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Abstract

(EN)

Polarization is one of the basic properties of light and it has been proved
quite useful in numerous machine vision tasks. With the development of
Polarization Filter Array (PFA) cameras the acquisition process of light
polarization has become fast, easy and affordable. PFA cameras are now
readily available and they are being used in computer vision applications
more than ever. Sensor technology inside PFA cameras follows similar
arrangement of pixels as in Bayer pattern found in color cameras and
they both suffer from demosaicing problem. Demosaicing is a well studied
topic but the existing methods are designed specifically for Bayer filters
and they cannot be directly used for PFA cameras.

This thesis presents two main contributions, first a CNN-based model
is presented introducing novel convolutions named as Mosaiced Convolu-
tions(MConv) in order to directly demosaic PFA images. A new method
to acquire data employing a consumer LCD screen to perform PFA demo-
saicing is also introduced. The second main contribution is a real-world
application for PFA cameras, in particular, High dynamic range (HDR)
imaging. HDR imaging techniques aim to increase the range of luminance
values captured from a scene. HDR is a less obvious application of light
polarization but the PFA sensor technology provides four PFA images of
the scene taken simultaneously, which is similar to having multi expo-
sure images required for HDR. A stereo PFA camera setup is designed to
take full advantage of light polarization and HDR is generated via derived
camera model. The subsequent work aims at overcome the limitations of
stereo camera setup: one camera is removed and a CNN based on MConv
is introduced to simulate response of second camera and HDR is recon-
structed.
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Abstract

(IT)

La polarizzazione, una delle proprietà fondamentali della luce, si è di-
mostrata essere utile in svariate applicazioni di visione artificiale. Con
il recente sviluppo di camere che montano un PFA (Polarimetric Filter
Array), il processo di acquisizione di dati polarimetrici è diventato veloce,
facile ed economico. Attualmente le camere PFA sono sempre più diffuse
ed utilizzate in svariate applicazioni di computer vision: i polarizzatori
presenti all’interno del sensore PFA presentano una disposizione dei pixel
simile a quella del filtro di Bayer per le camere a colori, condividendo
gli stessi problemi di demosaicing. Nonostante il demnosaicing sia un
argomento noto on letteratura, i metodi esistenti sono progettati specifi-
catamente per camera RGB e non possono essere applicati direttamente
ai sensori con PFA.

Questa tesi presenta due contributi principali: il primo consiste in un
modello basato su CNN (Convolutional Neural Network) che include una
nuova tipologia di convoluzione chiamata Mosaiced Convolution (MConv)
che permette di effettuare il demosaicing di immagini acquisite con PFA.
Per produrre i dati necessari viene inoltre presentato un nuovo metodo
di acquisizione che impiega un monitor LCD. Il secondo contributo con-
siste in un’applicazione pratica delle camere PFA nell’ambito dell’imaging
HDR (High Dynamic Range), una tecnica che mira ad aumentare il range
dinamico dell’intensità catturata dalla camera. Sebbene la ricostruzione
HDR sia un’applicazione meno scontata per i dati polarimetrici, questi
si prestano all’utilizzo in quanto i filtri all’interno del PFA permettono
di acquisire simultaneamente quattro immagini che possono essere uti-
lizzate per simulare un’immagine multi-esposizione utilizzata per l’HDR.
Un setup composto da due camere PFA permette di catturare lo stato
completo di polarizzazione della scena e poter procedere a ricostruire
l’immagine HDR. Nella parte successiva si propone di superare le limi-
tazioni dovute al setup stereo, rimuovendo una delle due camere e sos-
tituendola con un modello CNN basato su MConv che simula la risposta
della seconda camera, per poi procedere alla ricostruzione HDR.
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PFA camera with an additional linear polarization filter can be modeled as
images taken with multiple exposures but at the expense of losing actual angle
and degree of scene. In order to create HDR equivalent exposure times needs to
be computed which require actual angle and degree of the scene hence another
PFA camera is used to capture actual polarization parameters. A camera model
is obtained for the presented two camera setup and response of both cameras is
merged which is used to reconstruct final HDR image.

It is quite certain by the experiments that two PFA camera setup with
additional polarizer filter have benefit of producing better quality HDR image
instead of using a single PFA camera. In the subsequent chapter another method
for HDR reconstruction is introduced that is focused on making above mentioned
HDR process less complicated by removing one camera, this way data capturing
and post-processing becomes relatively easy. From the two camera setup the
camera without filter is substituted with a deep learning based network. In
particular a CNN is designed to recover polarization information of missing
PFA camera and it can be seen as a virtual camera. Response of both cameras
is merged as usual for HDR generation process and results are further improved
through deep learning to have output images closer to the ground truth HDR.
Finally the quality of resulting HDR is verified through different measures.

1.1 Thesis Structure

Rest of the thesis is organized in following way. In section 1.2 first an
overview for the theory of light polarization is provided to form a basis of how
it works, inluding degenerate polarization states and Stokes polarization pa-
rameters. In section 1.3 methods to capture light polarization are discussed in
detail and the new polarization imaging technology Polarization Filter Array
(PFA) senors is also introduced. In section 1.4 introduction to Euclidean and
Projective geometry is provided followed by pinhole camera model and image
transformations, and applications of light polarization in different domains are
discussed in section 1.5.

Chapter 2 is divided into two parts, first part provides introduction to the
demosaicing and state-of-the-art techniques in this domain. The second part is
focused entirely on HDR, a complete HDR imaging pipeline is discussed, fol-
lowed by HDR applications in different domains. HDR has been an important
topic of research and it has been under investigation since many decades and nu-
merous methods have been proposed along the way, in this chapter a structured
review of these existing techniques and their shortcomings are discussed.

First major contribution of this thesis is a learning based demosaicing of
polarimetric images. In chapter 3 details of this method is presented, starting
with discussion about new method to create dataset for learning based PFA
demosaicing task. Demosaicing method is called PFA Demosaicing Network
(PFADN) which is a CNN based model, instead of using 2D convolutions new
Mosaiced Convolution (MConv) is used to extract features and PFA mosaic
image is fed as input and full-resolution AoLP and intensity are returned by the
network. This network is trained on the collected dataset and both qualitative
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Figure 1: Light an electromagnetic wave 1. ~B and ~E are magnetic and electric com-
ponent respectively.

and quantitative analysis are performed to validate performance of the presented
technique.

Chapter 4 is an application of PFA cameras that is the second major con-
tribution of this thesis. In this chapter a novel stereo PFA camera setup is
introduced, use of an external polarizer is introduced to make most out of PFA
cameras for HDR task. A camera model for this setup a is obtained and re-
sponse from both cameras is merged via optical flow. These per pixel exposure
of PFA images is calculated and PFA images along with its response times re-
construct the final HDR image. To demonstrate the effectiveness of the novel
camera setup in HDR domain extensive experiments are performed and results
are reported in this chapter.

Results in chapter 4 suggests that using PFA camera along with external
polarizer and this method can lead to enhancements in HDR reconstruction
process over existing HDR methods. In chapter 5 an improved method of HDR
reconstruction via single physical PFA camera is presented. It follows the similar
idea of using one PFA camera with external linear polarizer filter and second
camera is simulated through deep learning method based on MConv (chapter 3),
resulting in a virtual stereo setup. Results of the suggested PFA camera setup
is further improved through second CNN based network and final results are
compared with the state-of-the-art techniques. Chapter 6 concludes the thesis
and future suggestion are provided.

1.2 Polarization of Light

Together with amplitude and frequency, polarization is a property that is
common to all type of vector waves. Being electromagnetic in nature (figure 1
1), light makes no exception on this.

1 Image courtesy: https://commons.wikimedia.org/wiki/File:Light-wave.svg
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Figure 5: Classical polarimetry, image courtesy [52]

As a consequence of the Schwarz’s inequality, Stokes parameter are related
by the following formula:

S2
0 ≥ S2

1 + S2
2 + S2

3 (21)

showing that the total amount of light radiation S0 is generally composed by a
mixture of polarized (either linear and circular) and unpolarized light. In par-
ticular, when light is fully polarized Eq.21 becomes an equality, and when is
fully unpolarized,

D =

√

S2
1 + S2

2

S0
, 0 < D < 1 (22)

1.3 Polarization Imaging Technologies

Acquisition of light polarization is called polarimetry. There exists several
ways to acquire light polarization, chosen method depends on the problem at
hand. One of the classic methods to measure Stokes parameters is discussed here
and shown in figure 5. This method consists of three components, specifically,
retarder (also known as waveplates), polarization filters and light detectors.
Retarders are used to measure ellipticity of polarized light and most commonly
quarter-wave retarder is used. Quarter-wave retarder has the ability to convert
circular polarized light into linear polarized light and vice versa. It is named
after the fact that it has ability to slow down one component of the light by one
quarter. Retarder shown in figure 5 slows down y-component of incoming light
by phase shift of −φ

2 while x-component is fast axis experiencing phase shift of

+φ
2 .

Linear polarization filters shown figure 6 are used to filter the light and allow
the linearly polarized component for a certain angle to get through. Linear filter
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E

Horizontal Polarization Filter

Vertical Polarization Filter

Ex

Ex

Ey

Ey

z

z

Unpolarized light

Unpolarized light

Linear horizontally polarized light

Linear vertically polarized light

Figure 6: Top: linear horizontal polarization filter, bottom: linear vertical polarization
filter

can be described through its absorption capability and it changes along the x-
axis and y-axis, if the incoming light is parallel to the filter orientation angle
it will have 0 absorption leading to complete transmission. In the other case
when light component is perpendicular to the linear filter it will be absorbed
completely and will not be transmitted to the detector. There are two examples
of linear filters in figure 6, in the top image shows horizontal polarization filter,
incoming light E is unpolarized and when it passes through filter Ex will be
allowed to transmit, in the bottom image same light is incident on vertical
polarization filter and vertical component Ey is transmitted. For the other
components of light which are neither parallel nor perpendicular to the filter,
they are transmitted partially, which is not shown in this figure for the sake of
simplicity. Finally, polarization sensitivity is recorded by light detectors that can
be photodiodes or CCD/CMOS chips based depending on the imaging system.

In figure 5, θ is the angle at which polarizer transmits the polarized light, φ
is the phase shift. Resulting intensity I reaching to detector is computed as:

I(θ, φ) = 0.5 × (S0 + S1cos2θ + S2sin2θcos2φ+ S3sin2θsinφ) (23)

Using equation 23 Stokes polarization parameters can be computed as following:
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-

Warping
+

Histogram 
Matching

Homography
Estimation

Figure 28: Overview of the presented data aquisition procedure. An LCD screen is
observed in several different poses. Three images are acquired for each pose: (i) a
Charuco board ICi

, (ii) a random sample from the DIV2K dataset IRi
and (iii) a

black image. The black image is subtracted to IRi
to remove ambient illumination.

The Charuco board is used to estimate the homography mapping IRi
to the camera

image plane. Additionally, the non-linear intensity response of the screen is removed
via Histogram Matching. The resulting image Ii represent the ideal IRi

as if it had
been acquired with the same camera but without the PFA. Ii and the ground truth
polarization angle Φi (computed from the homography) are the expected output of the
model.

huge amount of data needed to generalize, an initial training is performed with
purely synthetic data as would have been generated by an ideal polarized filter
array under common scene conditions. Then, such generic model is refined to a
specific camera instance to learn the local non-linear effects among neighbour-
ing pixels. For the first time, this operation is performed with real-world data
acquired by the PFA device itself with a novel technique described in the next
section.

3.2.1 Acquiring the Training Data

Since the model is to be refined for a specific camera instance, the supervised
learning process requires several real-world input-output instances

(

IPi
, (Ii,Φi)

)

.
However, the filter array cannot be removed nor manually rotated so it is not
trivial how to obtain the true I and Φ corresponding to the observed mosaiced
input IP . This operation is generally referred as PFA calibration, but it relies
on complex hardware setups to provide light stimuli with known Stokes vectors
to the camera [51]. Albeit being expensive, such techniques cannot provide, in
the same image, variable light intensity and polarization to the camera pixels.
Consequently, we cannot “learn to demosaic” since every Ii will show no edge
and no intensity variations.

Recently, [136] proposed to use a consumer LCD screen as a source of (par-
tially controllable) polarized light. The idea is promising, however, their method
cannot be used as-is because the following factors should be properly accounted:







https://github.com/DAISCVprojects/PFADN
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Table 2: Comparison between different demosaicing approaches.

I Φ
PSNR (dB) MAE×103 MAE (◦)

Bicubic 31.21 ± 5.15 17.15 ± 21.47 2.89 ± 8.55
Bilinear 28.82 ± 4.36 20.26 ± 30.02 1.21 ± 2.34

W. Bilinear 26.96 ± 4.47 23.50 ± 38.22 1.18 ± 2.53
Newton Pol. 21.80 ± 4.56 34.44 ± 73.60 6.38 ± 18.68

IC 30.68 ± 5.05 18.12 ± 22.92 1.52 ± 1.80
Fusion W.Avg 30.77 ± 4.81 18.11 ± 22.56 3.23 ± 9.04
Fusion ATMF 30.58 ± 4.82 18.22 ± 23.32 2.90 ± 10.43

ForkNet 22.93 ± 3.15 58.13 ± 41.38 33.9 ± 25.9
FSRCNN 32.06 ± 4.48 16.19 ± 18.93 1.15 ± 3.38

PPCN+Bicubic 27.41 ± 4.88 28.64 ± 31.53 9.26 ± 14.52
D-PPCN+Bicubic 25.55 ± 5.14 35.67 ± 32.48 9.77 ± 13.90
PPCN+FSRCNN 29.96 ± 3.33 27.89 ± 30.32 5.27 ± 4.55

D-PPCN+FSRCNN 27.47 ± 3.66 34.37 ± 27.45 2.87 ± 4.97
PFADN 32.31± 4.65 15.91± 19.33 0.46± 0.39

3.3.1 Training

We initially trained the network (and the competitors) with purely syn-
thetic data. Mosaiced images were generated with intensity images from DIV2K
dataset [127] and random smooth surfaces for the angle. A total of 5120 differ-
ent samples were used in this first stage, training the network using the Adam
optimizer with a learning rate of 10−4. Then, several image samples are ac-
quired(as described in §3.2.1) with a FLIR Blackfly Monochrome polarization
camera, mounting a Sony IMX250MZR sensor providing PFA mosaiced images
of size 2448 x 2048 pixels. The camera is rotated in 50 different angles, in each
pose 65 images are displayed (randomly sampled from DIV2K dataset) for a to-
tal of 3250 data samples. Image samples were divided into training and test sets
with ratio 75/25, then the training process was resumed only with real-world
data and an adaptive learning rate until convergence. For a fair comparison, all
the learning-based approaches are trained with the same data used for PFADN,
and the training procedures specified in the original papers are used.

3.3.2 Angle and Image Accuracy

We started comparing the learning-based techniques varying the number of
training images. Since presented method is meant to be fine-tuned for each
specific camera instance, it is important to know how many training samples
to acquire to obtain the desired accuracy. In all tests PFADN, PPCN, Deep
PPCN (D-PPCN) and ForkNet are retrained starting from the initial weights
obtained with the purely synthetic dataset. We used the Adam optimizer with
an adaptive learning rate until convergence. In Figure 31 (top) the intensity im-
age PSNR is displayed and angle MAE (bottom) varying the number of training
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data. As expected, increasing the number of training samples improves the sit-
uation, especially for the intensity. PSNR (Peak Signal-to-Noise Ratio) is the
ratio between maximum possible pixel value Imax to noise, mean squared error
(MSE) in this case and it is computed as following:

PSNR = 20 × log10
Imax√
MSE

(63)

Our approach achieved a PSNR from 31 (with 200 training samples) to 32
dB, while other techniques are limited to values lower than 28 dB. The angle
error (MAE, Mean Absolute Error) estimated by PFADN is significantly lower
than the one obtained with other techniques: indeed, in all cases PPCN and
ForkNet performed consistently worse (note that the y-axis scale is logarithmic).
We guess two reasons for that: first, loss functions used to train PPCN and
ForkNet (as reported in the original paper) use the same loss for both the
image and the angle. However, angles wrap with period π, and this makes very
difficult for the network to disambiguate such cases.

Our method, instead, handles the wrapping by doubling the angle and con-
sidering the difference between the two corresponding unitary angle vectors. Sec-
ond, other networks convolve the mosaiced image with unitary stride, regardless
the underlying PFA pattern. Albeit being not optimal, it is observed that this
tends to oversmooth the image in most the cases. In the top row of Figure 32
image PSNR is shown and bottom row angle MAE when increasing an additive
noise of input images. The noise was generated as a zero-mean Gaussian with
standard deviation σN (on x-axis). In this experiment all the aforementioned
polarimetric demosaicing methods are compared: also in this situation PFADN
gives better results, suggesting a possible application for polarized image de-
noising. In particular, the FSRCNN upscaling exhibited comparable results in
terms of image PSNR only for low noise values (σN < 0.002), while for angle
error other methods performed quite worse with respect to PFADN.

Finally, in Table 2 image and angle accuracy are reported on the test set
against all the considered methods when trained with the full training data. In
terms of intensity image, the upscaling techniques based on bicubic, intensity
correlation (IC) and the learning-based FSRCNN offer a result close to PFADN
(32.31 dB). In terms of polarization angle, some techniques reach an error close
to one degree (with some degrees of standard deviation), but overall PFADN
exhibits an average absolute error of 0.46◦. Note that two separate models for
FSRCNN (for intensity and angle) were used, and while the upscaling network
performs very well with the intensity image, the angle error is still considerably
higher with respect to PFADN.

3.3.3 Qualitative Results

In Fig. 34 a qualitative comparison of the demosaiced intensity images I
from the test set for different methods is shown. Overall, PFADN (second row)
produces a sharper result closer to the Ground Truth (1st row) in all the cases.
The two “purely algorithmic” methods IC and Bicubic look blurry at the edges.
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Figure 31: Image PSNR (top) and absolute angle error (top) varying the number of
training samples. Presented approach shows a consistent lower angle error and better
PSNR when training data comprise at least 250 samples. Note that angle MAE is
displayed with logarithmic scale.

In this respect, there is no visible advantage in using IC instead of the old but
reliable Bicubic interpolation. The competing Deep Learning based method
PPCN+FSRCNN produced a definitely sharper but also noisier result. Overall,
the images looks less saturated especially in darker regions.

In order to show some realistic examples of demosaiced AoLP, some scenes
are synthetically generated using Mitsuba2 Renderer [98]. Such tool allows to
simulate light polarization state and obtain physically accurate scenes that we
composed to generate mosaiced images from a PFA camera. Of course this
approach would discard all the nonlinearities introduced by a real PFA camera
that presented approach aims to capture, but the qualitative outcomes are found
interesting for evaluation purposes. The Fig. 35 shows AoLP images for two of
such scenes: in general method returns angles that are less noisy and closer to
the respective ground truth.
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Figure 32: Image PSNR (top) and absolute angle error (bottom) additive noise with
standard deviation σN . Even with additive noise, the angle error of PFADN remains
below 1◦. Note that angle MAE is displayed with logarithmic scale.

Finally, Fig. 33 and 36 are the resulting angle Φ of a real object acquired with
PFA camera and demosaiced with four methods is shown. In Fig. 33 PFADN
(first column) clearly exhibits a less noisy behaviour (second rows show a detail
of the top image), while keeping sharp edges between differently polarized areas.
Same trend can be seen in Fig. 36 which contains more examples of demosacied
AoLP of real life objects taken from dataset presented in [8] ”sunny outdoor”
acquisitions in particular. AoLP of an object is more reliable if it is highly
polarized exhibiting DOLP ≈ 1 but this is not the case for all the objects present
in real world scenes. Differences in the background and in regions around the
display are due to a DOLP ≈ 0 making the angle undefined in practice.
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PFADN IC Bilinear FSRCNN

Figure 33: Demosaiced AoLP (radians) of a real scene with different methods (our
PFADN, Intensity Correlation, bilinear interpolation and FSRCNN).

3.4 Conclusions

A CNN-based camera model is introduced in this chapter to demosaic a PFA
camera image into a full-resolution intensity image and AoLP. The network is
trained with real-world data acquired using a consumer LCD screen, with a
technique independent by monitor gamma and other non-linearities produced by
the tilted camera-screen configuration. In this way, the model can be fine-tuned
for a specific camera instance to produce results exceeding the current state-of-
the-art of both learning and algorithmic approaches without requiring expensive
setups. The novelty of presented network architecture resides in the Mosaiced
Convolution operation, taking advantage of (and preserving) the underlying
orientation pattern of the PFA. In the future, the Mosaiced Convolution blocks
can be generalized to consider arbitrary kernel shapes and hence increasing the
combination of repeated orientation patterns.
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Figure 34: Qualitative comparison of demoisaiced intensity I for four samples (each
column) from the test set. First row shows ground truth data and the second row the
PFADN network output, while row three to five represents other methods.
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Figure 35: Qualitative comparison of AoLP images for two synthetic scenes where each
row indicate different method.
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Figure 36: Demosaiced AoLP of three real life objects taken from SfP dataset [8]
(“sunny outdoor” acquisitions).











https://docs.opencv.org/3.4/de/d9e/classcv_1_1FarnebackOpticalFlow.html
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(a) GT (b) Ours

(c) Wu et al. [144] (d) Two-stage-HDR

(e) GT (f) Ours

(g) Wu et al. [144] (h) Two-stage-HDR

Figure 52: Example 1- (a) ground truth (GT) which was produced using classical
multi exposure technique. While (b)-(d) refers to ours, PFA based method Wu et al.
[144] and learning based single image HDRI Two-stage-HDR respectively. (e)-(h)
are zoomed in patches of (a)-(d) for better visualization.
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(a) GT (b) Ours

(c) Wu et al. [144] (d) Two-stage-HDR

(e) GT (f) Ours

(g) Wu et al. [144] (h) Two-stage-HDR

Figure 53: Example 2- (a) ground truth (GT), (b)-(d) ours, Wu et al. [144] and
Two-stage-HDR respectively. (e)-(h) are zoomed in patch of corresponding (a)-(d)
scenes.
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GT Ours

Wu et al. [144] Two-stage-HDR

ExpandNet KO
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Figure 54: First example scene from our test data and qualitative results produced by
state-of-the-art techniques against ground truth and our method.
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Figure 55: Second example scene from our test data. Qualitative results for all com-
peting techniques against ground truth.



6
Conclusion and Future Work



Conclusion and Future Work 94

6.1 Conclusion

In this thesis capabilities of PFA cameras were explored, in particular we
focused on PFA camera demosaicing and its one specific application HDR.

In chapter 3, PFA camera demosaicing is presented and our contribution is
twofold. First, we designed a network architecture (named as PFADN) com-
posed by a sequence of Mosaiced Convolutions operating coherently with the
local arrangement of the different filters. Second, a new method was intro-
duced, employing a consumer LCD screen, to effectively acquire real-world data
for training. The process is designed to be invariant by monitor gamma and
external lighting conditions. PFADN is extensively compared against algorith-
mic and learning-based demosaicing techniques, PFADN consistently obtained
lower error especially in terms of polarization angle.

In chapter 4, a novel HDR reconstruction method is introduced, exploiting
stereo Polarimetric Filter Array cameras to simultaneously capture the scene
with different polarized filters, producing intensity attenuations that can be re-
lated to the light polarization state. An additional linear polarizer is mounted
in front of one of the two cameras, raising the degree of polarization of rays cap-
tured by the sensor. This leads to a larger attenuation range between channels
regardless the scene lighting condition. By merging the data acquired by the
two cameras, the actual light attenuation observed by a pixel at each channel
can be computed and an equivalent exposure time is derived, producing a HDR
picture from a single polarimetric shot. This technique produced comparable
results to classic HDR approaches using multiple exposures, with the advantage
of being one-shot method.

In order to make PFA cameras easy to use for HDR purpose one camera
needs to be removed without losing the benefit of stereo setup, hence in chapter
5 a novel way is introduced to reconstruct HDR using single PFA camera. The
idea is to use only one PFA camera with an additional linear polarized filter
and mimic the response of second camera using deep learning, CNN in partic-
ular. The designed framework consists of two networks, recovery network and
improvement network. Recovery network is responsible for predicting actual
angle and degree of the scene which is required for HDR reconstruction to be
used by our camera model (introduced in chapter 4). Quality of reconstructed
HDR is further enhanced by using improvement network and the performance
of overall framework is verified both visually and numerically. This method pro-
duced fairly better results when compared with state-of-the-art HDRI methods
based on PFA camera along with numerous learning based single shot HDR
reconstruction methods.

6.2 Future Suggestions

Light polarization is being explored in every other field since its discovery
and with the recent developments in on-chip polarizers its use has significantly
increased. The methods introduced in this thesis can help to boost and facilitate
research for PFA cameras, for instance, MConv introduced in demosaicing net-





http://www.empamedia.ethz.ch/hdrdatabase/index.php
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