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Abstract

What is the emergent long-run equilibrium of a society where many
interacting agents bet on the optimal energy to put in place in order
to climb on the Bandwagon? In this paper we study the collective
behavior of a large population of agents being either Left or Right:
the core idea is that agents benefit from being with the winner party,
but, on the other hand, they suffer a cost in changing their status
quo. At the microscopic level the model is formulated as a stochastic,
symmetric dynamic game with N players. In the macroscopic limit
as N — +o00, we obtain a mean field game whose equilibria describe
the “rational” collective behavior of the society. It is of particular
interest to detect the emerging long-time attractors, e.g. consensus or
oscillating behavior. Significantly, we discover that bandwagoning can
be persistent at the macro level: endogenously generated periodicity is
in fact detected.

Keywords: Consensus, Mean field games; Multiple Nash Equi-
libria, Opinion dynamics; Social interactions
Introduction

The emergence of collective behavior in complex societies has been one of
the most studied paradigms of social sciences in the last decades. Pioneering
works, among the others, have been devoted to the study of segregation (see
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[29]), social innovation (see [30]), riot’s formation (see [17]), social distance
(see [1]) or the emergence of prices in financial markets (see [14]).

Following the celebrated micromotives and macrobehavior paradigm by
Shelling (see [28]), large attention has been paid to the mechanisms under
which social norms emerge as an aggregate output of a large population of in-
teracting agents. In [4], we find one of the first attempts to formally analyze
the large limits for economies characterized by social externalities, whereas
in [23] a similar results is formalized in a game-theoretical setting, and in
[13] in the field of artificial societies and agent based models. One of the key
factors underpinning all these models is the presence of positive externali-
ties, meaning that the single agent benefits from aligning with social norms,
or, put differently, from being with the majority. The behavioral attitude
behind this assumption is, basically, conformism, imitation or peer pressure.
Of course, depending on the applications, different behavioral assumptions
can be made (see, for instance, [27] or [9] for nonconforming individuals or
minority games, respectively).

One aspect that, to our opinion, has not been sufficiently considered
in the aforementioned literature, is the fact that changing opinion may be
effort-demanding. Gather information, modify habits or practices, revise
operational strategies, join a new technology or, in one word, climbing on the
bandwagon, may result to be a costly operation. This is the main goal of this
paper: provide a stylized model to describe a large population of conformist
agents, in charge to optimally determine the level of energy required to stick
with the majority. Our idea is simple: the higher the effort is, the more
likely it is to be with the winner party and the higher is the associated cost.

Indeed, to dynamically study the aggregate behavior of the society, we
rely on a lifetime utility maximization problem where the agent is in charge
to optimally set the effort to put in place to change status. Two remarks
are needed. Firstly, the lifetime setup immediately refers to a parallel strand
of literature, related to more classical optimization problems for consensus
formation (see [20], [31], [3]). The second remark pertains to the model-
ing structure of the society; in order to study into details (and possibly to
obtain closed-form solutions) the relationship between social interaction and
frictions in changing opinion, we stick with the simplest possible geometry: a
mean-field modelB This means, in particular, that aggregate statistics such
as the empirical distribution (or the empirical mean) are sufficient to fully
describe the Markovian system. With this respect, we move in the frame-
work of mean field games. The recent theory in this field has put forward a
class of dynamic games for which the limit behavior, as the number of agents
increases to infinity, can be described in analytic terms (see [21], [24], [18]).

In a nutshell, in our model the state of each agent (Left or Right) evolves

*For recent literature investigating the relationship between the network geometry and
the diffusion of knowledge, innovation, consensus, see [19], [26], [35], [33].



as a controlled Markov process; the discounted lifetime utility is formed by
two components: a reward received only when agreeing with the majority
and a quadratic instantaneous cost related to the effort put in place. Since
each agent looks for the control maximizing her own utility, under strate-
gic interactions, it is natural to consider Nash equilibria for the resulting
dynamic game. When the limit of infinitely many players is considered we
formally obtain the usual mean field game equation, given by a system of
two coupled equations: one is the Hamilton-Jacobi-Bellman equation for the
value function, the second is the master equation for the optimal evolution
of the representative agent. The rigorous foundation of this formal limit is to
a large extent an open problem. Rigorous convergence results have been ob-
tained recently for diffusion models (see [16],[5]) and for models with discrete
state space (see [§]); this results, that are limited to the case of finite time
horizon, require assumptions that guarantee the uniqueness of the solution of
the mean field game equation. In the models considered here this uniqueness
fails. As pointed out in [7], all solutions of the mean field game equation
have “physical” significance for the N-player game: if the feedback control
corresponding to one solution of the mean field game equation is applied by
each player in the N-player game, it is an approzimate Nash equilibrium,
with the approximation error going to zero as N — +4o0o. However, some
solutions of the mean field game may not be obtained as limit of Nash equi-
libria of the N-player game. For examples of non uniqueness and the related
convergence problems we refer to [2] and [6].

In this paper we do not provide a rigorous convergence result in the num-
ber of players. We, rather, devote our attention to the long-run behavior of
the asymptotic model and its properties. In particular, for the class of mod-
els introduced below, we find cases in which the long-run behavior of the
mean field game leads to consensus, other in which the limit system admits
periodic and non-constant solutions. This rhythmic behavior, a sort of macro
bandwagoning of the society, emerges in absence of external periodic signals,
and it is endogenously produced by the micro motives behind the strategic
behavior of agents. Investigation of periodic behavior of multi-agent systems
has been recently studied, for instance, in [34] and [I5]. In the context of
mean-field games, however, periodic behavior has been often predicted but,
to our knowledge, proved only for the rather celebrated Mezican wave model
(see [18]). It must be remarked that the Mexican wave model possesses a
continuous symmetry, which allows the appearance of traveling wave solu-
tion. The model we propose below has a discrete (actually binary) space
structure, so there is no continuous symmetry. Recent years have seen a
formidable effort in the attempt of explaining rigorously the emergence of
collective periodicity in noisy systems of interacting units. Given the im-
possibility of accounting for the huge related literature, we only mention the
inspiring work [25], and few available rigorous results in [32], [11], [10], [12].

In these works a key role in the emergence of periodicity is played by delay in



the information transmission (see [32], [12]) and dissipation (see [11], [10]).
One of the main purposes of this paper is to show that collective periodic
behavior can alsoresult from agents’ utility optimization.

The microscopic model

Consider a network of IV interacting agents, each possessing a binary state
oi(t) € {—1,1} at time ¢ > 0. Every agent can control her own state by
means of the control u; = (u;(t))i>0. We assume here close-loop controls
under complete information:

ui(t) = @i(t, o (t))

for some function ¢; which is right-continuous in ¢ and depending on the
whole state o(t) = (O‘j(t))é-v:l at time ¢. The controlled stochastic dynamics
are given by

P (o3t +h) = o3t ( o(s), 5 < 1) = ui(t)h + o(h). (1)

In other words, u;(t) is the probability rate of flipping the state o;. Let

1 N
my(t) = > o)
=1

be the average state of the network at time ¢. The instantaneous reward of
agent 7 at time t is given by
1 2
us ().
PICADNTROIRAR
The two summands in the reward R; are easy to interpret. The term
o;(t)ymy(t) favors imitation: agents are conformist, they gain when aligned
with the majority. The term —%u?(t) is an energy cost: a rapid change
of the state would require high values for u;, which are costly. The factor
w(oi(t),mp(t)), that we assume to be nonnegative, modulates the relevance
of this cost term: large values of u allow high mobility to the agents, who
can rapidly adapt to a change in the majority. Conversely, small values of u
reduce the adaptive response of agents. We allow p to depend on the state
of agent 7 and on the average state of the network.
Each agent ¢ aims at maximizing the discounted lifetime utility

—+00
U :=E [/ e’\tRi(t)dt] :
0

where A > 0 is a constant discount factor.

Rz(t) = ai(t)mN(t) —



A control u* = (uj,u,...,u}y) is called a Nash equilibrium if for every
i =1,...,N, assuming that all agents j # i use the control u;, we have
Ui(u) > U;(u;) for every other control u;: in equilibrium no agent has
interest in changing her strategy. Note that this dynamic game is invariant
for permutation of agents, so it falls within the domain of mean-field games

(see [22], [24]).

The macroscopic model

The limit as N — 400 of the dynamic game described above is easy to
obtain at a heuristic level. One expects that the average state my(t) obeys
a Law of Large Numbers, so it converges to a deterministic limit m(t). The
representative agent aims at maximizing

J(u) = E [ /0 RSy (a(t)m(t) - mﬁ@)) dt} C©

An equilibrium control «* must satisfy the following consistency relation: if
we denote by ¢*(t) the process produced by the control u*, then

This problem is solved in two steps: firstly, one writes the Dynamic Program-
ming Equation corresponding to the maximization problem for J(u) given
m(t); then, one imposes that m(t) is consistent with the master equation
for the optimal process o*(¢). Denoting by V' (o,t) the value function of the
control problem of maximizing J(u), the Dynamic Programming Equation
reads, defining VV (0,t) := V(—0,t) — V(o,t),

— AV (o,t) + M [[VV (o, t)]+]2 + v o, t)+om(t) =0, (3)

ot (
and yields the optimal (feedback) control

u () = plo,m(t)) [VV (o, )]

A derivation of the Hamilton-Jacobi-Bellman equation (HJB), together with
a classical verification argument, are postponed to Appendix A. Substituting
u* in (), one derives a differential equation for m(t). It is convenient to write
w(o,m) in the form p(o,m) = ca(m) + b(m), and set z(t) := VV(1,t). By
@) and () we obtain the following system of coupled equations:

A1) = )](t)] + L 2(8) + Ax(t) + 2mlt)
(t) = —(m()b(m(t)) + a(m(t)))=(t) (4)
—(m(t)a(m(t)) + b(m(t)))=(t)



Some remarks are needed concerning equation (). It is relevant to note
that equation (@) should not be meant as an initial-value problem: only the
initial m(0), i.e. the initial information on agents’ proportion, is assigned.
On the other hand the value function in this problem is necessarily bounded,
so only bounded solutions of (@) matter. Conversely, every bounded solution
of ) determines an equilibrium «* for the control problem associated to the
functional given in (2I).

Baseline cases: constant mobility & crowding effects

In this section we consider two significant specifications of the model, for
which we determine and characterize the bounded solutions of (). The
proofs of the facts outlined below are postponed to Appendix B.

The constant mobility model

When pu(o,m) = p = const, equation () takes the form:

{ 2(t) = §z2(t)]2(t)] + Az(t) + 2m(t)

(t) = —pm(8)|2(0)] — px(t) (5)

We are interested in finding bounded solutions to ([B). Note that (z*,m*) =
(0,0) is always an equilibrium. Moreover, two different regimes are detected
under which the behavior of the system is completely different:

(a) Low mobility regime: p < %2. For every m(0) € [—1,1] equation (&)
admits a unique bounded solution. For m(0) # 0 consensus occurs:
limy—, y oo m(t) = sign(m(0)) € {—1,1}.

(b) High mobility regime: pu > %2. For |m(0)| # 0 sufficiently small there
is more than one bounded solution to (B). All such solutions reach
consensus (limy_, o m(t) € {£1}), but exhibit a transient oscillatory
regime, in which the orbits of the solutions spiral around (0, 0) before
reaching consensus.

In Fig. [ (top panel) we plot the stable manifolds related to the two
fixed points P and @ of ({), different from the origin, for A = 1 and p = 0.1.
These values of the parameters fall under the low mobility regime. In Fig.
0 (bottom panel), the values of the parameters are A = 1 and p = 1. In
this latter case, being under the high mobility regime, the manifolds are
spiraling around the origin before reaching the consensus. Therefore, under
this regime, the equilibrium control may be not unique: there are possibly
multiple equilibrium controls leading to transient oscillating behavior.
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Figure 1: Stable manifolds for the low mobility regime (top panel) and high
mobility regime (bottom panel) in the case of constant mobility.

Introducing crowding effects

Here we set (o, m) := p(1+eom), for some > 0 and € € [0,1]. Mobility is
now asymmetric: changing state is more costly for an agent belonging to the
minority: the cost to reinforce the majority increases the more the society
is polarized. Put differently, the marginal cost to attract more people on
the bandwagon is higher when the majority is more pronounced and, on the
opposite, it is easier to loose some of them. Equation () becomes:

(6)

{ 2(t) = Bz(t)|2(t)] + B2 22 (t) + Az(t) + 2m(2)
m(t) = —(1+ e)um(t)|2(t)] — p(l +em?(t))z(t)

Differently from the previous case, for certain values of the parameters,



an equilibrium control leading to permanent oscillatory behavior is detected.

2
Indeed, a new threshold level fi, for the mobility parameter, with % <<
+oo appears. There are, therefore, three possible regimes:

(a)

(b)

Low mobility regime: p < %2. For every m(0) € [—1,1] equation (@)
admits a unique bounded solution. For m(0) # 0 consensus occurs:
limy; 4 oo m(t) = sign(m(0)) € {—1,1}.

Moderate mobility regime: %2 < p < fi. For |m(0)| # 0 sufficiently
small there is more than one bounded solution to (). All such solutions
reach consensus (limy_, 1o m(t) € {£1}), but, for |m(0)| small enough,
they exhibit a transient oscillatory regime, in which the orbits of the

solutions spiral around (0,0) before reaching consensus.

High mobility regime: p > fi. For every m(0) € [—1,1] equation (@)
admits two bounded solutions leading to consensus: lim; 4o m(t) €
{—1,1}. Moreover (f) admits a unique non-constant periodic orbit:
thus, for |m(0)| sufficiently small, there are two periodic solutions
which differ for a time shift.

In Fig. Bl we plot the stable manifolds associated to the fixed points P and
Q of (@), for A = 0.5, ¢ = 0.5 and p = 4 = 4.558. Being p exactly at its
critical level, the two manifolds join at P and . On the same graph, we
have also depicted the periodic orbit obtained for A = 0.5, ¢ = 0.5 and with
@ =4.6> [ (in red in the figure).
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Figure 2: Stable manifolds for © = i (blue and black curves) and a periodic
orbit under the high mobility regime (red curve) in the case of crowding
effects.



What is the intuition behind the behavior of the population choosing an
equilibrium corresponding to a periodic orbit as in the high mobility regime?
Without loss of genreality, suppose m(t) is close to 1 and 7(t) > 0 so that
the society is on the way towards consensus. Because of the form of p(o,m),
it is now very costly for a new agent to join the majority, whereas it is
relatively less costly to abandon it. Moreover, note that the values of the
parameters are such that the discount factor A\ (measuring impatience) is
small compared to p, so that the actual gain of being with the majority is
relatively less important compared to future utility (where we can forecast a
possible switch of the majority itself). Therefore, at some point, we reach a
saturation value where it is not worth for a new agent to reach the majority:
the trade-off between the reward and the cost becomes negative. In some
sense, agents have the perception that the run to climb the bandwagon is
going to stop soon so that consensus will not be reached and therefore,
sooner or later, the majority will change in favor of the party which is now
the minority. Because of the cost structure proposed, it is now worth for
agents in the majority to be the first to leave it (the cost is in fact lower if
m is high). In some sense, to be the first mover is more profitable. As a
consequence m(t) changes its sign and we see a collapse to a negative value
of m. Of course, when m is close to —1, the simmetric situation happens
and the society continues to oscillate forever.

Conclusions

We have studied the dynamics of collective behavior in a society formed by
a large population of conformist agents in charge to control for the effort to
put in place in order to climb on the bandwagon. Agents are remunerated by
sticking with the majority but suffer a quadratic cost related to the control
they put in place. Indeed, the binary state of the agents is controlled by
progressively measurable controls determining the probability of switching
the state. We determine the value function as the bounded solution to the
Hamilton-Jacobi-Bellman equation and the relative optimal feedback control,
which, it turns, also represents the Nash equilibrium of the associated mean-
field game.

We, then, solve in details two specifications of the model where the mo-
bility parameter is either constant or crowed-dependent (in the sense that
the cost to reach the majority increases the more polarized is the society).
Interestingly enough, we find regimes of the parameter under which con-
sensus is asymptotically reached and regimes under which bandwagoning is
persistent at the macro level: the systems is trapped in periodic solutions
hence, it oscillates perpetually.

This paper sheds some light on a couple of open issues raised in the
context of social interaction and collective behavior. Firstly, the possibility



of detecting collective periodicity in complex social systems seemed to be
unfeasible (see [27]). Moreover, differently from [27], our agents solve a
lifetime optimization problem and can be, somewhat surprisingly, satisfied
even with a permanently oscillating society. Secondly, our model provides an
example of collective behavior on the short-time horizon which still accounts
for diversity on the long-run: consensus is not necessarily the unique outcome
of the society. With this respect, out model is in line with previous literature
discussing long-term cultural diversity and short-term collective behavior

(see [33]).

Appendix A. Derivation of the mean-field HJB equation

Define
400
V(o,t) :=supE,, [/ e AT R (rYdr | |
u t
where 1
2
— 5 (),
2u(a(t), m(t))

u(t) is the rate at which o(t) flips to —o(t), and u = (u(t))s>0 ranges over
right continuous nonnegative closed loop controls, i.e. u(t) = @u(t,0(t))
with ¢y, : [0,400) x {—1,1} — [0, +00] right continuous in ¢. Let

R, (t) :== o(t)m(t)

+o0o
Jot(u) :=Eqt [/ e_)‘(r_t)Ru(r)dr .
t

If u* is an optimal control for (2)), then by the Bellman principle V(o,t) =
Jot(u*) for all o,t. For t fixed and h > 0, denote by u/® the control defined
on [t,+00) defined by

h@()_ @ fort<s<t+h
WOUIT wk(s) for s >t+h,

Observe that

Jo,t(uh’a)
t+h
=Eot [ Ry (r)dr +e MV (ot + h),t + h)]
=h|o(t)m ! 2
= om)
+Eo [V (ot + ) L+ B)| +o(h). (7)
Moreover

Ty (ul®) > V(o t) (8)

)

10



for every «, while

Ty (uP By = V(o t) + o(h), (9)

)

where right continuity is used in this last estimate. It follows that

. Eoy [e™ MV (o (t 4+ h),t +h) — V (o, t)]
hlo h

S
2ulo (), mmy” 1

for every a > 0, with the equality being attained at a = u*(¢,0). By
standard results on continuous time Markov chains

> a(t)m(t)

. Eoy [e_AhV(J(t +h),t+h)—V(o, t)}
lim
h10 h

oV

= E(O’, t)+aV(-o,t)—V(e,t)] — AV(o,t),

and (B) follows.
We now show that if (V' (o,t), m(t)) solve [B]) coupled to the second equa-
tion in () and V' (o,t) is bounded, then

u*(t) = plo,m(t) [VV (o, )]

maximizes (2]). Note that the equation for m(t) guarantees that E(c*(t)) =
m(t), so u* is an equilibrium control. To show that «* maximizes (2) observe
that

0— —)\V(O', t) + u*(t)VV(O', t) B 2M(O- 1m(t)) (u*(t))2
oV
+ —(o,t) + om(t)
ot 1 )
= —AV(o,t) +sup |aVV(0,1) — m“2

ov
+ E(O‘, t) + om(t).

Consider now an arbitrary feedback control u, and denote by o(t) the process
with control u. A standard application of Ito’s rule for Markov chains yields,
for every t > 0,

E{e‘”V(a(t),t) — V(0(0),0) — /0 [— Ae MV (0(s), 5)

+ e_AS%—Z(U(s),S) - e_)‘su(s)VV(J(s),s)]ds} =0 (12)

11



which, inserted in ([I2)) gives

E{e’\tV(a(t),t) —V(e(0),0)

+ /0 et [a(s)m(s) —~ muz(s)] ds} <0, (13)

where equality is attained for u = u*. Letting ¢ — +o0o0 and using the

boundedness of V', we obtain
J(u) <E[V(0(0),0)] = J(u),

and the proof is complete.

Appendix B. Derivation of other facts

Proof of Facts related to the constant mobility model. We first observe that
[B), besides the origin O, admits two other equilibria P and @, symmet-

ric with respect to the origin: + ((\/)\2 +4p— N/ u, —1). Linear analysis

shows that P and @ are saddle points for all values of the parameters; the
origin O is linearly unstable:

o for p < %2 it is repellent, i.e. the eigenvalues of the linearized system
are both negative reals;

e for u > %2 is an unstable spiral, i.e. the eigenvalues of the linearized
system have both negative real part but nonzero imaginary part.

In order to perform a global analysis, we first consider the nullcline N given
by the equation §z|z| + Az 4 2m = 0. Off the nullcline, solutions to () have
trajectories that are locally graphs of a function m = m(z). By implicit
differentiation, assuming (z,m) € [0, +00)x[—1, 1], it turns out that m”(z) >
0 if and only if ¢~ (2) < m < ¢™(2), with

pE(2) = —Z [)\ T VA2 — 8u+ 6Auz + 4,u2z2] .
For (z,m) € (—o00,0) x [—1,1], similar convexity conditions are obtained

by reflection w.r.t. the origin. Consider the fixed point ) and its stable
manifold My, i.e. the trajectory of a solution of (Bl converging to Q.

12



Low mobility regime: p < %2. In this case the graphs of ¢™ and ¢~ meet
at the origin (see Fig. [l top panel). Moreover, the graph of ¢~ meets
the nullcline A at the equilibrium point Q. A linear analysis at () and the
study of the direction of the vector field of (Bl at the points of the graph
of ¢~ show that M is at the left of the graph of ¢~. In particular Mj is
concave, so it cannot intersect the nullcline NV, that can be intersected only
vertically by a solution of ([H]). It follows that My is within the area between
N and the graph of ¢~. Since the origin is stable for the time-reversal of
([B), necessarily M joins the origin with Q. Moreover, in the area between
N and the graph of ¢, it easily checked that ‘il—’g = % < 0, so it is the graph
of a strictly decreasing function. Thus, for every my € (—1,0), there is a
unique point of Mg with m = mg, which is the starting point of a solution
of (@) converging to @; in particular m(t) — —1 as t — +oo. It is actually
the only bounded solution starting from a point of the form (myg, z). This
can be seen as follows. The point (myg, z), with my < 0, cannot belong to
the stable manifold of P, which is its image of My under reflection w.r.t
the origin. Thus the solution starting from (mg, z) cannot converge to any
fixed point. Moreover, since the divergence of the vector field driving (&) is
constantly equal to A > 0, then periodic orbits are not allowed. Thus, by
the Poincaré-Bendixon Theorem, the solution starting from (mg, z) must be
unbounded.

High mobility regime: p > %2. In this case the graphs of ¢ and ¢~ do not
reach the origin (see Fig. Bl bottom panel). As in the low mobility regime,
the stable manifold Mg, as departing from @), forms a concave curve between
N and the graph of ¢~. If we show that M gets arbitrarily close to the
origin then the previous linear analysis implies that it must spiral around
the origin, in particular it is not that graph of an injective function.

Thus we are left to show that M gets arbitrarily close to the origin.
This amounts to show that the solution (2(t),7(¢)) of the time-reversed
system starting from a point in M close to @), converges to the origin
as t — +o0o. Due to the spiraling around the origin, (2(¢),7(t)) cannot
converge to the origin following the graph of a monotone function. Thus it
must intersect first the positive z-axis and then the positive m axis at some
m* > 0. Suppose m* < 1. Note that M intersects the m-axis horizontally,
so, again by convexity, after having touched (0,m*) it continues downward.
Since Mg, in the half-plane z < 0 cannot touch the stable manifold of P,
it follows it is trapped in a bounded region. Due to the absence of periodic
orbits, necessarily (2(t),m(t)) — (0,0) as t — +o0.

Finally, we need to show that m* < 1. By continuity from the low
mobility regime, this is certainly true for p — %2 sufficiently small. If our
claim is false, then there must be a value of p for which m* = m*(u) = 1.
In this situation, M continuous horizontally up to P. It follows that the
union of M with the stable manifold of P form a closed curve, tangent to

13
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Figure 3: Low mobility regime (top panel) and high mobility regime (bottom
panel).

the vector field driving (@l); this is impossible by the Divergence Theorem.
Sketch of the proof of Facts related to the crowding effects model.

We first observe that () has three equilibria: the origin O, whose linear
properties are identical to those of the constant mobility model treated in
the previous section, and the points P and @) with coordinates =+ (—%, 1).
Both P and @) are easily seen to be saddle points, for all values of the
parameters. Similarly to the constant mobility case, the manifolds of P and
() can be proved to be monotone functions in the low mobility regime, while
they spiral around the origin in the moderate mobility regime. What fails
here is that the divergence of the driving vector field is not of constant sign,
so that limit cycles cannot be ruled out. Although we do not have a full
proof about the existence of a limit cycle, we provide clear evidence based

14



on arguments derived by numerical inspection. Our analysis suggests that
the m coordinate of the first intersection of the stable manifold of ) with
the m-axis is increasing in u, and it equals 1 at some pu = fi. Then, the
manifold continues horizontally to reach P (as depicted in Fig. 2). Thus, by
symmetry, the two stable manifolds join to form a separatriz. By increasing p
further, a periodic orbit bifurcates from the separatrix through a homoclinic
bifurcation.
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