces [38]. This indoor setting differs from the outdoor one primarily for two
reasons. First of all in indoor spaces movements are strongly constrained, as people
can move between rooms only by passing through doors. An example of an indoor
scenario is depicted in Figure 7.1(a). Beside this, GPS-like positioning is usually
not available indoor. Object positions are usually revealed, using Bluetooth, RFID,
WiFi hotspots, by a set of short-range proximity detectors positioned inside rooms
and at doors. These sensors have limited covering area, and often rely on proximity
analysis and are unable to report velocities or accurate locations as GPS-devices.
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Indoor spaces exhibit complex topologies, and the positioning is usually much less
reliable and accurate than that achieved in outdoor scenarios. In particular, an
indoor object is detected only when it enters the activation range of a positioning
device, e.g., an RFID reader or a Bluetooth base station. Depending on the de-
ployment of devices, such detections occur more or less frequently. As a result, the
indoor positioning technologies create much more uncertain tracking data in indoor
spaces when compared to outdoor settings. Figure 7.1(b) shows a possible position-
ing device deployment, where the numbered circles indicate the positioning devices
and their activation ranges.

Some examples of TDW queries that could be interesting to answer in this sce-
nario are “At which floor of the building is there the largest number of people leaving
at the same time?”, or “Which are the most crossed doors of the building during a
fire evacuation drill? Is there any bottleneck in evacuation paths?”.

Two examples of this application scenario are the study of movement of people
with a Bluetooth enabled mobile device moving inside an airport [38] and the study
of the behaviour of the customers of a city mall. But also an apparently different
scenario, such as the analysis of the movement of luggages with RFID tags inside
an airport logistic infrastructure, is likely to have similar requirements.

floor

building

Figure 7.2: An examples of spatial hierarchies for indoor setting

We believe that the TDW model we presented in this thesis could be easily in-
stantiated in order to model also this kind of scenario. In particular, Figure 7.2
shows an example of a hierarchy related to an indoor environment. The example
considers the analysis of the behaviour of customers in a shopping mall. We sup-
pose that after some preprocessing of the list of tracking devices (Bluetooth base
stations, WiFi hotspots, ...) spotting a specific phone we are able to decide that
the corresponding user is inside a specific area. These areas are the base granules
of the spatial hierarchy. Each area could be contained either into a corridor or a
room. Rooms may be part of a shop (or service rooms otherwise). Finally, corridors,
rooms and shops are located into a building floor. Moreover, the measures crosses
and visits can be used to answer queries like the one used in the example above.

A second promising line of research concerns the definition of complex measures
obtained by a data mining process. A preliminary work on this can be found in [46].
In this work we are interested in extracting frequent patterns consisting of sets of
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spatial regions, frequently visited by a large number of trajectories. To define the
relevant spatial regions, the concept of region of interest (ROI) is introduced. A ROI
is an area to be considered as important for some reasons related to the observed
phenomena. ROIs can be both calculated on the data by some defined algorithm, or
given by the user as areas considered of any interest to him/her, or for the observed
scenario.

Now we can define a frequent set of ROIs (FSROIs) as a collection of ROI which
are visited together, even if in different order, by a large number of trajectories.
These patterns are obtained by a data mining process on trajectories and adequate
aggregate functions are designed to roll-up the frequent patterns stored in the base
cells of the data cube.

rrrrrr

(a) Sunday

Figure 7.3: FSROIs extracted from Milan dataset

In Figure 7.3 is reported an example of FSROIs extracted on the spatial domain
of the Milan dataset (Section 6.1) for Sunday and Tuesday. The patterns have
different colours depending on the number of ROIs they contain. First, one can
observe that during the Sunday only short pieces of the external ring roads are used
whereas in the Tuesday entire ring is intensively crossed. However, there are not
patterns which cover long segments of the ring.

It is worth noting that the TDW model used in [46] could handle only regular
grids as partitions for the spatial dimensions. This allows for an easier definition of
ROIs. Using the model proposed in this thesis, base granules can be of any shape
and dimension. Figure 7.4 shows an example patterns built by using as ROIs all the
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Figure 7.4: Patterns calculated starting from the road segments for each base cell

segments of the base granularity. As one can note, the visualization of such a measure
is not straightforward, since the amount of information to visualize is usually huge,
with lots of overlapping part. Hence, this research needs further developments, both
in the definition of the ROIs and in the visualization of the results.
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