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1 Introduction

Mitigating climate change requires an unprecedented technological transition to carbon-
free productive processes (IPCC, 2023). However, despite rapid recent advancement in
certain fields - e.g. electricity generation from renewable sources - technological alter-
natives are often still not competitive with carbon-intensive incumbents, especially in
the so-called ‘hard-to-abate’ sectors, like steel, cement, chemicals, aviation, and shipping
(IEA, 2022b, IPCC, 2022). Similarly, technologies capable of capturing greenhouse gases
- either at the source or directly from the atmosphere - are still at the pilot stage (Wang
et al., 2021, IEA, 2022a).

A large-scale innovation effort is thus needed to develop the technologies capable of
replacing polluting incumbents. The role of innovation in the transition to a sustainable
economy has been thoroughly studied in recent decades (Popp, 2019, Grubb et al., 2021).
Innovation in itself is subject to a market failure stemming from the public good nature
of knowledge - i.e. innovators are not fully able to reap the benefits of their inventions. In
the case of ‘clean’ innovation, a second market failure emerging from the environmental
externality must be added, as individuals do not fully internalise the net social benefits
of using technologies that reduce emissions (Popp, 2010, Dietz and Stern, 2015, Howell,
2017). The canonical answer of economic theory to these issues is to introduce policies
able to correct market failures. More precisely, the seminal work by Acemoglu et al.
(2012), as well as the subsequent literature on clean directed technical change (e.g. Ace-
moglu et al., 2016, Greaker et al., 2018, Hart, 2019, Lemoine, 2022), identifies two key
policy interventions to achieve an optimal low-carbon transition: i) a rising carbon tax
to internalise the climate externality; and ii) a generous but temporary clean research
subsidy, which helps direct a higher share of research efforts towards clean technological
development.

So far, however, the modelling literature on the topic has typically abstracted from
a crucial dimension of innovation: access to finance. Indeed, access to finance is one of
the major barriers to firms’ innovative activity (e.g. Hall and Lerner, 2010, Brown et al.,
2012, Hottenrott and Peters, 2012, Kerr and Nanda, 2015). Firms with little experience,
in emerging sectors, or requiring more upfront capital, are found to be particularly finan-
cially constrained (Howell, 2017). It is not surprising then that access to finance for inno-
vative activities is particularly problematic for clean sectors. First, innovative clean firms
tend to be rather small and lack long-standing relationships with banks, which renders
securing debt financing more difficult (Noailly and Smeets, 2015). Second, it is costlier
for investors to run risk assessments and due diligence processes for novel and immature
technologies, for which performance data is scarcely available and standardised invest-
ment structures, frame contracts, and partner networks are lacking (Egli et al., 2018).
Third, there is evidence of lenders’ technological conservatism, whereby financial institu-
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tions deter lending for new technologies when their information on the existing technology
is not transferable (Minetti, 2011). Finally, clean innovations are characterised by higher
technical risks, longer payback periods, and more uncertainty on the appropriability of
private rents, all characteristics that increase the probability of experiencing barriers to
access financing (Ghisetti et al., 2017). Combining the above mechanisms, financing costs
have two key implications: they increase the risk of developing clean technologies, and
they demand additional economic costs, such as risk assessments, to mitigate these risks.

While financing clean innovation can be harder than other technologies, access con-
ditions to external finance can improve via learning and experience effects. Learning and
experience curves have been observed in several productive sectors, including clean tech-
nology ones, with a general interpretation that costs decline as cumulative production
increases (e.g. Boston Consulting Group, 1970, Yelle, 1979, Weiss et al., 2010, Rubin et al.,
2015). A similar ‘learning-by-lending’ effect has been investigated for financing activities,
where lenders are able to offer more and better directed funding as their knowledge of
firms and industries improves (Botsch and Vanasco, 2019, Degryse et al., 2022, Jiang and
Li, 2022). There is also empirical evidence of an experience effect among debt providers
in the specific case of renewable energy technologies: financing conditions improve as
lenders become acquainted with novel technologies and growing markets trigger the for-
mation of in-house project finance teams specialised in renewable technologies, allowing
for more accurate technology assessments and better due diligence processes (Egli et al.,
2018, Polzin et al., 2021, IRENA, 2023).

Therefore, abstracting from the financial-related dimensions of innovation might lead
to partially incorrect policy conclusions and leave many relevant questions unanswered.
For example, are climate policies sufficient to incentivise lenders to redirect funds towards
innovations in emission-free products and industries? How quickly should emissions be
reduced, given the existence of these financing barriers? And what is the optimal mix of
policies to ensure a low-carbon transition in the presence of financing experience effects?

In this paper, we begin to answer these questions by embedding a financial sector into
an endogenous growth model where innovation can be directed to high-carbon (dirty)
and low-carbon (clean) inputs. In our economy: i) a manufacturing sector produces a
homogeneous final good using clean and dirty intermediate inputs; ii) two (clean and
dirty) intermediate sectors produce the required inputs using labour and a continuum
of machines; iii) two (clean and dirty) research sectors employ scientists to improve the
productivity of machines, with technology spillovers across and within sectors; iv) two
capital good sectors produce (clean and dirty) machines; and v) a financial sector provides
funds to research firms at a cost.

Research firms require external finance to cover the flow mismatch between the pay-
ments to input factors and revenue realisation, and thus enter into contracts with financial
intermediaries. The optimal contract outlines the advancement of funds from the inter-
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mediary to the firm and the payment from the firm back to the intermediary. In the
stochastic innovation process à la Acemoglu et al. (2012), research firms have a positive
probability of failing, in which case they are unable to repay their loan. The financial
sector demands a higher interest rate to clean firms due to greater fundamental risks of
such projects succeeding, and to cover direct economic costs that help to mitigate these
risks. Indeed, while the probability of success of an individual firm is unobservable, an
intermediary can choose to costly asses the project proposed by a research firm, with the
aim of increasing the odds of getting repaid. The assessment, whose cost is increasing
and convex in these odds, can be interpreted as a combination of screening (King and
Levine, 1993), monitoring (Townsend, 1979, Gale and Hellwig, 1985, Williamson, 1986,
Cole et al., 2016), and redeployability potential assessment (Shleifer and Vishny, 1992).
We add a ‘learning-by-lending’ effect through a one-factor experience curve, whereby the
cost of assessment decreases by a constant percentage for each doubling in the cumulative
output of the corresponding technology (Polzin et al., 2021).

We first show that our theoretical model is characterised by an interior equilibrium in
which research and production are pursued in both technologies. In addition to the effects
already outlined by the literature on directed technical change,1 we highlight a novel
financing experience effect. In a given period, this distorts the choices of research firms by
directing research towards the sector for which financing costs are lower. Across periods,
these choices have an intertemporal externality, as financing costs depend on cumulative
output of each technology. Our theoretical results underline that heterogeneous access
conditions to external finance will stifle innovation and thus production in the relatively
novel sector, thus delaying a low-carbon transition unless policy takes account of this
differential financing cost.

To study the dynamic interactions between climate policy, clean innovation, and fi-
nancing costs, we then calibrate and numerically simulate our model, under a constraint
on cumulative emissions compatible with a 2◦C limit in global temperatures. We high-
light three main sets of findings. First, we show that the endogenous financing experience
effect helps the low-carbon transition even without climate policies, since the decrease
in financing costs as cumulative clean output increases redirects some investments away
from the dirty sector. However, this is by no means sufficient in reaching the restricting
climate objectives. In line with Acemoglu et al. (2012), we find that an optimal low-
carbon transition requires a steeply rising carbon tax complemented with generous but
temporary clean research subsidies, which help induce a higher clean research share in
the near term. In our benchmark scenario, the optimal carbon price starts at $201 per

1The literature usually distinguishes: i) a direct productivity effect, which directs innovation to the
relatively more advanced sector; ii) a price effect, which directs innovation towards the more backward
sector commanding a higher price; iii) a market size effect, incentivising innovation in the larger sector
(see e.g. Acemoglu et al., 2012).
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tonne of CO2 in 2025 and later grows at an annual rate between 4% and 5%, while the
optimal clean research subsidy jumps to 0.33% of GDP in 2025, before being phased out
by 2050.

Second, while heterogeneous access to finance poses a substantial threat to the low-
carbon transition as it creates path dependency and stifles innovation in the clean sector,
the endogenous reaction of financing costs to technological evolution enhances the efficacy
of climate policies. Endogenous financing costs decline more rapidly as output becomes
cleaner, winning reluctance of the financial sector and triggering a stronger redirection of
funds to clean technologies, further speeding up the transition in a virtuous decarbonisa-
tion cycle. A key consequence of this link is that it becomes optimal for the policy-maker
to strengthen climate policy ambitions and decrease emissions more rapidly in the near-
term. Our benchmark scenario finds a premium in optimal carbon prices of 22% in 2025
(then decreasing over time towards zero), relative to a case without financing costs (where
the initial optimal carbon tax is $164).

Finally, we find that the optimal policy mix depends on the nature of the financing
experience effect, i.e. on which indicators financial intermediaries build to update their
financing conditions. If the financial sector reacts to relative cumulative sector outputs,
the endogeneity of this experience effect leads to a higher carbon tax, since this is a more
effective instrument at targeting outputs than the clean research subsidy. Conversely, if
the experience effect is linked to research, the policy ambition translates into a higher
initial clean research subsidy (higher by 26%, or 0.1% of GDP). Therefore, the choice of
optimal climate policies will differ across markets, technologies, and geographical areas if
the nature of this experience effect differs, possibly due to different lending environments
and institutions (see for instance Aghion et al., 2022).

We build on and contribute to three main streams of literature. First, we closely
connect to the modelling literature examining clean directed technical change in an en-
dogenous growth setting, originating from Acemoglu et al. (2012). This framework has
been extended in many directions: for example, Acemoglu et al. (2016) provide a micro-
founded quantitative version of the model; Hémous (2016) adds a second country to ex-
amine whether unilateral environmental policies can ensure sustainable growth; Lennox
and Witajewski-Baltvilks (2017) adds slowly depreciating capital; Greaker et al. (2018)
consider long-lasting patents and decreasing returns to research; Fried (2018) and Hart
(2019) introduce technology spillovers across sectors; Wiskich (2021) analyses the pres-
ence of multiple equilibria; Nowzohour (2021) adds adjustment costs; Lemoine (2022)
adds complementarities between innovations and energy resources; and Smulders and
Zhou (2022) add expectations about the future path of innovation. Our main novelty is
that we add a financial sector.

Second, we relate to the literature pointing out the importance of finance for growth.
Among the seminal papers, we are particularly close to King and Levine (1993), where
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financial intermediaries strengthen the rate of technological progress by identifying the
projects that are most likely to succeed, and Greenwood and Jovanovic (1990), where they
enhance growth by funding more promising firms, while producing valuable information
on them. For more recent contributions, see e.g. Buera et al. (2011), Greenwood et al.
(2010), and Cole et al. (2016). Our novelty is to focus on an environmental setting, with
clean and dirty sectors.

Third, we build on the (mostly) empirical literature on clean innovation and financing
constraints. Contributions in this area usually find that environmental innovations face
more hindrances than traditional innovations when it comes to the financing process
(Ghisetti et al., 2017, Howell, 2017, Jensen et al., 2019, Cecere et al., 2020, Noailly
and Smeets, 2021); Olmos et al. (2012) reviews policy instruments to overcome these
challenges. This is in line with the empirical evidence suggesting that access to debt
is more difficult in the case of new and immature technologies than for incumbent and
widely-known technologies - see Lahr and Mina (2021) for a general analysis and Kempa
et al. (2021) for a focus on energy firms.

To the best of our knowledge, only two other articles try to combine these streams of
work, as we do: Pan et al. (2022) and Aghion et al. (2022).2 While these authors also
add financing costs to a model of clean directed technical change, our focus differs from
theirs. Pan et al. (2022) discuss the role of clean innovation in the recovery period after
the COVID-19 pandemic, whereas Aghion et al. (2022) analyses differences in the long-
run rate of patenting of clean technologies between the EU and selected peers and across
EU member states, and how these relates to cross-country differences in venture capital
investments. On the contrary, we are interested in the dynamic interaction between
climate policies and financing conditions for different technologies. As a consequence,
there are many differences in terms of modelling, with the main one being that, while
they consider time-independent and exogenous financing conditions, we endogenise them.

The remainder of this paper is organised as follows. Section 2 formalises the model
and Section 3 describes its balanced growth path. Section 4 presents our calibration
strategy. Section 5 provides numerical analyses and policy experiments. Finally, Section
6 concludes.

2Other authors have tried to investigate the topic using alternative modelling approaches. See for
instance Hoffmann et al. (2017), D’Orazio and Valente (2019), Benmir and Roman (2021), and Haas and
Kempa (2023). Empirically, De Haas and Popov (2023) shows that better functioning stock markets fa-
cilitate the development of cleaner technologies by polluting industries, while also redirecting investments
towards more carbon-efficient sectors.
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2 The Model

We consider an infinite-horizon economy in discrete time. This is inhabited by a
continuum of infinitely-lived households comprising a constant mass L of workers and a
constant mass H of scientists. The economy features several sectors: i) a manufacturing
sector producing a homogeneous good using a clean intermediate input and a dirty inter-
mediate input, ii) two intermediate sectors, producing differentiated intermediate inputs
(one clean and one dirty) using labour and a continuum of machines, iii) two research
sectors producing patents by employing scientists, iv) two machine sectors producing ma-
chines (some clean and some dirty) using the final good and patents, and v) a financial
sector providing funds to research firms. Workers and scientists are free to move across
sectors, with the decision to move only hinging on wage rates.

2.1 Final Good Production

Households consume a unique final good, Yt. This is produced competitively by
a representative firm combining clean and dirty inputs, Yct and Ydt, according to the
following constant elasticity of substitution technology,

Yt =
(
Y

(ε−1)/ε
ct + Y

(ε−1)/ε
dt

)ε/(ε−1)
, (1)

where ε is the elasticity of substitution between the two intermediate inputs. We focus on
the more empirically relevant case in which the two intermediate inputs are substitutes
(see Section 4), as we expect clean technologies to replace dirty technologies.

Assumption 1. The intermediate inputs are (gross) substitutes, i.e. ε > 1.

2.2 Intermediate Inputs Production

The production function for each intermediate input j ∈ {c, d} has constant returns
to scale in labour and a unit mass of sector-specific machines,

Yjt = L1−α
jt

∫ 1

0

A1−α
jit x

α
jit di, ∀j = {c, d}, (2)

where Ljt is labour demand in sector j at time t, α ∈ (0, 1), Ajit is the quality of machine
i ∈ [0, 1] in sector j at time t, and xjit is the quantity demanded of this machine. The
Cobb-Douglas formulation of the production function in (2) leads to the following iso-
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elastic demands for inputs,

Ljt =

(
(1− α) pjt

wjt

∫ 1

0

A1−α
jit x

α
jit di

) 1
α

(3a)

xjit =

(
αpjt
pjit

) 1
1−α

AjitLjt, (3b)

where pjt is the price of the intermediate good Yjt, wjt is the wage in sector j at time
t, and pjit is the price of machine i in sector j at time t. In equilibrium, labour market
clearing requires that Lct + Ldt = L.

The first order conditions of the final good producer imply that the relative demands
for the intermediate inputs are inversely related to their prices,

Yct
Ydt

=

(
pdt
pct

)ε
. (4)

Without loss of generality, we normalise the price of the final good in each period to one,(
p1−εct + p1−εdt

)1/(1−ε) ≡ 1.

While clean intermediate production does not create carbon emission, dirty produc-
tion emits κ units of carbon per intermediate input, i.e. emissions at time t are κYdt.
We normalise cumulative emissions at zero at the beginning of the simulation, so that
cumulative emissions at time t are given by3

St =
t∑

τ=0

κYdτ . (5)

2.3 Production of Machines

Machines are produced by two machine producing sectors, each with a continuum of
firms of mass one. In line with the endogenous growth literature, each machine producer
in a sector acts as a monopolist in the production of its particular machine. In particular,
each of these firms has purchased a patent from a research firm in the corresponding
research sector and can then produce the related machine at marginal cost equal to ψ
units of the final good; the machine is then sold to the intermediate goods producers in
the relevant sector j at price pjit. As common in this literature (e.g. Acemoglu et al.,
2012, Fried, 2018), machines fully depreciate after use.

Formally, the maximisation problem of the producer of machine i in sector j is, once

3We do not incorporate a carbon cycle following insights in atmospheric science (e.g. Allen et al.,
2009, Matthews et al., 2009) arguing that warming is linear in cumulative carbon emissions. This has
already been assimilated in the economics literature, see e.g. van der Ploeg (2018), Dietz and Venmans
(2019), Dietz et al. (2021), van der Ploeg and Rezai (2021), and Comerford and Spiganti (2023).
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acquired a patent,
πjit ≡ max

pjit, xjit
(pjit − ψ)xjit, s.t. (3b). (6)

Without loss of generality, we normalise ψ ≡ α2 (as in Acemoglu et al., 2012, Aghion
et al., 2022). Each machine producer faces the demand xjit in (3b): since the demand is
iso-elastic, the monopoly price is a constant mark-up over the marginal cost, i.e. pjit =

ψ/α = α, thus unique across the economy. Substituting this price into the equilibrium
demand function (3b) shows that the demand for a machine i within sector j and the
subsequent profits of its producer are, respectively,

xjit = (pjt)
1/(1−α)AjitLjt (7a)

πjit = α(1− α) (pjt)
1/(1−α)AjitLjt. (7b)

2.4 The Innovation Process

Following the large literature originated from Romer (1990a,b), there is a continuum
of firms in each research sector aiming to produce knowledge using scientists and existing
knowledge. At the beginning of each period, a research firm is matched randomly with
one machine in the corresponding sector, and can then hire scientists to try innovating,
i.e. to increase the quality of its machine. As in Acemoglu et al. (2012), innovation
is stochastic: a research firm is successful in the innovation process with probability
λj ∈ [0, 1], in which case the quality of the machine increases and the research firm can
sell the patent to a machine producer in the corresponding sector. Conversely, with the
remaining probability 1−λj, the innovation process is unsuccessful and the quality of the
machine does not increase; as in Aghion and Howitt (2009), Acemoglu et al. (2012), and
Aghion et al. (2022), the patent for this machine with the old quality is then allocated
randomly to a research firm drawn from the pool of failed innovators.4

The innovation possibility frontier is given by

Ajit =

Ajt−1
(

1 + γHη
jit

(
At−1

Ajt−1

)φ)
, with probability λj

Ajt−1, with probability 1− λj,
(8)

where Hjit is the number of scientists hired by firm i in sector j at time t, the parameter
0 ≤ η < 1 induces decreasing returns in research (the so-called ‘stepping on toes’ feature,
introduced by Kortum, 1993, Jones, 1995), γ > 0 measures the efficiency with which
new innovations are produced by scientists, Ajt ≡

∫ 1

0
Ajitdi is the average quality of the

4This assumption is taken for simplicity, but Acemoglu et al. (2012) show that the qualitative results
are identical with free entry for old machines.
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machines in sector j at the end of period t, At ≡ Act +Adt is aggregate technology,5 and
0 ≤ φ ≤ 1 determines the strength of the cross-sector spillovers. Let Hjt represent the
total number of scientists employed in sector j: in equilibrium, labour market clearing
for scientists requires that Hct +Hdt = H.

This form of the innovation possibility frontier is quite general and encompasses several
characteristics that may be important for the financing conditions of these technologies.
First, in line with the baseline model by Acemoglu et al. (2012), it allows for the pos-
sibility of failure in the innovation process, thus underlining that innovation is a risky
business. We show below that, in our model, this will additionally mean that financial
intermediaries require a premium internalising the risk of not getting repaid.

Second, there are technology spillovers within a sector after one period, when discov-
eries are observed by other machine producers in the same sector and can be incorporated
into their own innovation processes. This represents the ‘standing on shoulders’ feature
of innovation, which characterises many endogenous growth models (like Acemoglu et al.,
2012, Fried, 2018, in an environmental setting). In our model, this also introduces a
positive externality in terms of financing conditions within sectors: when the level of a
technology increases faster than the competing one, its relative output increases, which
may lead to a change in the relative financing conditions, as explained below.

Finally, there are technology spillovers across different sectors as in Fried (2018) and
Hart (2019), among others. In particular, a relatively backward sector j has a productiv-
ity advantage equal to the catch-up ratio (At−1/Ajt−1)

φ.6 Indeed, it seems reasonable to
assume that some improvements in the technology of one sector may increase the produc-
tivity of innovation in the other sector (see e.g. Barbieri et al., 2023). If these spillovers
are sufficiently strong, then innovation occurs in both sectors along the balanced growth
path, matching empirical evidences on the amount of innovation in both fossil and clean
technologies since at least the 1970s (Fried, 2018). In our setting, this means that both
technologies require access to finance at the same time along the balanced growth path;
still, financing conditions may be different across different sectors.

2.5 The Financial Contract

In each period, there are several intermediaries in a competitive financial sector, each
owned equally by all agents. Each intermediary has access to international capital markets

5The qualitative results are unaffected as long as the economy technology frontier is a linearly homo-
geneous function of the knowledge in the two intermediate sectors.

6If φ = 0, there are no cross-sector spillovers, there is full path dependence, and in equilibrium
innovation occurs in only one sector if ε > 1; if φ = 1 there is no path dependence, and a stable balanced
growth path equilibrium exists in which innovation occurs in both sectors. In general, see Acemoglu
(2002), Hart (2013), and Fried (2018) for the relationship between the stability of the interior balanced
growth path and the strength of the cross-sector spillovers.
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and enters into financial contracts with research firms to provide funds; without loss of
generality, we normalise the cost of raising funds for financial intermediaries to zero. A
financial contract lasts one period and specifies the amount of funds that the intermediary
will lend to the research firm and the unit repayment 1 + rjit that the firm will make to
the intermediary. The repayment is contingent on the outcome of the innovation process,
which is publicly observable. Research firms are protected by limited liability, which
means that the debt of an unsuccessful firm is never repaid.

To introduce heterogeneous financing costs into the model, we follow the basic idea
that working capital is required to cover the flow mismatch between the payments to the
factors of production made at the beginning of the period and the realisation of revenues
at the end of the period (Mendoza, 2010, Jermann and Quadrini, 2012). For this reason,
research firms need intra-period loans from financial intermediaries, with the expected
revenues serving as collateral for the credit.

Moreover, we follow King and Levine (1993) and suppose that, in addition to the
research firms presented in the previous subsection, there are some other firms seeking
to finance innovative projects that are in fact not feasible under any circumstances.7 In
particular, let 1− θjt be the probability that a borrower in sector j coming to a financial
intermediary has an infeasible project; with the remaining probability θjt, the borrower
is a research firm capable of carrying an innovative project, on which it will succeed with
probability λj.

The main friction in the financial sector is that the feasibility of a project is un-
observable by financial intermediaries. However, this friction weakens as the financial
sector accumulates experience with a particular technology. First, the financial sector
as a whole ‘learns-by-lending’ about how to discriminate between feasible and unfeasible
projects in a given research sector (similarly to Botsch and Vanasco, 2019, Degryse et al.,
2022, Jiang and Li, 2022). To model this, let νjt ∈ [0, 1] indicate financing experience,
a continuous, differentiable, and weakly increasing function of the cumulative output of
the corresponding intermediate input.8 Then, we assume θjt to be a continuous, differen-
tiable, and weakly increasing function of financing experience. In other words, the more
prominent is a technology in production, the more financing this technology receives, and
thus the more information is spread throughout the financial sector on how to discern a
feasible project within this technology class.

Second, financial intermediaries can decide to embark on costly activities to better

7This is for ease of exposition, but results are the same if research firms have some probability of
drawing infeasible projects.

8To ensure the stability of the balanced growth path, the limit of the first derivative of this function
is zero as cumulative output approaches infinity. Whereas theoretical results are unchanged if experience
depends on cumulative sectoral output, research, productivity, labour, or loans, quantitative results may
differ: in Section 5.3, we compare simulations where these effects depend on cumulative output versus
research.
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understand the feasibility and promises of a project before agreeing on a financial con-
tact, like running risk assessments, due diligence processes, and creating in-house project
finance teams specialised in a given technology (Egli et al., 2018, Polzin et al., 2021).
To model this, we follow Cole et al. (2016), where an intermediary can decide to run a
costly assessment that results in the odds µjit of financing a feasible project. The cost of
assessment is formalised as follows.

Assumption 2. For each unit lent to firm i in sector j at time t, the cost of assessment is
c(µjit, νjt), with i) cµ(µjit, νjt) ≥ 0 and cµµ(µjit, νjt) ≥ 0; ii) when µjit ≤ θjt, c(θjt, νjt) = 0

and cµ(θjt, νjt) ≤ 1/θj; iii) as µjit → 1, both c(µjit, νjt)→∞ and cµ(µjit, νjt)→∞; and
iv) cν(µjit, νjt) ≤ 0.

The cost function has four desirable properties. First, it is increasing and convex in
the odds µjit, as usual in this literature. Second, the intermediary can decide not to run
the assessment, and this costs nothing; if it then decides to start the assessment, the
marginal cost is initially low. Third, full assessment is prohibitively costly, as total and
marginal costs tend to infinity as odds tend to one. Fourth, the cost is decreasing in
financing experience. In other words, when the financial sector is faced with a technology
which it has never financed before, the cost faced by intermediaries is high; however, as
this technology is financed and thus used in production, the financial sector accumulates
experience with it, allowing intermediaries to investigate a project’s quality at a lower
cost.

Because there are several competitive intermediaries seeking to lend to each research
firm, the optimal financial contract will maximise the expected payoff of the research firm,
subject to an expected non-negative profit constraint for the intermediary, and taking as
given current financing experience and technology levels. As a consequence, the contract
problem between a research firm and an intermediary is

Πjit = max
Hjit,rjit,µjit

λj
[
πjit − wsjitHjit (1 + rjit)

]
, (9a)

s.t. (7b) and (8) (9b)

πjit − wsjitHjit (1 + rjit) ≥ 0, (9c)

[µjitλj (1 + rjit)− c(µjit, νjt)− 1]Hjitw
s
jit ≥ 0, (9d)

where the objective function Πjit represents the research firm’s expected profits, which is
simply the expected value of the monopoly profits from selling the patent for the produc-
tion of the new machine λjπjit,9 net of the expected repayment of principal and interest to

9Note that, from the point of view of a machine producer, the decision to undertake the production
of a machine is taken comparing profits in (7b) to the cost of the initial investment in acquiring a patent
from the research sector. With this knowledge, each patent holder sets the price of patent i in sector j
at time t equal to the profits of the matched machine producer, πjit.
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the intermediary λjwsjitHjit(1 + rjit). Constraint (9b) reports the profits of the machine
producers and the evolution of machine quality. Equation (9c) is the limited liability
constraint for the research firm, specifying that the intermediary cannot take more than
what the firm obtains in case of success. Finally, equation (9d) is the participation con-
straint of the intermediary, stipulating that it expects to earn non-negative profits from
the financial contract, given the expected repayment, the cost of assessment, and the
need to raise funds.

The solution to this maximisation problem is a triplet of policy functions specifying
the number of scientists hired Hjit (and thus the size of the loan), the unit repayment
requested by the intermediary 1 + rjit, and the odds from the assessment µjit; these
will be functions of prices, the states of the technologies, and financing experience. In
equilibrium, Hjit = Hjt, rjit = rjt, and µjit = µjt ∀i since research firms in the same
sector are ex-ante homogeneous; similarly, wsjit = wsjt ∀i, since scientists are free to move
across firms. Moreover, competition drives financing costs down, and the financial sector
breaks-even in equilibrium. Our first result ensues.

Proposition 1. The financing cost rjt of technology j in period t is inversely related
to the amount of financing experience νjt accumulated by the financial sector with that
technology.

Proof. See Appendix A.1.

2.6 Households

The representative household is inhabited by a unit mass of machine producers and
research firms in each sector, L workers, and H scientists. It maximises the following
instantaneous iso-elastic utility function,

∞∑
t=0

[
1

(1 + ρ)t

(
C1−σ
t − 1

1− σ

)]
, (10)

where Ct is household consumption at time t, ρ > 0 is the discount rate, and 1/σ > 0

measures the willingness to substitute intertemporally. The budget constraint is

Ct = wctLct + wdtLdt + wsctHct + wsdtHdt + πct + πdt. (11)

As common in the directed technological change literature since e.g. Acemoglu (2002),
households consume their entire income.

At the aggregate level, the final good can be used for consumption, machine produc-
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tion, or to pay the financing costs. Therefore, the aggregate resource constraint is

Yt = Ct + ψ

∫ 1

0

(xcit + xdit) di+ c (µct, νct)w
s
ctHct + c (µdt, νdt)w

s
dtHdt. (12)

3 The Equilibrium

In this section, we characterise the decentralised equilibrium of the model without any
policy intervention (proofs are formally given in Appendix A.1) and then discuss external-
ities that can be corrected with policy. An equilibrium is defined by time paths of wages
[wct, wdt, w

s
ct, w

s
dt]
∞
t=0, prices for inputs [pct, pdt]

∞
t=0, prices for each machine [pcit, pdit]

∞
t=0,

prices of patents [πcit, πdit]
∞
t=0, financing costs [rct, rdt]

∞
t=0, assessment odds [µct, µdt]

∞
t=0,

financing experiences [νct, νdt]
∞
t=0, intermediate inputs production [Yct, Ydt]

∞
t=0, labour al-

locations [Lct, Ldt, Hct, Hdt]
∞
t=0, quantities of each machines [xct, xdt]

∞
t=0, and cumulative

carbon emissions [St]
∞
t=0, such that, in each period t, final good producers, interme-

diate good producers, machine producers, research firms, and financial intermediaries
choose, respectively, (Yct, Ydt), (Lct, Ldt, xct, xdt), (xct, xdt, pcit, pdit), (Hct, Hdt, πcit, πdit),
and (µct, µdt, rct, rdt) to maximise profits, the evolution of wages (wct, wdt, w

s
ct, w

s
dt) and

prices (pct, pdt, pcit, pdit, πcit, πdit) is consistent with market clearing, and the evolution of
St is given by (5). In particular, we focus on a balanced growth path, i.e. an equilibrium
in which aggregate output and consumption grow at the same constant rate as aggregate
technology, g ≡ (At+1 − At)/At for all t.

If the labour markets are characterised by a stable allocation of workers and scientists
across sectors, then it is clear from the technology possibility frontier in (8) that there are
two possible types of balanced growth path: a corner solution in which all the scientists
are employed in one sector, whose technology grows at a constant rate whereas the other
stagnates, and a stable interior path in which scientists are employed in both sectors and
the ratio of dirty to clean technology is constant. To solve the model for these balanced
growth paths, it is therefore necessary to determine if stable equilibrium allocations in
the labour markets exist, which is the focus of the next subsections.

3.1 The Equilibrium Allocation of Workers

Combining the demand functions in (3), the equilibrium wage rate of a worker in
sector j can be expressed as wjt = (1− α)Ajtp

1/(1−α)
jt . Since workers are free to move

across sectors, in equilibrium they must receive the same compensation in the two sectors,
i.e. wdt = wct ≡ wt. This implies

pdt
pct

=

(
Adt
Act

)−(1−α)
, (13)
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which formalises the natural ideas that the input produced with more productive machines
will be relatively cheaper.

Inserting the equilibrium demand function for machines in (7a) into the intermediate
input production function in (2) leads to Yjt = Ljtp

α/(1−α)
jt Ajt. Therefore, the relative

production of intermediate goods is

Ydt
Yct

=
Ldt
Lct

(
pdt
pct

)α/(1−α)
Adt
Act

. (14)

Combining (4), (13), and (14) leads to the following relationship between the equilibrium
ratio of labour demands from the two sectors and the relative productivity,

Ldt
Lct

=

(
Adt
Act

)−ϕ
, (15)

where ϕ ≡ (1 − α)(1 − ε) < 0 since the intermediate goods are gross substitutes by
assumption.

Together, the equilibrium ratios (13), (14), and (15) suggest that, if the ratios of
the productivities of the technologies are constant, the amounts of intermediate inputs
produced and workers’ wage must grow at the same rate across sectors; conversely, labour
demands and the prices of the intermediate inputs are constant.

3.2 The Equilibrium Allocation of Scientists

Scientists are also free to move across sectors, and thus in equilibrium wsdt = wsct ≡ wst .
The following relative equilibrium allocation of scientists ensues

Hdt

Hct

=

[(
Adt−1
Act−1

)1−φ(
pdt
pct

) 1
1−α
(
Ldt
Lct

)(
1 + rct
1 + rdt

)] 1
1−η

. (16)

Equation (16) summarises the three forces that commonly shape the incentives to innovate
in the directed technological change literature: i) the direct productivity effect, captured
by the term (Adt−1/Act−1)

1−φ, which directs innovation to the relatively more advanced
sector, ii) the price effect, captured by the term (pdt/pct)

1/(1−α), which directs innovation
towards the more backward sector commanding a higher price, and iii) the market size
effect, captured by the term Ldt/Lct, incentivising innovation in the sector with the largest
market for machines.

In our model, there is an additional financing experience effect, captured by the term
(1+rct)/(1+rdt), that directs innovation towards the sector with the lower cost of external
finance (an effect also stressed in the contemporaneuos paper by Aghion et al., 2022). In
our equilibrium, this comprises of two terms. The first, [1 + c (µct, νct)] / [1 + c (µdt, νdt)],
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captures the direction of scientists towards the sector with e.g. lower auditing, monitoring,
and screening costs, with more advanced risk assessments and due diligence processes,
more standardised contracts and investment structures, or with intangible assets more
easily valued. The second term, (µdtλd) / (µctλc), directly depends on the default prob-
abilities of the two research sectors and thus redirects scientists towards the safer, less
likely to fail, sector. This effect has a direct link to productivity, as (given a fixed number
of scientists) a lower chance of success reduces the aggregate increase in that technology.

If technologies grow at the same rate and the relative financing conditions are stable,
these effects are constant over time, and so is the allocation of scientists across sectors,
whereas a scientist’s wage grows at the same rate across sectors. Ceteris paribus, the
relative allocation of scientists depends on the strength of the cross-sector spillovers, φ:
if these are relatively weak, the economy converges to a corner solution in which all
innovation occurs in the initially more advanced sector, whereas the other stagnates; if
they are relatively strong, then there exists a stable interior balanced growth path in
which scientists are employed in both research sectors.10 We focus on the latter, which
we consider more realistic and more interesting, by means of the following assumption.

Assumption 3. The cross-sector spillovers φ are strong enough to ensure a stable inte-
rior balanced growth path.

An interested reader can find analytical expressions for the relative share of scientists
across sectors and the required strength of the cross-sector spillovers in Appendix A.1.

3.3 The Balanced Growth Path and Policies

In the long-run, the system is characterised by a constant allocation of workers and
scientists across sectors. Since such a constant allocation exists, the economy exhibits a
stable balanced growth path where innovation is pursued in both sectors under Assump-
tions 1, 2, and 3.

Proposition 2. The economy exhibits a globally stable balanced growth path equilibrium
in which final output, intermediate inputs, consumption, aggregate technology, technology
in each sector, and wages grow at the same constant rate. Along the balanced growth path,
the price of a patent, the price of each intermediate input, the price of the final good, the
financing costs and experiences, and the labour and scientists allocations across sectors
are constant.

Proof. See Appendix A.1.

10See Acemoglu (2002, 2015), Hart (2013), and Fried (2018) for a deeper discussion on the role played
by the strength of cross-sector technology spillovers for the stability of an interior long-run balanced
growth path.
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Note that the equilibrium of this laissez-faire economy is not socially optimal. In
Section 5, we present simulations where a combination of subsidies to the provision of
machines, a carbon tax, and clean research subsidies are implemented to correct the
market failures of the laissez-faire equilibrium and thus decentralise the optimal allocation
of resources (following e.g. Acemoglu et al., 2012, Greaker et al., 2018).

First, the laissez-faire equilibrium suffers from under-utilisation of machines due to
monopoly pricing that is corrected with a subsidy to the use of machines equal to 1− α
(see e.g. Acemoglu, 2009, Chapter 15), so that intermediate good production is increased
by a factor α−α/(1−α). However, the subsidy is symmetric across sectors, and thus it does
not change the relative production of intermediate goods in (14); as a consequence, this
market failure is not a focus of this paper and we assume it is corrected with this subsidy
in all our simulations.

Second, there is an environmental externality to the production of the dirty interme-
diate input that can be corrected by introducing a carbon tax τt on the use of this input
in the production of the final good, so that the price of the dirty intermediate input
including the tax becomes pdt + τt. This changes the relative prices according to (13)
and disincentives research in and production of dirty machines as pointed out in (16),
similarly to e.g. Acemoglu et al. (2012) and Fried (2018).

Third, the knowledge externality in the technology frontier can be corrected by a
research subsidy that rewards innovation in the research sector with the higher social gain.
Here, a subsidy st would increase profits Πcit in the clean research sector to (1 + st)Πcit,
while leaving profits in the dirty sector unchanged, thus redirecting innovation towards
the clean sector (as in Acemoglu et al., 2012).11

In our model, there are also financing costs that distort choices by research firms.
These costs are potentially asymmetric, and thus may also change the direction of research
relative to the socially optimal allocation. Moreover, inefficient choices of research have an
intertemporal externality through these financing costs, which depend on the evolution of
each technology. There are various policies that could target this inefficiency, but below
we choose to focus solely on the role of carbon taxes and research subsidies. Indeed,
as Aghion et al. (2022) also argue, these two instruments clearly fall in the realm of
government policies, whereas climate actions by central banks might face obstacles from
both a legal and an economic perspective (Campiglio et al., 2018, NGFS, 2021).

11In the absence of a climate constraint, the social planner will always choose a zero carbon tax but
will use a research subsidy to direct research either towards dominance of one technology if spillovers
are low, or towards an interior solution if spillovers are high. Our choice of spillover parameter is made
to ensure our scenario without financing costs starts on an interior balanced growth path, which then
implies the latter.
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Table 1: Parameter Values

Description Parameter Value Source

Annual discount rate ρ 1.5 Nordhaus (2017)
Relative risk aversion σ 1.5 Nordhaus (2017)
Elasticity of substitution ε 3 Acemoglu et al. (2012)
Machines share α 1/3 Capital’s share
Number of workers L 1 Normalisation
Initial global GDP Y0 US$85 trillion World Bank
Initial clean energy share Yc0/(Yd0 + Yc0) 20% EIA (2021)
Initial cumulative clean energy Y cumc0 2Yc0 Normalisation

Number of scientists H 1 Normalisation
Scientist efficiency γ 1 Acemoglu et al. (2012)
Scientist long-run chance of success λd = λc 2% Acemoglu et al. (2012)
Returns in research η 0.7 Greaker et al. (2018)
Cross-sector spillovers φ 0.933 Normalisation

2020 carbon emissions (GtCO2) Yd0, S0 37 Climate Watch (2022)
Emission Intensity κ 1 Normalisation
Cumulative emissions limit (GtCO2) S̄ 1350 IPCC (2021)

Clean financing experience νc0 92.97% Ameli et al. (2021)
Dirty financing experience νd 100% Normalisation
Experience parameter ω 1.32 Ameli et al. (2021)

4 Calibration

In this section, we discuss our calibration strategy. Calibrated parameters are in Table
1. Robustness checks are provided in Appendix A.2. Our initial period is calibrated to
2020, and our simulations run for 40 periods, with each period representing five years.
The full span of our simulations thus goes from 2025 to 2220, although we will limit
our analysis to the end of the century. The discount rate is 1.5% per annum, consistent
with Acemoglu et al. (2012) and Nordhaus (2017).12 The constant relative risk aversion
parameter is taken to be σ = 1.5, close to the value of 1.45 assumed in Nordhaus (2017)
and the value of 2 that is commonly found in the empirical literature (see e.g. Kaplow,
2005). We take α = 1/3, so that the share of machines in production is approximately
equal to the share of capital. We set the elasticity of substitution between clean and dirty
inputs to ε = 3.13

12Whereas Acemoglu et al. (2012) also consider a low value of 0.1%, here the discount rate does not
control the extent of action on climate, as we assume cumulative emissions are constrained to keep
warming to below 2◦C.

13Elasticities used in integrated assessment and macroeconomic models have ranged between 1 and 10.
For example, Acemoglu et al. (2012) provide simulations for elasticities equal to 3 and 10, Golosov et al.
(2014) set it to approximately 1, Hart (2019) to 4, Greaker et al. (2018) use both 1.5 and 3, and Lemoine
(2022) uses 1.8. Most empirical estimates range between 0.5 and 3 (e.g. Stern, 2012, Papageorgiou et al.,
2017), although higher substitutability has been found in the electricity sector (Stöckl and Zerrahn, 2020,
Wiskich, 2021). In Section A.2, we provide results with a lower elasticity.
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Patents last one period, as in many directed technological change models (e.g. Ace-
moglu et al., 2012, Fried, 2018). Fried (2018) also argues that five years (i.e. the length
of our time step) is a reasonable time span for the occurrence of within-sector spillovers
in clean and fossil technologies. We set the diminishing returns to research parameter
to η = 0.7, close to the values of 0.7 and 0.79 used in Greaker et al. (2018) and Fried
(2018), respectively. The strength of the cross-sector spillovers is set such that the econ-
omy starts from the interior balanced growth path in our symmetric scenario (discussed
below), i.e. φ = −(1−α)(1− ε)η which equals 0.933 given the parameter values in Table
1.14 We set a research firm’s probability of success in both sectors and in each period
to λc = λd = 2% and calibrate the efficiency parameter γ so that the long-run annual
growth rate is equal to 2% under a low-carbon transition (as in Acemoglu et al., 2012),
i.e. as clean output and research shares approach 100%. Without loss of generality, we
normalise the number of workers and scientists each to unity, i.e. L = H = 1.15

The initial relative level of the two technologies, Ad0/Ac0, is determined by the initial
ratio of the dirty and clean inputs used in the final good sector, Yd0/Yc0. Here, we set
an initial clean share of intermediate production equal to 20%, since fossil fuels represent
around 79% of energy generation in the US (EIA, 2021, Table 1.1) and 82% in the world
(BP, 2022); for comparison, Acemoglu et al. (2012) assume clean energy initially makes
up 18% of total energy, whereas Hart (2019) assumes an initial clean share of 5%. The
initial share of research in clean technology, 20% in our benchmark scenario, also follows
from our assumptions of the initial output ratio and clean financing costs.16 Total output
Y0 is set to the 2020 global GDP using data from the World Bank (2023).

We normalise the emission intensity parameter to κ = 1. Global CO2 emissions were
approximately 37GtCO2 in the latest available year of 2019 (Climate Watch, 2022), which
we use to calibrate initial dirty intermediate production Yd0 and thus initial cumulative
emissions S0. In our policy experiments below, we apply a constraint on future cumulative
CO2 emissions equal to 1350GtCO2, which is the estimated remaining carbon budget
calculated from the beginning of 2020 to achieve a warming of 2◦C with a 50% probability
(IPCC, 2021, Table 5.8).17

14The equation fixing spillovers φ follows easily from (A.20). Our spillover parameter of 0.933 is high
relative to the value of 0.5 used by Fried (2018), but we also consider results with a low elasticity of
ε = 1.5 in Section A.2 in which our spillover parameter is reduced to 0.233.

15An alternative approach would be to calibrate the number of scientists to e.g. the percent of workers
engaged in R&D in the US, as in Fried (2018). Our normalisation is without loss of generality, as this
change would be completely compensated by a change in the efficiency parameter γ.

16For comparison, Acemoglu et al. (2016) reports a share of innovative firms in the US energy-sector
classified as clean of 11%, and a share of energy-sector patents classified as clean energy of 14%; Aghion
et al. (2016), who focus on automotive patents taken out in the patent offices in the US, Europe, and
Japan, classify 25.6% of them as clean.

17As in Ameli et al. (2021), we choose to focus on the 2◦C target, rather than the 1.5◦C one, because
of its low reliance on negative emissions technologies, around which there is still large uncertainty.
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We parametrize the intermediary’s probability of drawing an infeasible project to
θjt = 1− (1− νjt) exp(νjt) and, incorporating this, the cost function for assessment to

c(µjt, νjt) =
1− νjt
νjt

[
1− 1

νjt
ln

(
1− µjt
1− νjt

)]
. (17)

These functional forms respect Assumption 2, while also delivering equilibrium outcomes
which are analytically simple: the resulting optimal assessment odds, assessment costs,
and financing costs are µjt = νjt, c (µjt, νjt) = (1− νjt) /νjt, and 1 + rjt = (ν2jtλj)

−1,
respectively.

As dirty technologies are already mature, we abstract from learning in their financing
by keeping νd = 100%.18 We set νc0 = 92.97%, which means that the initial gap in the
financing costs for clean innovative projects is 15.7% (Ameli et al., 2021).19 Following
Rubin et al. (2015), Egli et al. (2018), and Polzin et al. (2021), we calibrate the evolution of
clean financing experience νct as to impose a ‘one-factor experience curve’ where financing
costs decrease by a constant percentage for each doubling in the cumulative output of
clean technologies, i.e.

1

ν2ct
− 1 =

(
1

ν2c0
− 1

)(
Y cumc0

Y cumc0 +
∑t

τ=1 Ycτ

)ω
, (18)

where, for simplicity and ease of comparison, we impose cumulative output at the start of
the simulation to equal twice the output value in 2020. We let the experience parameter
ω = 1.32 (i.e. the relative financing costs of clean to dirty technology decreases by 1 −
2−ω ≈ 60% for each doubling of clean cumulative output) so that the clean financing

18This also means that we do not consider the possibility that financing costs for dirty technologies
will increase under a clean transition, reflecting e.g. asset stranding risks.

19The financing of environmental innovation is a pressing concern for businesses and policy makers.
The economic literature on the topic is growing and generally finds that firms conducting environmental
innovations are more likely to be financially constrained (see Section 1). To the best of our knowledge,
an empirical quantification of the wedge in financing costs for innovators across technologies is missing.
There are, however, data for the cost of capital in electricity generation and for the costs of debt of
renewable energy and non-renewable energy firms. For example, Polzin et al. (2021) provide weighted
average cost of capital (WACC) for all electricity production technologies and all EU countries showing
that there is a large heterogeneity across countries, but that gas plants (cf. wind) tend to have the lower
(cf. higher) WACC. Ameli et al. (2021) calculate mean global values for WACCs, weighted by GDP, of
5.9% and 5.1% for low-carbon and high-carbon electricity generation, respectively, i.e. a 15.7% financing
cost gap.
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Table 2: Scenario overview

Scenario Carbon budget Heterogeneous costs Endogenous experience

Benchmark X X X(output)
Laissez-faire 7 X X(output)
Symmetric X 7 7

Exogenous X X 7

Research X X X(research)

costs gap basically disappear by 2050 as in Ameli et al. (2021).20

5 Policy Experiments

In this section, we present a numerical analysis that builds on the calibration of our
theoretical model and underlines the interactions between climate policy, innovation, and
financing costs. We first show our benchmark model, which includes optimal climate
policy and endogenous financing experience effect for the clean technology. As explained
in Section 3.3, optimal policy is the combination of a carbon tax and a clean research
subsidy, maximising households’ lifetime utility while keeping cumulative emissions below
the exogenous limit. The endogenous experience effect is modelled through clean financ-
ing costs which fall over time with cumulative clean output according to the experience
curve in (18).

In the first subsection, we compare this scenario with a laissez-faire economy, i.e. an
economy with no climate policy but with the endogenous experience effect, with the aim
of drawing out the consequences of policy. The second subsection describes how this
experience effect changes policy and the low-carbon transition path: thus, we compare
our benchmark model with a symmetric scenario, i.e. with optimal policy but without
(heterogeneous) financing costs, and an exogenous scenario, i.e. with optimal policy but
an exogenous experience curve. The third subsection shows that the optimal policy mix
is substantially different in a research scenario where the experience effect depends on
cumulative clean research (rather than cumulative clean output). Table 2 summarises
the characteristics of the scenarios we look at. Robustness checks are in Appendix A.2.

20Egli et al. (2018, Supplementary Table 7) provide estimate for this experience effect across countries
and technologies, with values ranging from 10% to 16% for clean investments. However, their estimates
represent absolute changes in the WACC for these technologies, whereas our parameter captures a relative
change in the cost of external finance with respect to dirty investments. Although 60% may seem high,
it leads to clean financing costs falling to low levels (1.4%) by 2040 in our benchmark scenario, when
clean output overtakes dirty, which seems reasonable in principle and is in line with Ameli et al. (2021).
Note that Ameli et al. (2021) also consider a scenario with slower learning, where the clean financing
cost gap disappears only by 2100: we consider this as a sensitivity in Appendix A.2.
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5.1 Benchmark and Laissez-Faire Scenarios

Figure 1 reports the optimal paths for a set of key variables for the benchmark (solid
line) and laissez-faire (dashed line) scenarios: 1a) GtCO2 emissions, κYdt; 1b) the carbon
tax, τt; 1c) the share of scientists working on clean technologies, Hct/H; 1d) positive
clean subsidies as a share of GDP, st

∫ 1

0
Πcitdi/Yt; 1e) clean output share, Yct/(Yct + Ydt);

1f) the proportional clean financing cost gap, (rct− rd)/(1 + rd) or equivalently 1/ν2ct− 1.
By construction, the two scenarios start from the same point, broadly calibrated to

the world economy in 2020. The benchmark is then shocked by policy starting from 2025,
whereas the laissez-faire is undisturbed.21 Optimal policy results are qualitatively in line
with the the initial contribution by Acemoglu et al. (2012), with both a carbon tax and
clean research subsidy needed. The carbon tax, shown in Panel 1b, starts at $201 in 2025,
grows slowly initially, before accelerating to grow at the social discount rate.22 The clean
research subsidy in Panel 1d jumps to 0.33% of GDP in the first period, before dropping
progressively to zero by 2050. Under optimal policy, the clean research share (Panel 1c)
rises from 23% in 2020 to 71% in 2025 and continues to climb, reaching 89% in 2050
and 98% in 2100, while the share of clean output (Panel 1e) rises more slowly, as clean
technology takes time to advance. Influenced by the acceleration in clean output share,
the clean financing cost gap falls from 15.7% in 2020 to 7.1% in 2025 and 0.6% in 2050,
and then continue to fall (Panel 1f). Panel 1a shows that the combination of policies is
successful in dropping emissions by 36% below 2020 levels in 2050 and by 94% in 2100.

Since the economy is parameterised such that its balanced growth path is an interior
equilibrium, clean research and production is pursued even without policy, which means
that cumulative output of the clean technologies progressively increases under the laissez-
faire scenario, resulting in clean financing costs decreasing over time from 15.7% in 2020
to 8.9% in 2025 and 1.8% in 2050, as shown by the dashed line in Panel 1f; eventually,
they tend to the same level as the dirty technology’s. This incentivises scientists to
slowly move from dirty to clean research, but at a much lower pace and magnitude than

21Our model is discrete with five-year periods. In the figures, the value of a variable in a given period
is in its first year, e.g. in 2025 for the second period (2025-2029), and we linearly interpolate them across
periods. Within a period, timing is as follows: i) policies are implemented; ii) research firms innovate; iii)
machines are produced; and iv) intermediate and final goods are produced. Whereas the two scenarios
are identical in the first period (2020-2024) in Figure 1, the effect of policies implemented in the second
period are already evident in that period.

22As the timing of emissions does not enter our climate constraint, the optimal tax rises at the interest
rate ρ + g ∗ σ. The subsidy becomes negative after 2050, as the model exhibits higher private clean
returns (pre-subsidy) to research than is socially optimal. Without a climate constraint, the value of
spillovers we adopt keeps research shares constant under laissez-faire without financing costs, and means
optimal policy leads towards interior technology levels in the long run. Thus, with high clean share,
optimal policy would gradually encourage greater dirty research (a negative clean research subsidy), and
the presence of a carbon tax amplifies this effect. We do not consider this effect conveys any economic
insight and thus exclude negative subsidy values ex-post in the figures. Doing so numerically (ex-ante) is
more challenging computationally and does not change the key insights discussed (results are available
upon request).
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(a) Annual emissions (b) Carbon tax

(c) Clean research share (d) Clean research subsidy

(e) Clean output share (f) Clean financing cost

Figure 1: Benchmark and laissez-faire scenarios
Notes. The laissez-faire scenario comprises financing experience effect but no policy. The benchmark sce-
nario includes financing experience effect and optimal policy from 2025 - the deviation between scenarios
prior to 2025 is due to linear interpolation (see footnote 21).
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with policy: indeed, the share of scientists in the clean research sector stabilises in the
long-run on a balanced growth path of 26% (Panel 1c). Given the limited impact of the
experience effect by itself, the proportion of clean output falls from 20% to a balanced
growth path value of 17% (Panel 1e). In this scenario, there are no policies constraining
carbon emissions (Panel 1a), which thus grow almost exponentially with dirty output (as
we assume no change in emissions intensity).

Thus, the simulations in this subsection highlight that the financing experience effect
helps the low-carbon transition, but is by no means sufficient in reaching the restricting
climate objectives. In line with Acemoglu et al. (2012), we find that an optimal low-carbon
transition includes a steeply rising carbon tax complemented with generous research
subsidies, which help induce a higher clean research share in the short-term. When
financing institutions endogenously react to technological evolution, the optimal tax and
subsidies are more powerful, since they not only redirect production and research towards
the clean sector, but also help relax credit constraints more rapidly, so that funds are more
easily redirected to clean innovation and production, leading to a virtuous decarbonisation
cycle. In the next subsection, we investigate the role of this endogeneity in more detail.

5.2 The Clean Financing Experience Effect

In this subsection, we delve deeper into the effects of an endogenous financing experi-
ence curve on optimal policy and the emission transition path. In particular, the solid line
in Figure 2 shows results for our benchmark scenario relative to a symmetric scenario, i.e.
an economy with optimal climate policy under the same cumulative emissions constraint
but without a financing cost gap (i.e. where the clean financing cost is exogenous and
constant at the dirty technology level).

As partially explored in the previous simulations, the solid lines in Panel 2b and
2d highlight that an endogenous experience effect increases policy ambition: the carbon
tax must be more aggressive initially (it increases by 22% in the first period relative to
the symmetric scenario), with the effect diminishing over time. As the higher tax itself
induces more clean research, the clean research subsidy is marginally lower in the first
period. As a consequence, initial emissions (Panel 2a) are lower, despite a lower initial
clean research share (Panel 2c) due to financing costs and a lower clean research subsidy.

An increase in policy is intuitive: given a fixed emissions constraint, the policy mix
needs to be more ambitious as financing clean technology is costlier. A lower clean
research share is also intuitive, as in the balanced growth path the relative share of
scientists is inversely related to the relative financing cost. But a reduction in initial
emissions is somewhat counter-intuitive: one may expect that clean financing costs, which
disappear over time, would lead to increased emissions in the near term, when credit to
clean firms is more expensive, and lower long-term emissions, once the financial sector is
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(a) Annual emissions (b) Carbon tax

(c) Clean research share (d) Clean research subsidy

Figure 2: The endogenous financing experience effect
Notes. This figure shows changes relative to a symmetric scenario with optimal policy but without
financing experience effect nor heterogeneous financing costs. The benchmark scenario includes optimal
policy and endogenous financing experience effect. The exogenous scenario comprises optimal policy
under the same evolution of the experience effect from the benchmark scenario but applied exogenously
to this economy.

willing to finance clean firms at progressively lower costs.
To explore this further, the dashed lines in Figure 2 show results, relative to the

symmetric scenario, for an exogenous scenario, where the evolution of clean financing
costs is taken from the benchmark scenario but imposed exogenously: therefore, in this
scenario the social planner chooses optimal policy without the efficacy boost from the
financing experience effect in (18). In this scenario, as compared to the symmetric one,
the carbon tax is higher initially and in the long-term (Panel 2b), and the clean research
subsidy is also higher to 2050 (Panel 2d). Emissions are higher in the short-term while
experience accumulates (Panel 2a), but then drop further due to the higher long-term
carbon tax (Panel 2b).

The difference between the two scenarios is therefore due to endogeneity, i.e. the feed-
back between policy and the evolution of clean financing costs. In our benchmark model,
financing experience is not exogenous but is instead driven by increasing cumulative clean
output. The presence of this positive spillover from research to output to the financial
sector induces stricter policy in the near-term and, in terms of the emissions path, dom-
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inates over the effect of an exogenous experience process so emissions actually fall in the
near-term relative to the symmetric scenario. The preferred instrument for this increased
policy is the carbon tax, rather than the research subsidy. Our simulations emphasise
that this increase in initial (tax) policy ambition is due to a positive but sluggish feedback
from policy to financing experience: if there was no such feedback (and experience was in-
dependent of policy) we would obtain the exogenous scenario; if the feedback approached
infinity, so experience was immediate, then we would obtain the symmetric scenario.

5.3 Experience From Cumulative Research

In the previous subsections, we assumed that the financing experience effect is linked
to the production side of the economy, and in particular to the cumulative amount of
clean intermediate inputs produced to date: as a consequence, we have shown that the
endogeneity of this experience effect leads to a much higher carbon tax. In this subsection,
we investigate how these results would change if the experience effect were linked to clean
research, rather than clean output.23 In particular, we present a research scenario, which
is identical to the benchmark one apart from the fact that we recast the one-factor
experience curve in (18) as a function of cumulative clean research, i.e.

1

ν2ct
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(
1
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− 1

)(
Ĥc0

Ĥc0 +
∑t

τ=1Hcτ

)ω

, (19)

where, for ease of comparison, the initial cumulative value of research is rescaled as to be
equivalent to the benchmark case, Ĥc0 ≡ Yc0Hc0/(Yc0 + Yd0).

Figure 3 reports results from the research scenario (dashed lines) and from the bench-
mark model (solid lines), relative to the symmetric scenario considered in the previous
subsection. Panels 3b and 3d show that the optimal combination of policy instruments
is sensitive to whether the experience effect is based on output or research: indeed, as
the clean research subsidy is a more effective instrument at redirecting research towards
the clean sector than a carbon tax, the policy ambition from endogeneity translates into
much higher clean research subsidy in 2025 than in the benchmark case, while the carbon

23Indeed, there is evidence suggesting that institutions which provide funding to core or frontier re-
search, including governments and venture capitalists, tend to fund startups which show promise, rather
than following more ‘backward-looking’ measures, like market share of output. For example, Akcigit
et al. (2022) find that the probability of venture capital funding is much higher for startups that already
have a patent, and conditional on having a patent, it increases in the quality of the patents (as proxied by
citations). Within government programs, Howell (2017) analyses the US Department of Energy’s Small
Business Innovation Research Program, where the competition for funding is based on the strength of
the scientific/technical approach, the ability to carry out the project in a cost effective manner, and the
perceived commercialisation impact. Note that the theoretical results are obtained with a focus on the
balanced growth path and thus are unaffected by whether experience depends on cumulative output or
research, since the relative number of scientists and the relative share of output co-move with the relative
level of the technology.
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(a) Annual emissions (b) Carbon tax

(c) Clean research share (d) Clean research subsidy

Figure 3: When financing experience is based on cumulative research
Notes. This figure shows changes relative to a symmetric scenario with optimal policy but without
financing experience effect nor heterogeneous financing costs. The benchmark scenario includes optimal
policy and financing experience effect based on cumulative output. The research scenario comprises
optimal policy and financing experience effect based on cumulative research.

tax begins lower. This high clean research subsidy is able to shift researchers to the clean
sector much faster, while the effect on the emissions path is to reduce near-term emissions
much less.

Thus, the source of the financing experience effect drives the optimal level of a policy
instrument. If experience is linked to production, then the policy instrument linked to
production (carbon tax) is stringent. Instead, if learning effects are coming from research
directly, then the research subsidy should be high. We find this policy-dependence on
our assumption of how clean financing experience occurs an interesting insight: we em-
phasise that the effectiveness of different climate policies in promoting the low-carbon
transition may differ depending on how financial conditions respond endogenously to
the development and deployment of new technologies. Indeed, if the nature of financ-
ing experience effects differs across markets, technologies, and geographical areas, due
perhaps to different lending environments and institutions (as documented by Aghion
et al., 2022, in the context of venture capital financing and clean investments across EU
countries and between EU and US), then optimal climate policies will also differ across
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these environments.

6 Conclusions

Empirical evidence suggests that access to finance is more difficult for novel clean
technologies than for incumbent polluting ones, which could slow down the low-carbon
transition. We introduce financing costs that are heterogeneous across sectors and en-
dogenous in a directed technical change model to study their effects on optimal climate
mitigation policies.

We show that heterogeneous financing costs per se are a threat to the decarbonisation
transition as they stifle innovation in the clean sector. However, the presence of a financ-
ing experience effect, whereby financing conditions endogenously improve for clean firms
as the cumulative adoption of their technology increases, makes mitigation policies more
effective in pushing the low-carbon transition, as two channels are activated: i) policies
directly shift innovation and production towards the clean sector, which makes the clean
technology more productive, and increases its market share; ii) policies also indirectly
reduce the reluctance of financial institutions to finance clean innovations, triggering
relatively more fund flows and further speeding up the transition.

As a consequence, the social planner has an incentive to strengthen mitigation poli-
cies in the short-term. This financing experience effect adds to other endogenous factors
that affect optimal policy and depend on the state of clean technology, such as increasing
returns to scale (Xepapadeas, 1997), learning-by-doing (Rosendahl, 2004), obsolescence
costs (Lennox and Witajewski-Baltvilks, 2017), and adjustment costs (Nowzohour, 2021).
However, the optimal climate policy mix depends on how clean financing experience oc-
curs. In our benchmark scenario, where clean financing costs decrease following cumula-
tive clean production, it is optimal to introduce a 2025 carbon tax 22% higher compared
to the case without this clean financing disadvantage. In our alternative scenario, where
the experience effect is instead a function of cumulative research, it would be optimal to
raise R&D subsidies instead.

Our model could be improved in a number of ways. For example, we do not model a
third policy explicitly targeting financing conditions. While this is justified by the decision
to focus solely on the role of carbon taxes and research subsidies (as also suggested by
Aghion et al., 2022), one could investigate the role played by e.g. international financial
institutions such as the International Monetary Fund (Stern, 2022), green investment
banks (Geddes et al., 2018, Mazzucato and Semieniuk, 2018, D’Orazio and Valente, 2019,
Waidelich and Steffen, 2023), and monetary tools (Benmir and Roman, 2021). Second,
we consider lenders always willing to provide funds to both types of firms. At the cost of
added complication, one could instead incorporate a variety of different financial actors
(Aghion et al., 2022) and the possibility that some firms do not receive credit (Haas and
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Kempa, 2023). Finally, our global approach to the modelling and calibration disregard
technological and geographical differences (Aghion and Jaravel, 2015, Steffen, 2020) that
may have an impact on optimal policy.

While we leave these interesting avenues open for future research, we believe that the
main take-away messages of our paper are likely to remain the same. Including a key
real-world dimension, such as the need for innovation to have access to finance, clearly
highlights the importance of introducing stronger mitigation policies, able to close the
financing cost gap across technology and make the low-carbon transition happen. In
other words, not considering the role of finance in clean innovation likely leads to an
under-estimation of the stringency of optimal mitigation policies.
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A Appendix

A.1 Proofs

Proof of Proposition 1. Competition among intermediaries drives financing costs down,
until an intermediary break-even on expectation and (9d) holds with equality, i.e.

1 + rjt =
1 + c(µjt, νjt)

µjtλj
. (A.1)

Combining this with the first order condition with respect to µjt, the optimal odds are
the solution to

1 + c(µjt, νjt)

µjt
= cµ(µjt, νjt). (A.2)

The left-hand side of (A.2) represents average cost of the intermediary, whereas the
right-hand side is the marginal cost. Given Assumption 2, there is an unique intersection
between these two that happens at the minimum of the average cost curve. Since the
left-hand side is decreasing in financing experience, average costs decrease with financ-
ing experience, and thus the equilibrium interest rate in one sector also decreases with
financing experience in that sector.

Derivation of Equation (13). Substituting (3a) into (3b), the wage rate of a worker in
sector j is

Ljt =

(
(1− α) pjt

wjt

∫ 1

0

A1−α
jit x

α
jitdi

) 1
α

wjt = (1− α) p
1

1−α
jt Ajt,

and thus
wdt
wct

=
(1− α) p

1
1−α
dt Adt

(1− α) p
1

1−α
ct Act

=

(
pdt
pct

) 1
1−α Adt

Act
. (A.3)

Since workers are free to choose the sector in which to work, in equilibrium wdt = wct,
and one obtains relationship (13) in the main text.

Derivation of Equation (14). Combining (2) and (7a),

Yjt = Ljt (pjt)
α/(1−α)Ajt. (A.4)

Therefore,

Ydt
Yct

=
Ldt (pdt)

α/(1−α)Adt

Lct (pct)
α/(1−α)Act

=
Ldt
Lct

(
pdt
pct

)α/(1−α)
Adt
Act

. (A.5)

Derivation of Equation (15). Use (13) to substitute the ratio of prices on the right-hand
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side of (14) with a formula involving the ratio of technologies. One obtains

Ydt
Yct

=
Ldt
Lct

(
Adt
Act

)1−α

. (A.6)

Using (4) and then (13), the left-hand side can be rewritten as

Ydt
Yct

=

(
Adt
Act

)ε(1−α)
. (A.7)

Therefore,

Ldt
Lct

=

(
Adt
Act

)(1−α)(ε−1)

. (A.8)

Derivation of Equation (16). Taking as given the unit cost of the loan rjit and the odds
of a successful audit µjit, the maximisation problem of a research firm is to decide how
many scientists to hire, given the probability of innovating, the innovation possibility
frontier, and the price of the patent πjit. Formally,

max
Hjit≥0

λj
[
πjit − wsjitHjit (1 + rjit)

]
(A.9a)

s.t. πjit = α(1− α)p
1/(1−α)
jt AjitLjt (A.9b)

Ajit = Ajt−1

(
1 + γHη

jit

(
At−1
Ajt−1

)φ)
(A.9c)

This can be simplified to

max
Hjit≥0

λjα(1− α)p
1/(1−α)
jt Ajt−1

(
1 + γHη

jit

(
At−1
Ajt−1

)φ)
Ljt+

− λjwsjitHjit (1 + rjit) . (A.10)

The first order condition then is

wsjit =
1

1 + rjit
α (1− α) p

1/(1−α)
jt Ajt−1γηH

η−1
jit

(
At−1
Ajt−1

)φ
Ljt. (A.11)

Note that, since research firms are ex-ante identical within sectors, rjit = rjt∀i and
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Hjit = Hjt∀i. We then use (A.11) to obtain

wsdit
wscit

=
(1 + rct)α (1− α) p

1/(1−α)
dt Adt−1γηH

η−1
dt

(
At−1

Adt−1

)φ
Ldt

(1 + rdt)α (1− α) p
1/(1−α)
ct Act−1γηH

η−1
ct

(
At−1

Act−1

)φ
Lct

=
(1 + rct) p

1/(1−α)
dt A1−φ

dt−1H
η−1
dt Ldt

(1 + rdt) p
1/(1−α)
ct A1−φ

ct−1H
η−1
ct Lct

=
(1 + rct) p

1/(1−α)
dt A1−φ

dt−1Ldt

(1 + rdt) p
1/(1−α)
ct A1−φ

ct−1Lct

(
Hct

Hdt

)1−η

.

(A.12)

Since scientists are free to move across sectors and firms, they all must receive the same
wage, which means that the left-hand side of (A.12) must be equal to one,(

Hdt

Hct

)1−η

=
(1 + rct) p

1/(1−α)
dt A1−φ

dt−1Ldt

(1 + rdt) p
1/(1−α)
ct A1−φ

ct−1Lct
. (A.13)

Rearranging, one obtains equation (16) in the text.

Analytical Expression for the Relative Share of Scientists. Substituting the expressions for
the ratios of prices from (13) and labour demands from (15) in the equilibrium condition
(16), one obtains

Hdt

Hct

=

[(
Adt−1
Act−1

)1−φ(
pdt
pct

) 1
1−α Ldt

Lct

(1 + rct)

(1 + rdt)

] 1
1−η

=

[(
Adt−1
Act−1

)1−φ(
Adt
Act

)−ϕ−1
(1 + rct)

(1 + rdt)

] 1
1−η

(A.14)

To obtain the equilibrium ratio is enough to combine this with the innovation possibility
frontier in (8) and rearrange to

Hdt

Hct

=


µdtλdAdt−1

(
1 + γHη

dt

(
At−1

Adt−1

)φ)
+ (1− µdtλd)Adt−1

µctλcAct−1

(
1 + γHη

ct

(
At−1

Act−1

)φ)
+ (1− µctλc)Act−1


−ϕ−1

1
1−η

×

×

[(
Adt−1
Act−1

)1−φ
(1 + rct)

(1 + rdt)

] 1
1−η

. (A.15)

Proof of Proposition 2. In an interior balanced growth path, the ratio of the two tech-
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nologies is constant over time, i.e. Adt/Act = Adt−1/Act−1, which from (A.14) implies

Hdt

Hct

=

[(
Adt−1
Act−1

)1−φ(
Adt−1
Act−1

)−ϕ−1
(1 + rct)

(1 + rdt)

] 1
1−η

=

(
Adt−1
Act−1

) 1−φ−ϕ−1
1−η

(
1 + rct
1 + rdt

) 1
1−η

=

(
Adt−1
Act−1

)−φ−ϕ
1−η

(
1 + rct
1 + rdt

) 1
1−η

. (A.16)

At the same time, the growth rate of the two technologies must be the same. From (8),
the growth rate of technology j is

gjt ≡
Ajt − Ajt−1

Ajt−1

=

µjtλjAjt−1

{
1 + γHη

jt

(
At−1

Ajt−1

)φ}
+ (1− µjtλj)Ajt−1 − Ajt−1

Ajt−1

= µjtλj

{
1 + γHη

jt

(
At−1
Ajt−1

)φ}
+ (1− µjtλj)− 1

= µjtλjγH
η
jt

(
At−1
Ajt−1

)φ
. (A.17)

Therefore, we need to impose that, in the interior equilibrium, gdt = gct, i.e.

µdtλdγH
η
dt

(
At−1
Adt−1

)φ
= µctλcγH

η
ct

(
At−1
Act−1

)φ
i.e.

Hdt

Hct

=

(
µctλc
µdtλd

) 1
η
(
Adt−1
Act−1

)φ
η

. (A.18)

Combining (A.16) and (A.18), one obtains that a condition for an interior steady-state is(
1 + c(µct, νct)

1 + c(µdt, νdt)

)(
µdtλd
µctλc

) 1
η

=

(
Adt−1
Act−1

)φ+ϕη
η

. (A.19)

Solving equation (A.19) for φ defines the threshold value for the strength of the cross-
sector spillovers above which the economy converges to a stable interior balanced growth
path,

φ ≥ η

 ln
(

1+c(µct,νct)
1+c(µdt,νdt)

)
+ 1

η
ln
(
µdtλd
µctλc

)
ln
(
Ad0
Ac0

) − ϕ

 ≡ φ̄. (A.20)
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(a) Carbon tax (b) Clean research subsidy

Figure A.1: Robustness
Notes. The benchmark scenario includes optimal policy and financing experience effects based on cumu-
lative output. The other scenarios are equal to the benchmark one apart for one parameter. This figure
shows changes relative to a symmetric scenario with optimal policy but without experience effects nor
heterogeneous financing costs (any parameter change is applied to all scenarios being compared).

A.2 Robustness

In this subsection, we discuss the following robustness checks: a decrease in the clean
learning rate, ω = 0.74, corresponding to a reduction of 40% (rather than 60%) in clean
financing costs for each doubling of clean cumulative output; a higher initial level of
cumulative clean output equal to 3Yc0; a higher yearly discount rate, ρ = 3%; and a
lower elasticity of substitution between clean and dirty inputs, ε = 2. As our focus is
on the clean financing experience effect, we show how these parameter changes change
the impact of the experience effect on optimal policy. In particular, Figure A.1 repeats
Panels 3b and 3d with these different parameters and shows that the policy effects in our
benchmark scenario are mostly robust to these changes.

The key results are consistent across sensitivities: the finance experience effect in-
creases the optimal carbon tax and decreases the clean research subsidy in the first pe-
riod. A lower ω = 0.74 implies a slower experience effect, which leads to clean financing
costs decreasing more slowly (10.1% in 2025 and 2.6% in 2050 versus 7.1% and 0.6% in
the benchmark), which in turn means that less funding is directed to the clean sector
for a given level of climate policy: therefore, a lower ω leads to a higher optimal clean
research subsidy and carbon tax compared with the benchmark scenario. A higher initial
cumulative clean output equal to 3Yc0 in 2020, with the same initial financing costs, also
implies a slower decrease in clean financing costs (8.8% in 2025 and 1.0% in 2050), and
thus a higher carbon tax and lower research subsidy. Changes in the yearly discount rate
to ρ = 3% and elasticity of substitution to ε = 2 affect results for the symmetric scenario
as well as the benchmark. A higher discount rate means less ambitious policy in the near
term, while a lower elasticity means a much higher tax is required to meet the emissions
constraint. The impact of the parameter change on clean financing experience effect then
follows: in Panel A.1a, the percentage change in the carbon tax is higher with a high
discount rate (as the symmetric scenario tax is lower), while the percentage change is
lower with a low elasticity (as the symmetric scenario tax is higher).
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