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This paper estimates a SEIRD (susceptible-exposed-infected-
recovered-deaths) epidemic model of COVID-19, which accounts 
for both observed and unobserved states and endogenous mobility 
changes induced by lockdown policies. The model is estimated on 
Lombardy and London – two regions that had among the worst 
outbreaks of the disease in the world – and used to predict the 
evolution of the epidemic under different policies. We show that 
policies targeted also at mitigating the probability of contagion 
are more effective in containing the spread of the disease, than the 
one aimed at just gradually reducing the mobility restrictions. In 
particular, we show that if the probability of contagion is decreased 
between 20% and 40% of its original level before the outbreak, while 
increasing mobility, the total death toll would not be higher than 
in a permanent lockdown scenario. On the other hand, neglecting 
such policies could increase the risk of a second epidemic peak even 
while lifting lockdown measures at later dates. This highlights the 
importance during the containment of the disease of promoting “soft” 
policy measures that could reduce the probability of contagion, such 
as, wearing masks and social distancing.
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1 Introduction

The novel coronavirus disease (COVID-19) spread quickly around the world. Many gov-
ernments have adopted draconian measures to weaken its transmission among the popu-
lation and some were more successful than others in containing its spread. The adoption
of lockdown measures was deemed as necessary when policymakers realized that the virus
was more infectious than initially thought, which brought many healthcare systems at the
peak of the epidemic contagion to be under serious pressure. At some point the pressure
on hospitals, and in particular on intensive care units, was so high that in some cases not
all patients were treated. As a consequence, some people died without being diagnosed
the infection and they did not enter the official death count. This implies that, in many
countries, the official death toll considerably underestimates the true number of deaths
(Villa, 2020b). This happens in addition to under-reporting of cases in official statistics.
One clear example of the under-reporting of both cases and deaths is Lombardy, the region
in Northern Italy where the first cases of COVID-19 appeared in late February. Lombardy
is by far the most severely hit region in Italy: as of May 2, with more than 14,000 deaths,
it represents 49.4% of the Italian total death toll. In some provinces, though, the true
death count is at least twice the official figure, reflecting the difficulties of the healthcare
system to cope with the exponential spread of the disease and of intensive care units in
admitting all patients that needed medical care, as highlighted also in the media (Can-
celli and Foresti, 2020). At the same time, many deaths happened in residential care
homes, where many patients were not tested and, therefore, their death was not counted
as COVID-19 related. The under-reporting of deaths is evident when comparing official
COVID-19 death toll with death registries, available from the Italian Statistical Institute
(Istat).1 Figure 1 reports in panel (a) the daily number of “excess” deaths, defined as
the difference between total deaths in 2020 relative to the average of the past 5 years,
and the official coronavirus daily deaths in Lombardy in the first 3 months of 2020. To
compute excess deaths, the figure uses data for a sample of municipalities in Lombardy
that covers approximately 95% of the municipalities in the region and shows that, before
the onset of the disease, the number of deaths in 2020 was in line – if not smaller – than
the average of previous years. The series increases sharply at the end of February, when
the first cases of coronavirus were registered in the region. The official death count is
lower than the true number of deaths at all dates, highlighting a downward bias in official
death counts. Panel (b) of the figure shows the same pattern for England and Wales,
where the excess deaths are computed with the Office for National Statistics (ONS) data
and COVID-related deaths are from two sources: ONS and Public Health England. The
graph shows a pattern similar to Lombardy, where not all the excess mortality in 2020 is
due to COVID-19. Part of this is due to under-reporting, but a part of it may also be due

1https://www.istat.it/it/archivio/240401
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Figure 1: Excess deaths in 2020 and official COVID-19 deaths
Notes. The figure shows excess mortality in 2020 relative to the average of previous 5 years and COVID-
19 official deaths. Panel (a) reports daily data for Lombardy (averaged over a 5-day rolling window),
where excess deaths are computed over a sample that comprises 95% of the municipalities in the region,
whereas panel (b) reports data for England and Wales. Data: Istat, Protezione Civile, Office for National
Statistics, Public Health England.

to deaths not directly related to coronavirus, but indirectly linked to it, if patients with
other pathologies do not receive appropriate treatment because of overwhelmed hospitals.

This evidence suggests that, when trying to model the evolution of the disease, it is of
utmost importance to take into account both observed and unobserved infection and death
counts. This paper aims at doing so, by developing a compartmental susceptible-exposed-
infected-recovered-deaths (SEIRD) model with two main compartments – observed and
unobserved – of infections, recoveries and deaths, extending the classic SIR model first
introduced by Kermack and McKendrick (1927). The model is estimated with Kalman
filter techniques and used to forecast the evolution of the epidemic under a number of
different scenarios. We calibrate the model on official data for Lombardy and London. In
fact, the United Kingdom experienced an evolution of the epidemic similar to Italy and
London, in particular, accounts for the majority of deaths in the country (approximately
25% of the official death toll).

Our model accounts for the underestimation of true cases, by calibrating the under-
reporting intensity to time-series obtained by correcting the observed case fatality rate
with the infection fatality rate estimated in the literature (Ferguson et al., 2020; Villa,
2020a). Moreover, it accounts for the under-estimation of total deaths by explicitly mod-
eling observed and unobserved deaths and calibrating the true mortality rate to be propor-
tional to the number of excess deaths recovered from death registries. Finally, we account
for mobility restrictions in the estimation of the infection probability, one key parameter
that governs the rate at which susceptible individuals get exposed to the disease. We use
mobility trends in Lombardy from Pepe et al. (2020) and in London from Google Com-
munity Mobility Reports and estimate the initial contact rate, given the rate of change
of mobility. Therefore, we explicitly model lockdown by accounting for the decrease in
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mobility of individuals after its imposition.
Our model suggests that at the end of the fit period used to estimate the parameters

(9 April in Lombardy, 15 April in London), the prevalence of the disease is approximately
5.7% in Lombardy and 2% in London. The number of unobserved infected cases is at
least twice as large as observed cases in both regions, whereas the number of unobserved
recoveries is between 20 and 26 times larger than observed recoveries. The true death
count is underestimated by 35% in Lombardy and 17% in London.

We use our model to forecast the evolution of the disease under different policy scenar-
ios. Specifically, we consider a number of policy measures that go from lifting immediately
all lockdown measures to maintaining them until mid-summer, with different intermedi-
ate scenarios, where restrictions are gradually lifted over time. Our forecasts suggest that
with appropriate measures that reduce the probability of contagion by 20% to 40% of
its pre-lockdown level, lifting restrictions would not entail a second epidemic peak, even
in the presence of increased mobility, both in Lombardy and London. In other terms,
with appropriate policies that reduce the probability an individual is infected – e.g. social
distancing, using masks, increasing hygiene standards, isolating infected cases –, we show
that gradually and carefully lifting lockdown measures does not imply a resurgence of the
epidemic curve. This result may provide guidance to policymakers when deciding how
and when lifting lockdowns. Our model suggests that the trade-off between economic
recovery and saving lives can be balanced by implementing soft containment measures
that could reduce the spread of the virus, even in the presence of increased mobility.

The rest of the paper is organized as follows. Section 2 details the methodology for
modeling the evolution of the pandemic. Section 3 details the estimation results. Section
4 provides model forecasts and the predictions about policy counterfactuals. Finally,
section 5 concludes.

2 Methodology

We base our modeling on a susceptible-exposed-infected-recovered-deaths (SEIRD) model
with two compartments – detected or observed and undetected or unobserved – of infected,
recovered and deaths. From the beginning of the epidemic, many researchers have high-
lighted the severe under-reporting of cases in official statistics. As tests are conducted on
symptomatic individuals only, there is a large fraction of asymptomatic and mildly sym-
pomatic cases that are not reported in official statistics (Lavezzo et al., 2020; Li et al.,
2020a; Russo et al., 2020). Moreover, the stress on hospitals has led to a severe underes-
timation of deaths, too (Bucci et al., 2020). For this reason we augment the classic SIR
model (Kermack and McKendrick, 1927), by accounting for both observed and unobserved
states.

SIR models have been used extensively in the modeling of the COVID-19 spread
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Figure 2: SEIRD model with unobserved and observed compartments

(Favero, 2020; Giordano et al., 2020; Russo et al., 2020; Toda, 2020; Toxvaerd, 2020).
The version here proposed assumes the existence of 8 states, summarized in Figure 2:
susceptible St, exposed Et, infected unobserved It, infected observed Idt, recovered unob-
served Rt, recovered observed Rdt, deaths unobserved Dt and deaths observed Ddt. Every
individual in the population at every point in time belongs to one of these categories. The
discrete dynamics of the system are described as follows,

St =

(
1− β

N −Dt−1 −Ddt−1
It−1

)
St−1

Et = (1− σ)Et−1 +
β

N −Dt−1 −Ddt−1
St−1It−1

It = (1− δ − ε− γ) It−1 + σEt−1

Idt = (1− δd − γd) Idt−1 + εIt−1

Rt = Rt−1 + δIt−1

Rdt = Rdt−1 + δdIdt−1

Dt = Dt−1 + γIt−1

Ddt = Ddt−1 + γdIdt−1

where N is total size of the population,2 β, σ, ε, δ, δd, γ, γd are the static parameters
which determine the transitions between the states in the dynamics. In particular, we
have that all parameters are strictly positive, then 0 < σ < 1, 0 < δ + ε + γ < 1 and

2We do not allow for variations in population size which might have occurred in the time periods
considered. For the purpose of our study we assume them to be marginal in respect to total population.
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0 < δd + γd < 1. The subscript d indicates detected variables or parameters referred to
detected variables.

Given that the observed variables are only yt = (Idt, Rdt, Ddt)
′ and are observed with

noise, we can represent this dynamic system with a non-linear state space

yt = Zαt + εt εt ∼ N (0,Ωε)

αt = T (αt−1) + ηt ηt ∼ N (0,Ωη)

where αt = (St, Et, It, Idt, Rt, Rdt, Dt, Ddt)
′ is the unobserved state vector, Z is the time

invariant matrix

Z =

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


andT (.) is the multivariate function describing the linear and non-linear relations between
the state vector relating t − 1 and t. Following Harvey (1989), the estimation of the
sequence (αt)

T
t=1 is obtained through an Extended Kalman Filter, and the estimation of

the unknown parameters by maximizing the likelihood obtained by the resulting prediction
error decomposition.3

As showed by Diekmann et al. (1990) and Heffernan et al. (2005), the basic reproduc-
tive ratio (R0) for continuous time SEIR compartmental epidemic models is defined as the
dominant eigenvalue of the “next generation operator,” which is the matrix that describes
the rates at which infected individuals in one infected state can produce new infected
individuals from another state, times the average length of time period that an infected
individual spends in her own compartment. In a state-space SIR model Kucinskas (2020)
shows that it can be identified from the daily growth rate in the number of infected in-
dividuals at time 0. On the other hand, Tibayrenc (2007) shows it can be approximated
by R0 = βτ , where τ is the duration of the infectivity. Following Diekmann et al. (1990)
the R0 of our model reads as4

R0 =
β

ε+ δ + γ
(1)

This result coincides with Russo et al. (2020) where R0 is obtained from the necessary
condition for convergence on the Jacobian matrix of the subsystem of the three infected
states Et, It, Idt.

For the model to be valid we need that at each time t the sum of all the states is equal
to N . In order to impose this restriction while using the Kalman Filter we follow the

3For details on the state equation specification under the Extended Kalman Filter see Appendix A.
4For the details on the derivation see Appendix B.
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approach of Doran (1992) and augment the cross-section of each observation vector yt of
an additional observation set constant as N for every t. Then the transition equation for
this series becomes

∑
j αjt = N at every t. While assuming that this additional series

has a Gaussian uncorrelated measurement error with E [ε0t] = 0 and E [ε20t] = 0, the
constraint is guaranteed to hold in both the updating and smoothing equations of the
Kalman Filter.

3 Calibration and Estimation

3.1 Data and Initial Conditions

The current study is based on the COVID-19 contagion data for Lombardy and London.
The data for Lombardy are obtained from the Github repository of Protezione Civile Ital-
iana.5 We collect daily data on the current total number of COVID-19 infected positively
tested, number of recovered and total number of COVID-19 deaths in the region from
24/02/2020 to 09/04/2020. The data provided by Protezione Civile are reported before
being confirmed by the Italian National Institute of Health (ISS). Due to this delay there
might be reporting differences with the actual number of detected individual and this
certainly is one of the contributors to the noise in the measurment of the true detected
variables.

In regards to London, we have collected daily data on the total number of COVID-19
infected from the UK Government COVID-19 data dashboard6 and on the total number
of COVID-19 hospital deaths from the NHS website7 from 01/03/2020 to 17/04/2020.
The data on recovered patients are not publicly available for the London area, and the
total number of infected TIdt is now a sum of Idt, Rdt and Ddt. Therefore in the case
of London we modify the transition equation for an observed vector of yt = (TIdt, Ddt)

′

where Z is now redefined as

ZLon =

(
0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 1

)

In estimating the model on the two datasets, we set the total population in the two regions
equal to NLom = 10, 060, 574 for Lombardy,8 and NLon = 9, 050, 506 for London.9

To partly solve the identification problem we assume that there is no correlation in
the cross-section between the disturbances of the state equation and that they are ho-
moschedastic, i.e. Ωη = σ2

ηI. On the other hand, measurement errors in the transition

5https://github.com/pcm-dpc/COVID-19
6https://coronavirus.data.gov.uk
7NHS, COVID-19 Daily Deaths.
8Istat, Resident population on the 1st of January, 2019.
9ONS, Subnational population projections, 2018.
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equation can be due to different sources. Therefore, while we still assume no correlation
in the cross-section, we assume that the variances are heteroschedastic

ΩεLom =

σ
2
1ε 0 0

0 σ2
2ε 0

0 0 σ2
3ε

 ΩεLon =

(
σ2
1ε 0

0 σ2
2ε

)

In SEIR models the initial conditions imply that all states should equal 0 at t = 0.
In our specification we assume that S0 = N . However, given that in both settings data
on COVID-19 infections begin to be reported after the outbreak has already started, we
cannot have initial states starting at 0. For this reason, we set Id0, Rd0, Dd0 at their
values at the beginning of the datasets. Among the remaining state variables we set
D0 = Yd0 × 0.015 and we estimate the other initial conditions, imposing that S0 > E0 >

I0 > Id0 > R0 and that
∑

j αj0 = N . Finally, the standard errors of the estimated
parameters are computed by bootstrap following Stoffer and Wall (1991).

3.2 Parameter Description

The introduced SEIRD model has 8 time-invariant parameters which describe the evolu-
tion of the disease over time, β, σ, ε, δ, δd, γ, γd. The estimation of all the parameters,
including the elements of the covariance matrices Ωϑ and Ωη, creates an issue of identifi-
cation. We address this problem by calibrating some of the parameters.10

σ is the rate at which the exposed individuals become infected. This is usually set
equal to the inverse of the incubation period of the disease. Li et al. (2020b) collected
data on the first 425 confirmed cases in Wuhan and found that the median incubation
period was 5.2 days with 95% confidence intervals between 4.1 and 7 days. These results
are also also consistent with the findings of Lauer et al. (2020). Another study by Li et al.
(2020a) assessed the prevalence of the novel coronavirus for the reported cases in China
with a Bayesian Networked Dynamic Metapopulation Model with data on mobility. The
study estimates the fraction of undocumented infections and their contagiousness finding
a mean latency period in the transmission of the disease of 3.42 days with 95% confidence
intervals between 3.30 and 3.65 days. We have estimated our model on the samples
selected for a range of values of 1/σ between [3, 7] finding that the estimates of β, and
as a consequence R0, where practically unchanged. We ultimately set 1/σ = 3, using the
lower bound of the range.

ε, δ and γ are, respectively, the proportion of the infected unobserved It which become
detected, recovered, and die at each time period t. According to the guidelines of the

10As highlighted by Russo et al. (2020), the actual transition of the individuals across these states is
reported with a time delay. Therefore these parameters are not exactly the average daily transition rates.

8
C

ov
id

 E
co

no
m

ic
s 1

8,
 1

5 
M

ay
 2

02
0:

 1
-4

1



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

WHO, a normal flu should go away between a week or two.11 Symptoms of fever should
disappear between 4 to 5 days but cough might still be present. On the other hand,
according to Day (2020), from the data available from Wuhan we also have that 4 out 5
cases are asymptomatic. For these reason we calibrate the average recovery period to 5
days resulting in a δ = 1/5.

δd and γd are the proportions of the infected observed Idt which recover or ultimately
die, respectively. Among detected infected, few of the individuals are positively tested with
mild symptoms and home-isolate, whereas the majority are those with severe symptoms
who are hospitalized. According to a recent WHO report, patients with severe or critical
symptoms take between 3 to 6 weeks to recover (WHO, 2020). In light of this, we assume
the recovery time for detected infected to be the lower bound of this range. Therefore we
set δd = 1/21.

3.3 Including Mobility Data

In SEIR models the parameter β describes the infection rate of susceptible individu-
als, or the “effective” daily transmission rate of the disease. The possibility of temporal
heterogeneity in the transmission rate has been extensively studied in the literature to
explain the amplitude in the variation in the outbreaks of diseases, from Soper (1929) to
Grassly and Fraser (2006). In our context the possible variation in the transmission rate
of COVID-19 is mainly related to changes in mobility of the population. The impact of
mobility on the transmission rate can be appreciated given its approximate decomposi-
tion in the product β ≈ n̄pc, where n̄ is the daily average number of contacts that an
individual has in the population and pc is the actual probability of contracting the disease
in a single contact. Alteration in pc can be due to many factors, among which how each
individual actively take precautions to prevent the contagion in each contact. Della Valle
et al. (2007), among others, estimates n̄ at a given point in time and taking into account
heterogeneity between age groups and lifestyles. However, rather than estimating a single
value for n̄, we are mostly interested in observing its variation over time, which crucially
depends on individuals’ mobility.

To measure mobility changes during the COVID-19 outbreak, we use data from the
Google Community Mobility Reports12 for London, and from Pepe et al. (2020) for Lom-
bardy. Google reports collect information from smartphones of Google users who opted-in
for their location history in their Google Accounts, and calculate the variation in the av-
erage visits and length of stay at different places compared to a baseline. Google provides
this data for 6 categories of places: retail and recreation, grocery and pharmacy, parks,
transit stations, workplace and residential. There are no further information, though, on
how the measures are computed, the sample size and if it varies over time.

11Q&A: Similarities and differences – COVID-19 and influenza
12https://www.google.com/covid19/mobility/
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On the other hand, the study of Pepe et al. (2020) also collects location data from
users who have opted-in to provide access to their location data anonymously through
agreeing to install partner apps on their smartphones. This app allows to collect geo-
graphical coordinates with an estimated accuracy level of about 10 meters. Their dataset
is composed of a panel of about 167,000 users in Italy who were active during the week
22-28 February and for whom there was at least one stop collected during the same week.
Individuals are then followed over the next 8 weeks. The study provides data on the
average contact rate over time by constructing a proximity network between individuals,
where proximity between any two users is assessed within a circle of radius 50 meters.
Despite being potentially a more selected sample they compute the daily average relative
degree of the network at the province level, thus providing more detailed data than Google
reports.13

For our purposes, we have collected the average degree of the network for each of the
provinces of Lombardy between 24 February and 21 March and computed a weighted
average by population of each province.14 We then compute the daily rate of change of
the relative degree of the network with respect to its value on 24 February. Since after
11 March the values tend to vary little, we assume that the rate of change from the 21
March to 9 April remains unchanged.

Finally, we incorporate in our model the data on mobility obtained by these sources
assuming that the rates of changes rmt in mobility are proportional to the rates of changes
in the average daily contact rate n̄. In particular, assuming that pc remains constant we
have that βt = n̄pc (1 + rmt) = β0 (1 + rmt), which is in line with works on determin-
istic variation in effective daily transmission rate in SEIRD model, such as the recent
Piccolomini and Zama (2020) on the Italian COVID-19 outbreak.

This alteration ultimately makes the multivariate function Tt (αt) time varying. How-
ever, given that the time path of rmt is completely defined beforehand, the time variation
in Tt (αt) is deterministic and the standard Kalman Filter equations are still valid.

3.4 Under-reporting of Cases – εt

In the same fashion as for β, we calibrate εt on the rate of change of under-reporting
estimated from real data, following Villa (2020a). Specifically, let ξt be the adjusted daily
case fatality rate of the disease, computed as the number of cumulative deaths divided
by the number of cumulative official cases lagged by 6 days15 and ι be the true infection

13Our analyses are robust to the use of Google mobility reports for Lombardy, too. Results are available
upon request.

14The weighting does not have a large effect on the outcome.
15We choose to divide the current number of deaths by 6-day lagged cases because there is a lag

between the onset of symptoms and death. The Italian Health Institute (Istituto Superiore di Sanità,
ISS) quantifies this lag in a median time of 10 days. However, since there is a lag between the infection
and the onset of symptoms, we rescale this factor to 6 days, following Villa (2020a).
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Figure 3: Estimated values of ε̃t

fatality rate, which, following Ferguson et al. (2020) and Villa (2020a), is estimated to
be 0.9% (95% CI: 0.4%-1.4%) for the United Kingdom and 1.14% for Italy (95% CI:
0.51%-1.78%).16 Therefore, a proxy for εt is computed as:

ε̃t =
ι

ξt

Although the magnitude of ε̃t estimated with this methodology might not exactly
match the εt parameter in our SEIRD model, because of measurement error, we still
believe that its variation over time might be closely related to the one that our parameter
should experience if it were to be time varying. The variation in εt would represent the
ability that the healthcare system has to detect infected individuals and this ability should
be decreasing as the system is under stress, as we see from the results presented in Figure
3. In order to incorporate this feature, as already done for mobility, we compute the daily
rate of change of ε̃t, rε̃t and we assume that εt = ε0 (1 + rε̃t).

3.5 Per-day Mortality Rates – γ and γd

We calibrate the per-day mortality rate to match the unobserved mortality computed from
Istat mortality statistics for Lombardy. Specifically, we compute excess mortality as the
difference between daily deaths in 2020 and average daily deaths in the previous 5 years,
as in Figure 1, panel (a). The difference between excess mortality and COVID-19 official
deaths represents deaths that occured in 2020 in excess relative to previous years but not
officially attributed to COVID-19. Only a subset of the excess mortality in Istat data
is directly or indirectly related to COVID-19. Indeed, the difference may represent: (i)
deaths that are directly caused by COVID-19, but not reported in official statistics; (ii)

16The estimate is obtained by correcting the age-stratified infection fatality rate in Verity et al. (2020)
for the demographic structure of Italy and the United Kingdom.
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deaths for other causes indirectly related to COVID-19 (for example, if healthcare systems
could not provide appropriate care to patients for other diseases because of overwhelmed
hospitals); (iii) deaths from other causes unrelated to COVID-19. Following Bucci et al.
(2020), and using one of their most conservative scenarios, we assume that only 36% of the
mortality in excess to official statistics is directly related to COVID-19, but unobserved.17

To this end, we set the per-day mortality rate to be γ = 0.0011. This choice ensures that
we are able to match unobserved deaths in the model to the true excess mortality series,
derived empirically from the data. We then assume that the per-day detected mortality
rate is equal to three times the mortality rate for unobserved cases, i.e. γd = 0.0033. We
make this choice, based on the fact that observed cases are generally more severe (because
symptomatic) and therefore are more likely to cause complications which may result fatal.

4 The Impact of the Lockdown

4.1 Permanent Lockdown, Unmitigated Scenario and Gradual

Lifting of Restrictions

Lombardy The results of our estimation are reported in Figure 4, where we assume
that the restrictions in place in Lombardy remain the same until July. The top panel
reports the evolution of infected, recovered and deaths in the fit window (24 February - 9
April), observed (solid lines) and unobserved (dashed lines). The middle panel reports the
same set of variables, adding a forecasting window that ends in the first week of July.18

The bottom panel reports the evolution of exposed individuals, the reproduction number
Rt and the fatality rate, computed as the ratio of total deaths (observed and unobserved)
over total cases, computed as the sum of infected, recovered and deaths (observed and
unobserved).

The model estimates a β̂0 = 0.744 and suggests that at the end of the in-sample period
there are at least twice as many infected individuals as those observed (63,202 undetected
and 29,067 detected), whereas the number of recoveries is 26 times higher than those
actually observed in the data: this suggests that the prevalence of the disease among the
population is approximately 5.7% (computed as the sum of total recoveries and infected
over the total population in Lombardy). The number of unobserved deaths – those caused
by COVID-19 but unreported – is 3,470, meaning that the official death count would be
underestimating the true number of deaths by as much as 35%, being the number of
detected deaths 10,022. By the end of July, our model forecasts that the total number
of cases is close to 1 million, the majority of which is composed of undetected recoveries.

17See Appendix C for a more detailed discussion on the calibration of this parameter.
18Figure D.1 in the Appendix plots detected infected, recovered and deaths alongside 95% bootstrapped

forecasting bounds.
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Figure 4: Baseline scenario Lombardy: permanent lockdown.

Notes. The figure shows the fitted (top panel) and forecasted (middle panel) curves of undetected (blue
dashed lines) and detected (red solid lines) infections, recoveries and deaths. The bottom panel shows
exposed individuals, the reproduction rate Rt and the “plausible” fatality rate. This scenario assumes
that the lockdown stays in place until the end of the forecast window (5 July).

The number of observed and unobserved infected individuals fades out by the end of the
forecasting period, whereas the total number of deaths equals 25 thousand, 5.7 of which
unobserved.

The lockdown measures considerably reduce the number of exposed individuals, which
become close to 0 by July. The reproduction rate of the disease, summarized by the
variable Rt, reaches a level of 1.01 (95% CI: 0.90-1.12) by the end of the fit period and
keeps decreasing until the end of the forecast window to a level of 0.58 (95% CI: 0.51-
0.64).19 The plausible fatality rate oscillates between 1.5% and 2.5% in the fit window
and it stabilizes around 2-2.5% in the forecast period. Our estimate is thus in the upper
bound of those found in the literature for the Italian case (Rinaldi and Paradisi, 2020;
Villa et al., 2020). However, this seems plausible given the severity of the disease in the
case of Lombardy and may reflect the overwhelming pressure under which the healthcare
systems has been operating.

19Figure D.2, panel a, plots the evolution of Rt in Lombardy over time, alongside 95% bootstrapped
confidence intervals, under the permanent lockdown scenario.
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Figure 5: Current Scenario Lombardy

Notes. In this scenario, the government lifts the lockdown gradually on three dates 04/05, 18/05 and
01/06 bringing the mobility at 25%, 50% and 75% of the baseline of 24/02. The probability of contagion
is unchanged.

We compare these results to a scenario where we assume that no restrictions take
place, i.e. an unmitigated scenario, reported in Figure D.3. In this scenario we assume that
mobility remains at the levels observed in the two weeks before the first cases were officially
recorded in Italy.20 In an unmitigated scenario the number of deaths is predicted to reach
a level around 125,000, of which 48,000 would not be detected. The high number of
undetected deaths reflects the stress under which hospitals would be put if no containment
measures were adopted. The reproduction rate in this scenario fluctuates around 3.

Both these scenarios (the permanent lockdown and the unmitigated case) are only
benchmarks. They show what would happen in the absence of policy interventions to
lift restrictions in one case and to impose them in the other. Therefore, we also evaluate
what would happen under the current policy implemented by the Italian government.
Specifically, the lockdown measures have been partly lifted starting from May 4. The
Italian government announced a further lifting of restrictions in the coming days, if the
epidemic proves to be under control. We forecast the evolution of the epidemic under

20Specifically, we replicate the mobility pattern of the two weeks prior to the beginning of the epidemic
until the end of the forecast window.
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the plan of re-openings of the government under different assumptions on the evolution
of mobility changes.

The current government plan entails a gradual re-opening of economic activities on
three dates: May 4, May 18 and June 1. On each of these dates, we assume that mobility
increases up to a fraction of its level before that any restriction was imposed. Specifically,
we assume that mobility goes back to 25%, 50% and 75% of its pre-lockdown level at
each subsequent date. However, we assume that the probability of contagion remains
unaffected, i.e. we set pc to be equal to its pre-lockdown level.21 The evolution of the
epidemic under this scenario, according to our model, is reported in Figure 5. The model
suggests that we can expect a second peak of infections by mid-summer (middle panel of
Figure 5) and a surge in deaths, both observed and unobserved. Therefore, in the current
policy scenario for Lombardy, our model predicts 978,000 infected, 2.9 million recovered
and 69,100 deaths, of which 280,700, 649,000 and 13,900, respectively, are undetected.

The cumulative numbers of exposed, infected, recovered and deaths under these sce-
narios for Lombardy are reported in Table 1, panel A, rows 1-5.

London In this case the model estimates a β̂0 = 0.474, while Figure 6 reports the
forecasts of the evolution of the epidemic assuming a permanent lockdown until mid-July.
Exposed individuals reach a peak in early May and then fade out, as well as infected,
with a delay between detected and undetected cases. By the end of the forecast period
on July 19, our model predicts a total of 13,827 detected deaths and 3,124 undetected
deaths. We can compare these numbers to those that would be observed if no restrictions
were imposed. Results are reported in Figure D.4. The total number of detected deaths
under the no lockdown policy would reach a level of 43,754, whereas unreported deaths
would be 39,295. Thus, we would observe approximately 83 thousand deaths, i.e. around
1% of the total population living in London as also measured by the case fatality rate
(which in this case would coincide with the mortality rate of the disease).

The UK government has only very recently announced a plan of re-opening of economic
activities, but precise dates are yet unavailable. For our purposes, we assume that the
dates at which the government lifts lockdown measures are set two weeks later than Italy
(i.e. on 18/05, 01/06, 15/06). We also assume, as we did for Lombardy, that on these
dates mobility goes back to 25%, 50% and 75% of the baseline level. The forecasted states
under this scenario are reported in Figure 7. Under this policy, the total number of deaths
would be considerably reduced, even assuming that the probability of contagion remains
unaffected. The cumulative number of deaths equals 23,494, whereas unobserved deaths
are 5,062. The reproduction rate Rt equal 1.16 (95% CI: 1.02-1.31) at the end of the fit

21Since we do not have an exact measure of the average number of daily contacts among the individuals
at the beginning of our sample, n̄, we cannot disentangle pc from β0. However, we assume it to be close
to the average of the results provided by Della Valle et al. (2007) – roughly 16 –, so that the probability
of contagion estimated by our model is pc = 0.046.

15
C

ov
id

 E
co

no
m

ic
s 1

8,
 1

5 
M

ay
 2

02
0:

 1
-4

1



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

0

1

2

3

4
x 10

4

01
/0

3
06

/0
3

11
/0

3
16

/0
3

21
/0

3
26

/0
3

31
/0

3
05

/0
4

10
/0

4
15

/0
4

Infected

0

0.5

1

1.5

2
x 10

5

01
/0

3
06

/0
3

11
/0

3
16

/0
3

21
/0

3
26

/0
3

31
/0

3
05

/0
4

10
/0

4
15

/0
4

Recovered

0

1000

2000

3000

4000

5000

01
/0

3
06

/0
3

11
/0

3
16

/0
3

21
/0

3
26

/0
3

31
/0

3
05

/0
4

10
/0

4
15

/0
4

Deaths

0

1

2

3

4

5

6
x 10

4

01
/0

3
16

/0
3

01
/0

4
16

/0
4

02
/0

5
17

/0
5

02
/0

6
17

/0
6

03
/0

7
19

/0
7

Infected

0

1

2

3

4

5

6
x 10

5

01
/0

3
16

/0
3

01
/0

4
16

/0
4

02
/0

5
17

/0
5

02
/0

6
17

/0
6

03
/0

7
19

/0
7

Recovered

0

5000

10000

15000

01
/0

3
16

/0
3

01
/0

4
16

/0
4

02
/0

5
17

/0
5

02
/0

6
17

/0
6

03
/0

7
19

/0
7

Deaths

0

1

2

3

4
x 10

4

16
/0

3
01

/0
4

16
/0

4
02

/0
5

17
/0

5
02

/0
6

17
/0

6
03

/0
7

19
/0

7

Exposed

0

0.5

1

1.5

2

2.5

3

01
/0

3
16

/0
3

01
/0

4
16

/0
4

02
/0

5
17

/0
5

02
/0

6
17

/0
6

03
/0

7
19

/0
7

Rt

0

0.01

0.02

0.03

0.04

0.05

0.06

07
/0

3
21

/0
3

05
/0

4
20

/0
4

05
/0

5
20

/0
5

04
/0

6
19

/0
6

04
/0

7
19

/0
7

Plausible Fatality Rate

Figure 6: Baseline scenario London: permanent lockdown.

Notes. The figure shows the fitted (top panel) and forecasted (middle panel) curves of undetected (blue
dashed lines) and detected (red solid lines) infections, recoveries and deaths. The bottom panel shows
exposed individuals, the reproduction rate Rt and the “plausible” fatality rate. This scenario assumes
that the lockdown stays in place until the end of the forecast window (19 July).
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Figure 7: Current plausible scenario, London

Notes. In this scenario, the government lifts the lockdown gradually with a two weeks delay with respect
to Lombardy on three dates – 18/05, 01/06 and 15/06 – bringing the mobility at 25%, 50% and 75% of
the baseline of the 24/02. The probability of contagion is unchanged.

period and declines to 0.64 (95% CI: 0.56-0.72).22

The cumulative numbers of exposed, infected, recovered and deaths under these sce-
narios for London are reported in Table 1, panel B, rows 15-19.

4.2 Policy Counterfactuals

Changing mobility and opening dates We run counterfactual scenarios where we
change mobility levels and dates of re-opening. Specifically, for Lombardy only,23 we look
at 5 different counterfactual policies:

1. the lockdown is gradually lifted on the three aforementioned dates, but mobility
increases at 33%, 66% and 100% of its pre-lockdown level;

2. the lockdown is lifted earlier on three dates: April 27, May 11, May 25 and mobility
increases at 25%, 50%, 75% of the baseline;

22Figure D.2, panel b, plots the evolution of Rt in London over time, alongside 95% bootstrapped
confidence intervals, under the permanent lockdown scenario.

23Results for London are qualitatively similar and available upon request.
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Table 1: Cumulative states at the end of fit and forecast period under different policy
scenarios

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
E I Id R Rd D Dd Rt RLB

t RUB
t

×103

Panel A: Lombardy

Fit - End date: 9 April
1. Baseline 42.4 63.2 29.1 411.5 15.7 3.5 10.0 1.01 0.90 1.12
2. Unmitigated 955.2 1,804.8 493.5 5,031.3 196.8 28.5 14.1 3.36 2.99 3.73

Forecast - End date: 5 July
3. Baseline 0.3 0.3 10.6 805.1 154.8 5.7 20.0 0.58 0.51 0.64
4. Unmitigated 0.0 0.0 13.0 8,401.7 1,084.6 47.6 77.4 3.36 2.99 3.73
5. pc = 100% 322.0 280.7 697.3 2,254.9 649.0 13.9 55.2 1.54 1.37 1.71
6. pc = 90% 190.9 158.1 369.5 1,580.2 421.3 10.1 39.0 1.38 1.23 1.54
7. pc = 80% 76.5 63.3 163.0 1,157.9 281.3 7.7 29.0 1.23 1.09 1.36
8. pc = 70% 22.6 19.4 64.3 938.6 205.0 6.5 23.5 1.07 0.96 1.19
9. pc = 60% 5.2 4.8 24.9 834.4 165.6 5.9 20.7 0.92 0.82 1.02
10. Scenario 1 318.1 336.4 1,311.1 3,717.0 1,208.8 22.2 95.2 1.85 1.65 2.06
11. Scenario 2 212.1 213.0 915.9 3,251.9 1,117.9 19.6 88.7 1.54 1.37 1.71
12. Scenario 3 241.4 188.5 351.2 1,447.1 353.3 9.3 34.1 1.54 1.37 1.71
13. Scenario 4 231.5 183.2 369.4 1,579.0 416.4 10.1 38.6 1.54 1.37 1.71
14. Scenario 5 492.4 423.7 903.6 2,593.7 733.9 15.8 61.3 1.85 1.65 2.06

Panel B: London

Fit - End date: 15 April
15. Baseline 27.2 36.4 8.9 171.8 8.7 0.7 4.1 1.16 1.02 1.31
16. Unmitigated 309.5 331.6 39.4 579.4 18.6 3.3 1.3 2.23 1.95 2.51

Forecast - End date: 19 July
17. Baseline 0.6 0.7 12.5 599.3 144.2 3.1 13.8 0.64 0.56 0.72
18. Unmitigated 0.1 0.3 14.2 6,934.3 612.8 39.3 43.8 2.23 1.95 2.51
19. pc = 100% 50.7 43.8 139.1 941.4 279.6 5.1 23.5 1.11 0.97 1.25
20. pc = 90% 19.1 16.9 65.6 751.7 206.3 4.0 18.3 1.00 0.88 1.13
21. pc = 80% 6.0 5.5 29.9 645.3 162.9 3.4 15.2 0.89 0.78 1.00
22. pc = 70% 1.6 1.6 14.1 586.5 137.4 3.1 13.3 0.78 0.64 0.91
23. pc = 60% 0.4 0.4 7.4 552.9 122.2 2.9 12.3 0.67 0.55 0.78

Notes. Columns 1-7 report the cumulative number (in thousands) of exposed (E), infected (I), detected
infected (Id), recovered (R), detected recovered (Rd), deaths (D), detected deaths (Dd). Columns 8-10
report the reproduction rate (Rt) and its 95% confidence interval (RLB

t and RUB
t ). Panel A reports

the numbers for Lombardy and panel B for London. The Baseline scenario assumes the presence of
the lockdown until the end of the forecast period. The Unmitigated scenario is one where no restriction
measures are taken. Scenario 1 assumes the government gradually lifts lockdown on three dates – 04/05,
18/05, 01/06 – bringing mobility at 33%, 66% and 100% of its baseline on 24/02. Scenario 2 anticipates
the aforementioned dates by one week, whereas Scenario 3 delays the dates by one week, both assuming
mobility goes back to 25%, 50% and 75% of its baseline. Scenario 4 and Scenario 5 assume a slower
lifting of restrictions on three dates (04/05, 25/05, 15/06) bringing mobility to 25%, 50%, 75% and 33%,
66% 100% of its baseline, respectively. The row labelled pc = x%, with x = {100, 90, 80, 70, 60}, uses the
current plan of the Italian government: lifting restrictions on 04/05, 18/05, 01/06, with mobility going
back to 25%, 50% and 75% of its baseline and assuming the probability of contagion is only a fraction
x% of its baseline in the pre-lockdown period. For London, we assume the government lifts restrictions
two weeks after Italy: 18/05, 01/06, 15/06.
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3. the lockdown is lifted later on three dates: May 11, May 25, June 8, and mobility
increases at 25%, 50%, 75% of the baseline;

4. the lockdown is lifted over a longer time horizon on three dates: May 4, May 25,
June 15, and mobility increases at 25%, 50%, 75% of the baseline;

5. the lockdown is lifted over a longer time horizon on three dates: May 4, May 25,
June 15, and mobility increases at 33%, 66%, 100% of the baseline;

Results for counterfactual scenarios 1-5 are reported in Figures D.5-D.9 and rows 10-14
of Table 1, panel A. The model suggests that a faster return to the mobility of the pre-
lockdown period (scenario 1, Figure D.5) is associated with a second and more severe peak
of the epidemic during the summer, with increases in infections and deaths, both observed
and unobserved. Anticipating (scenario 2, Figure D.6) or delaying (scenario 3, Figure D.7)
the lifting of restrictions has the expected effect on the number of cases: an earlier re-
opening would anticipate the second peak and a later re-opening would further delay the
peak. Spreading the lifting of restrictions on a longer time horizon and increasing mobility
(Scenario 4 and 5, shown in Figure D.8 and D.9) makes little difference with respect to
the current policy if mobility increases only up to 75% of its baseline level, but it entails
more cases and deaths if mobility increases up to 100% of its baseline.

Reducing the probability of contagion pc All these scenarios rest on the assumption
that the probability of contagion remains the same throughout the whole period under
analysis. However, many prevention measures will be in place and, in some cases, will
be mandatory, such as, wearing masks in public, social distancing, avoid gatherings of
people, higher hygienic standards, sanitizing public and private spaces. Moreover, the
virus could mutate over time (although the consensus on this is not unanimous). We can
nonetheless expect that “soft” containment measures reduce the probability of contagion,
therefore compensating for the increased mobility. We therefore run a second set of
counterfactual scenarios where we fix the dates at which the government lifts restrictions
to the baseline (i.e. to the actual plan implemented by the government), but we assume
different values for the probability of contagion, from 100% to 60% of its pre-lockdown
levels,24 assuming mobility increases to 25%, 50% and 75% of its pre-lockdown levels on
May 4, May 18 and June 1 in Lombardy (May 17, June 1 and June 15 in London). We
compare these counterfactuals to the scenario where the lockdown is maintained until
the end of the period under analysis. Figures 8 and 9 show the results for detected and
undetected infections and deaths in Lombardy and London, respectively.25 The line where
the probability of contagion is held constant to 1 is the same as the current policy scenario

24For the purpose of our model, given a deterministic path of n̄t, a percentage change ∆ in pc would
result in an equal percentage change in βt since ∆pcn̄t ≈ ∆βt.

25Figure D.10 provides results for the number of exposed individuals.
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Figure 8: Detected and undetected deaths under different policy scenarios, Lombardy

Notes. The figure shows the evolution of infected and deaths under a set of counterfactual policies in
Lombardy. We assume that the government lifts restrictions on three dates: 04/05, 18/05, 01/06. Vertical
solid lines highlight these dates, vertical dashed line highlight the end of the fit window. On each date
mobility increases at 25%, 50% and 75% of the pre-lockdown level. The counterfactuals assume different
probability of contagion from 100% to 60% of its baseline. As a comparison, we also report the evolution
under the permanent lockdown scenario (dashed line).
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Figure 9: Detected and undetected deaths under different policy scenarios, London

Notes. The figure shows the evolution of infected and deaths under a set of counterfactual policies in
London. We assume that the government lifts restrictions on three dates: 18/05, 01/06, 15/06. Vertical
solid lines highlight these dates, vertical dashed line highlight the end of the fit window. On each date
mobility increases at 25%, 50% and 75% of the pre-lockdown level. The counterfactuals assume different
probability of contagion from 100% to 60% of its baseline. As a comparison, we also report the evolution
under the permanent lockdown scenario (dashed line).
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of the previous section. As highlighted already, in this scenario our model suggests that
increases in mobility that are not offset by a reduced probability of contagion likely end up
in a second epidemic peak. Reducing the probability of contagion makes the appearance
of a second peak less likely and, as a consequence, considerably decreases the death toll.
If the probability of contagion decreases at 60% of its baseline level we can expect in
Lombardy a number of deaths that is very close to the permanent lockdown scenario:
20,700 detected and 5,900 undetected deaths in this counterfactual as opposed to 20,000
and 5,700, respectively, in the permanent lockdown, as shown in Table 1, row 9. In London
a similar result is achieved when the probability of contagion is set between 70% and 80%
of its baseline level.

Table 1 also shows that if the probability of contagion pc does not increase to its
level before the introduction of restriction measures the reproduction rate of the virus,
Rt remains below 1. In the scenario where the probability of contagion is 60% of its
pre-lockdown level, the forecast of Rt at the end of the forecast window is 0.92 (95% CI:
0.82-1.02) in Lombardy and 0.67 (95% CI: 0.55-0.78) in London. This evidence could
provide some useful insights for policymakers when lifting restrictions and highlights the
importance of adopting “soft” containment measures that could reduce the probability
of infection, even when mobility goes back to its baseline levels as economic activities
re-open.

5 Conclusion

This paper estimates a SEIRD epidemic model of COVID-19, by accounting for both
observed and unobserved states in modeling infections, recoveries and deaths. We cal-
ibrate our model on data for Lombardy and London, two of the hardest hit regions in
the world by the epidemic. We explicitly account for mobility changes due to the lock-
down. We show that the under-reporting of cases and deaths is a quantitatively relevant
phenomenon. Furthermore, we use the model to predict the evolution of the epidemic
under different policy scenarios of lockdown lifting. We show that the lockdown has a
considerable impact on total cases and deaths relative to an unmitigated scenario where
the whole population would have been infected. Furthermore, we show that a gradual
lifting of restrictions, in both Lombardy and London, would likely cause a second epidemic
peak, which would be more severe if the return to the pre-lockdown mobility is faster.
Anticipating, delaying or spreading the dates of re-opening on a longer time horizon would
not change the main conclusion that a second peak is likely. However, we further show
that reducing the probability of contagion to 60% of its baseline pre-lockdown level in
Lombardy and between 70% and 80% in London – even in the presence of increased mo-
bility – implies an evolution of the epidemic similar to that under a permanent lockdown
scenario. Therefore, this paper provides evidence in favor of soft policies for the so called
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“second phase,” such as social distancing, wearing masks, sanitizing public and private
spaces and increasing hygienic standard and, in general, all measures that can reduce
the probability of infection. We see our results as a starting point, which could help
policymakers in balancing the trade-off between imposing stricter measures and harming
economic activity and campaigning in favor of softer measures whose efficacy ultimately
depends on citizens’ active collaboration. Nonetheless, more research is needed on which
policy is most effective in cutting the transmission of the virus as more governments lift
restrictions around the world.
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Appendix

A Extended Kalman Filter State Space Representation

for the SEIRD Model

Our SEIRD model can be represented in non-linear state space form as

yt = Zαt + εt εt ∼ N (0,Ωε) (A.1)

αt = T (αt−1) + ηt ηt ∼ N (0,Ωη) (A.2)

where αt = (St, Et, It, Idt, Rt, Rdt, Dt, Ddt)
′ is the unobserved state vector. The non linear-

ity comes from the presence of multivariate vector function T (αt−1), which can be decom-
posed in the sum of its linear and non linear components T (αt−1) = T ·αt−1 + t (αt−1),
where

T =



1 0 0 0 0 0 0 0

0 (1− σ) 0 0 0 0 0 0

0 σ (1− ε− δ − γ) 0 0 0 0 0

0 0 ε (1− δd − γd) 0 0 0 0

0 0 δ 0 1 0 0 0

0 0 0 δd 0 1 0 0

0 0 γ 0 0 0 1 0

0 0 0 γd 0 0 0 1



t (αt−1) =


− β
N−Dt−1−Ddt−1

St−1It−1
β

N−Dt−1−Ddt−1
St−1It−1

06×1


Following Harvey (1989) the approximate Extended Kalman Filter can be applied to

a non-linear state space model approximating T (αt−1) through its Tailor Expansion as
T (αt−1) ' T (ât−1) + T̂ · (αt−1 − ât−1), where ât−1 is the updated state vector obtained
from the updating recursions of the Kalman Filter and T̂ = T + t̂, where
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t̂ =
∂t (αt−1)

∂α
′
t−1

∣∣∣∣
αt−1=ât−1

=

=


−Ît−1 0 −Ŝt−1 0 0 0 − β

(N−D̂t−1−D̂dt−1)
Ŝt−1Ît−1 − β

(N−D̂t−1−D̂dt−1)
Ŝt−1Ît−1

Ît−1 0 Ŝt−1 0 0 0 β

(N−D̂t−1−D̂dt−1)
Ŝt−1Ît−1

β

(N−D̂t−1−D̂dt−1)
Ŝt−1Ît−1

06×8

×
× β(

N − D̂t−1 − D̂dt−1

)
Here Ŝt−1, Ît−1, D̂t−1 and D̂dt−1 are the updated quantities obtained form the updated

vector ât−1.
Then the state equation (A.2) can be rewritten as

αt =
(
t (at−1)− t̂ · at−1

)
+ T̂ ·αt−1 + ηt
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B Derivation of R0

Following Diekmann et al. (1990), the R0 of our SEIRD model can be computed from the
leading eigenvalue of the Next Generation Matrix. In our model, we have three states
that describe the dynamics between the infected and non infected individuals, Et, It and
Idt. The first difference of these three states reads as follows

∆Et = −σEt−1 +
β

N −Dt−1 −Ddt−1
St−1It−1

∆It = − (δ + ε+ γ) It−1 + σEt−1

∆Idt = − (δd + γd) Idt−1 + εIt−1

Then we need to identify the vectors F and V at the steady state of the system,
which are the terms describing respectively the evolution of the new infections from the
susceptible equation and the outflows from the infectious states. At the steady state we
have that S∗ = N −D∗ −D∗d, then

F =

βI
∗

0

0

 V =

 σE∗

(ε+ δ + γ) I∗ − σE∗

(δd + γd) I
∗
d − εI∗


From this we can compute their Jacobian matrices with respect to the exposed and

infected states

F = ∇F =

0 β 0

0 0 0

0 0 0

 V = ∇V =

 σ 0 0

−σ (ε+ δ + γ) 0

0 −ε (δd + γd)


The Next Generation Matrix is the product FV −1 which describes the expected num-

ber of secondary infections in compartment i produced by individuals initially in state j.
In our case we have

FV −1 =


β

ε+δ+γ
β

ε+δ+γ
0

0 0 0

0 0 0


From this we can compute the dominant eigenvalue (or spectral radius) from the

characteristic equation of its eigendecomposition
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∣∣FV −1 − λI3∣∣ = λ2
(

β

ε+ δ + γ
− λ
)

= 0

which has two repeated solutions at λ = 0 and one at

λ =
β

ε+ δ + γ

which is our R0.
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C Calibration of the Per-day Mortality Rate γ

As highlighted in the main text, we calibrate the per-day mortality rate γ so to estimate a
number of unobserved deaths that equals a fraction of the excess mortality calculated from
Istat data. Specifically, Bucci et al. (2020) exploit the gender unbalance in the number of
deaths to decompose the excess mortality observed in Istat statistics into: deaths directly
caused by COVID-19, but unreported in official data; deaths indirectly linked to COVID-
19 (because of the pressure on hospitals at the peak of the epidemic); deaths unrelated to
COVID-19. They provide estimates for various Italian regions and provinces and, among
them, Lombardy. They show that, under different assumptions about the gender-specific
mortality rate of COVID-19, the fraction of unreported deaths can range between 16%
and 57% of the excess mortality with respect to the official death toll.1 We therefore
calibrate γ in order for our model to estimate a number of unobserved deaths that is
equal to the simple average of these values, i.e. 36%. We find that γ = 0.0011 provides
a series that resembles closely the cumulative deaths from Istat data, rescaled by this
factor, as shown in Figure C.1.
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Figure C.1: Unobserved deaths, model and data

Notes. The figure reports the cumulative unobserved deaths from the SEIRD model and the excess
mortality from Istat death registries, computed as the excess mortality in 2020 relative to the average of
previous 5 years minus the official COVID-19 death toll. The latter is shown in levels and scaled by a
factor of 0.36, following Bucci et al. (2020).

We also assume that the observed per-day mortality rate is three times larger than
the unobserved one, i.e. γc = 0.0033, based on the fact the detected infections are usually
symptomatic and more severe cases that are more likely to end up in critical conditions.
The same parameters are used also when estimating the model on data for London.

1They also provide an estimate where the number of undetected deaths is higher than those detected,
but we deem this as an extreme scenario.
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D Additional Figures
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Figure D.1: Baseline scenario Lombardy: permanent lockdown.

Notes. The top panel shows fitted values and forecasts of detected infections, recoveries and deaths. The
bottom panel shows the same quantities, alongside the inefficient 95% forecasting confidence bounds.
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Figure D.2: Estimated and forecast values of Rt in the baseline scenario of permanent
lockdown, with the 95% bootstrapped confidence intervals.
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Figure D.3: Worst case scenario Lombardy: no lockdown.
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Figure D.4: Worst case scenario London: no lockdown.
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Figure D.5: Counterfactual scenario 1, Lombardy

Notes. In this scenario, the government lifts the lockdown gradually on 04/05, 18/05 and 01/06 bringing
the mobility at 33%, 66% and 100% of the baseline of the 24/02.
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Figure D.6: Counterfactual scenario 2, Lombardy

Notes. In this scenario, the government lifts the lockdown gradually early on 27/04, 11/05 and 25/05,
bringing the mobility at 25%, 50% and 75% of the baseline of the 24/02.

37
C

ov
id

 E
co

no
m

ic
s 1

8,
 1

5 
M

ay
 2

02
0:

 1
-4

1



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

0

2

4

6

8
x 10

4

24
/0

2
29

/0
2

05
/0

3
10

/0
3

15
/0

3
20

/0
3

25
/0

3
30

/0
3

04
/0

4
09

/0
4

Infected

0

1

2

3

4

5
x 10

5

24
/0

2
29

/0
2

05
/0

3
10

/0
3

15
/0

3
20

/0
3

25
/0

3
30

/0
3

04
/0

4
09

/0
4

Recovered

0

2000

4000

6000

8000

10000

12000

24
/0

2
29

/0
2

05
/0

3
10

/0
3

15
/0

3
20

/0
3

25
/0

3
30

/0
3

04
/0

4
09

/0
4

Deaths

0

1

2

3

4
x 10

5

24
/0

2
09

/0
3

24
/0

3
08

/0
4

22
/0

4
07

/0
5

22
/0

5
05

/0
6

20
/0

6
05

/0
7

Infected

0

5

10

15
x 10

5

24
/0

2
09

/0
3

24
/0

3
08

/0
4

22
/0

4
07

/0
5

22
/0

5
05

/0
6

20
/0

6
05

/0
7

Recovered

0

1

2

3

4
x 10

4

24
/0

2
09

/0
3

24
/0

3
08

/0
4

22
/0

4
07

/0
5

22
/0

5
05

/0
6

20
/0

6
05

/0
7

Deaths

0

0.5

1

1.5

2

2.5

3
x 10

5

09
/0

3
24

/0
3

08
/0

4
22

/0
4

07
/0

5
22

/0
5

05
/0

6
20

/0
6

05
/0

7

Exposed

0

1

2

3

4

24
/0

2
09

/0
3

24
/0

3
08

/0
4

22
/0

4
07

/0
5

22
/0

5
05

/0
6

20
/0

6
05

/0
7

Rt

0.01

0.015

0.02

0.025

01
/0

3
15

/0
3

29
/0

3
12

/0
4

26
/0

4
10

/0
5

24
/0

5
07

/0
6

21
/0

6
05

/0
7

Plausible Fatality Rate

Figure D.7: Counterfactual scenario 3, Lombardy

Notes. In this scenario, the government lifts the lockdown gradually later on three dates 11/05, 25/05
and 08/06 bringing the mobility at 25%, 50% and 75% of the baseline of the 24/02.
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Figure D.8: Counterfactual scenario 4, Lombardy

Notes. In this scenario, the government lifts the lockdown gradually later on three dates 04/05, 25/05
and 15/06 bringing the mobility at 25%, 50% and 75% of the baseline of the 24/02.
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Figure D.9: Counterfactual scenario 5, Lombardy

Notes. In this scenario, the government lifts the lockdown gradually later on three dates 11/05, 25/05
and 08/06 bringing the mobility at 33%, 66% and 100% of the baseline of the 24/02.

40
C

ov
id

 E
co

no
m

ic
s 1

8,
 1

5 
M

ay
 2

02
0:

 1
-4

1



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

24
/0

2

09
/0

3

24
/0

3

08
/0

4

22
/0

4

07
/0

5

22
/0

5

05
/0

6

20
/0

6

05
/0

7
0

0.5

1

1.5

2

2.5

3

3.5
10

5

Fit

Permanent Lockdown

No Lockdown, p=1

No Lockdown, p=0.9

No Lockdown, p=0.8

No Lockdown, p=0.7

No Lockdown, p=0.6

(a) Exposed, Lombardy
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(b) Exposed, London

Figure D.10: Exposed individuals in Lombardy and London under different probabilities
of contagion

Notes. The figure shows the evolution of exposed individuals under a set of counterfactual policies in
Lombardy (panel a) and London (panel b). We assume that the government lifts restrictions on three
dates: 04/05, 18/05, 01/06 in Lombardy and 18/05, 01/06 and 15/06 in London. Vertical solid lines
highlight these dates, vertical dashed line highlight the end of the fit window. On each date mobility
increases at 25%, 50% and 75% of the pre-lockdown level. The counterfactuals assume different probability
of contagion from 100% to 60%. As a comparison, we also report the evolution under the permanent
lockdown scenario (dashed line).
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