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ABSTRACT 

Industrial and urban emissions over several decades left a legacy of contamination by 

persistent organic pollutants in the sediments of Venice lagoon (Italy), which might still 

represent a hazard for the health of ecosystems and population. The dissertation addresses 

the problem of exposure to persistent organic contaminants in the Lagoon of Venice 

throughout: i) the development and implementation of three predictive exposure models to 

simulate chemical bioaccumulation in aquatic species and food webs (namely, 

Phytoplankton, Invertebrate and Fish models), ii) performing deterministic and probabilistic 

integrated ecological and human exposure modelling exercise for the selected chemicals, 

iii) study of the uncertainty and sensitivity of the exposure modelling outputs. The PhD 

project was developed within the EU-funded 4FUN project and supported the improvement 

of the tool MERLIN-Expo developed therein.  

In a nutshell, the MERLIN-Expo platform was applied to simulate internal exposure of 

selected aquatic organisms and human population to PCBs and dioxins, by setting up chain 

of models consisting of environmental fate models and a human physiologically-based 

pharmaco-kinetic (PBPK) model to represent the real life exposure scenario of the Lagoon 

of Venice.  

As the part of the PhD project, the Phytoplankton, Invertebrate and Fish models were first 

developed in Ecolego, a software enabling creation of dynamic models  

(http://ecolego.facilia.se/ecolego/show/HomePage), and then implemented in MERLIN-

Expo library. Then the models were used to create an aquatic food web specific to the lagoon 

environment and to dynamically simulate bioaccumulation of dioxins and PCBs. 

Subsequently, such estimated concentrations in selected edible aquatic species were used 

to estimate daily human intake through the consumption of local seafood. Finally, the the 

PBPK model was applied to explore the accumulation of the two contaminants 2,3,7,8-

TCDD and PCB126 in human tissues for several decades.  

Simulated chemical concentrations in biota were then evaluated against monitoring data for 

four aquatic species, finding an appreciable agreement, with some differences depending 

on the species and target chemicals. Likewise, estimated chemical concentrations in human 

blood were compared to human biomonitoring data measured in adult men. Despite several 

assumptions included in the assessment framework, simulated concentrations resulted 

close to measured data (the same order of magnitude or one order of difference). Eventually 

a preliminary ecological and human health risk assessment was performed using the results 

http://ecolego.facilia.se/ecolego/show/HomePage
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from deterministic simulation for the selected chemicals by evaluating the exposure 

estimates against benchmark values available in literature.  

Next, the study of uncertainty and sensitivity of the exposure assessment output was 

performed in order to support evaluation of large exposure models where a significant 

number of parameters and complex exposure scenario is involved. Probabilistic analysis 

was applied to simulated concentrations of PCB 126 and 2,3,7,8-TCDD in biota and human 

blood obtained from the integrated models. Uncertainty in model output was further 

apportioned between parameters by applying sensitivity analysis tools. In this part, 

uncertainty has been extensively addressed in the probabilistic distribution functions (PDFs) 

to describe the data input and the effect on model results by applying sensitivity analysis 

techniques (screening Morris method, regression analysis, and variance-based method 

EFAST). In the exposure scenario developed for the Lagoon of Venice, the concentrations 

of 2,3,7,8-TCDD and PCB 126 in human blood turned out to be mainly influenced by a 

combination of parameters (half-lives of the chemicals, body weight variability, lipid fraction, 

food assimilation efficiency), physiological processes (uptake/elimination rates), 

environmental exposure concentrations (sediment, water, food) and eating behaviours 

(amount of food eaten). 
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CHAPTER 1 INTRODUCTION 

1.1.  MOTIVATION AND OBJECTIVES 

The production volume of chemicals (both hazardous and non-hazardous) in the European 

Union (EU-28) amounted to about 319.5 million tonnes in 2016 of which 200.7 million tonnes  

is hazardous to health and 117.8 million tonnes hazardous to the environment (Eurostat: 

http://ec.europa.eu/eurostat/product?code=env_chmhaz&language=en&mode=view). The 

production of industrial chemicals was largely concentrated in Western Europe: Germany 

was the largest producer in the EU-28, followed by France, Italy and the United Kingdom. 

Historically, human health and environmental exposure assessment methodologies have 

generally developed independently (Munns et al., 2003). Regulatory agencies often use a 

chemical-by-chemical approach, focusing on a single medium, a single source, and a single 

toxic endpoint. Moreover, current exposure assessment is recognised as a weak point in 

ecological and human health risk assessment due to a lack of integrated approaches for 

combined stressors, widespread use of over-conservative ‘worst-case’ scenarios, 

estimation of only external and not internal exposures, and a lack of uncertainty and 

sensitivity analysis for the identification of key exposure drivers. Since exposure assessment 

and hazard characterization are the pillars of risk assessment, integrating Environmental 

Exposure assessment (EEA) and Human Exposure assessment (HEA) is a major 

component of an IRA framework. To this purpose there is a need of better exploitation of all 

currently existing data, experimental approaches and modeling tools created for both EEA 

and HEA. 

Many international and national organizations have expressed a need for an integrated, 

holistic approach to exposure assessment that addresses real life situations of 

multichemical, multimedia, multiroute, and multispecies exposures (International Program 

on Chemical Safety (IPCS) of the World Health Organization (WHO), the European 

Commission (EC), the Organization for Economic Cooperation and Development (OECD) 

and the US Environmental Protection Agency (US EPA) (WHO, 2001)). Constructing and 

applying ecological and human exposure models help in a number of ways, for instance in 

evaluating experiments design and results under different hypotheses, guiding data 

collection, predicting exposures, underlying key uncertainties and influential parameters. 

Models better our understanding of the complex interactions among various human and 

nonhuman components of ecosystems. Therefore, a need to integrate human and ecological 

http://ec.europa.eu/eurostat/product?code=env_chmhaz&language=en&mode=view
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domains are emerging to support a more harmonised framework for assessing the fate and 

effects of industrially produced and naturally occurring pollutants.  

The project main objective is the integration of multimedia models (MM) simulating the fate 

of chemicals in environmental media, and of physiologically based pharmacokinetic (PBPK) 

models simulating the fate of chemicals in human body using MERLIN-Expo in order to 

determine internal effective chemical concentrations integrating uncertainty, variability and 

sensitivity analysis to allow complete realistic exposure analysis.  

The PhD project focuses on the transitional ecosystem of the Lagoon of Venice, affected by 

catchment densely populated area, industrial settlings, oil refining plants, wastewaters and 

waste incineration plants. The pollution sources have been affecting different environmental 

compartments, through the release of range of environmental contaminants to the lagoon 

including organic (e.g. PCBs, dioxin-like PCBs, PCDD/Fs, PAHs) and inorganic (e.g. Cd, 

Pb, As, Cr, Zn, Ni) chemicals (Micheletti et al., 2007, 2008). Persistent organic pollutants 

tend to accumulate and magnify in aquatic organisms, causing a potential significant long 

term human dietary exposure (Von Stackelberg et al., 2002). No previous studies assessed 

ecological and human exposure in an integrated way for long term scenarios. 

The specific objectives of the PhD project were: 

1. reviewing and selecting bioaccumulation modelling approaches for aquatic organisms; 

2. parameterising bioaccumulation and human PBPK models for the Venice lagoon case-

study, addressing uncertainty and variability of input parameters and exposure factors; 

3. evaluating model outputs by comparing the model outcomes with actual chemical 

concentrations in animal tissues and human biomonitoring data; 

4. analysing variance in exposure modelling outcome through uncertainty and sensitivity 

analysis. 
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1.2. OUTLINE OF THE THESIS 

CHAPTER 2  

Chapter 2 adresses the concept of holistic approaches to risk assessment (RA) for better 

informing decision making by integrating environmental risk assessment (ERA) and human 

health risk assessment (HHRA) into Integrated risk assessment (IRA) as a solution to 

current scientific, societal and policy needs. Then it describes integrating Environmental 

Exposure assessment (EEA) and Human Exposure assessment (HEA) as a major 

component of an IRA framework. Finally, the use of exposure modelling in the integrated 

exposure assessment is outlined with focus on bioaccumulation models. 

CHAPTER 3 

The objective of the chapter 3 is to present the development of food web models 

implemented in the already existing MERLIN-Expo tool and to clarify that this development 

was based on the existing modelling approaches and the features required by MERLIN-

Expo platform i.e. possibility to be parameterized for probabilistic assessment, the modular 

structure. 

CHAPTER 4 

Chapter 4 describes the case study of the lagoon of Venice and its conceptualisation in the 

form of exposure scenario. Both general and site-specific input data are described (full 

details in the APPENDIX) separately for ecological and human modelling parts, followed up 

by details on deterministic and probabilistic simulation settings. Finally, sensitivity analysis 

set up is laid out. 

CHAPTER 5 

Chapter 5 includes the results from ecological and human deterministic and probabilistic 

exposure simulations. It concludes with three step sensitivity analysis of the input variables 

on the concentration of PCB126 and 2,3,7,8-TCDD in human blood. 

CHAPTER 6 

The final chapter 6 highlights the PhD project outcomes, the perspectives for possible 

improvements and way further for the carried out work. 

1.3.  FUN PROJECTS AND MERLIN-EXPO TOOL 

The FP6 project 2-FUN (Full-chain and Uncertainty approaches for assessing health risks 

in FUture eNvironmental scenarios) produced a prototype software containing a library of 

models for exposure assessment, coupling environmental multimedia and pharmacokinetic 
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models. The main objectives of the 4FUN (The FUture of FUlly integrated human exposure 

assessment of chemicals: Ensuring the long-term viability and technology transfer of the 

EU-FUNded 2-FUN tools as standardised solution) was to further improve and standardise 

the 2-FUN tool in order to guarantee its long-term technical and economic viability. The 2-

FUN tool was subject to rigorous standardisation, which include benchmarking, 

documentation and demonstration. To demonstrate the reliability of modelling estimations 

and the feasibility of building complex realistic scenarios, three case studies based on actual 

datasets were performed, one placed in the Venice Lagoon. The improved and standardised 

2-FUN software, named MERLIN-Expo, was delivered, together with supporting 

documentation and training courses. The training events were organised in such a way as 

to reach out to as many people as possible in different locations across the EU and promote 

the tool. The aim was also to raise the skill level of regulators and enable a community of 

users to develop. 

All models within the tool are implemented on the same platform, that is Ecolego 

(http://ecolego.facilia.se/ecolego/show/HomePage), to facilitate integrated full-chain 

assessments for combined exposures. During the project, a standard framework for 

exposure model documentation was developed in conjunction with the European Committee 

for Standardisation (CEN) and was for the description of all MERLIN-Expo models, with the 

aim of ensuring the rigorous formulation of exposure models, comparability between the 

different exposure models and transparency and ease of understanding for the users of the 

tool.  

1.3.1. MERLIN-Expo 

The MERLIN-Expo (Modelling Exposure to chemicals for Risk assessment: a 

comprehensive Library of multimedia and PBPK models for Integration, Prediction, 

uNcertainty and Sensitivity analysis) tool was developed within the EU-funded 4FUN project 

(2012-2015) and aims to provide decision-makers with state of the art tools to analyse the 

current and future trends in environmental conditions and pressures that may lead to health 

problems. The software structure was primarly developed by Facilia AB (Sweden) while the 

models for soil, freshwater, atmosphere, tubers, fruit tree, leaf and root crops by  Electricité 

de France S.A. – France (EDF), the human PBPK by the Institut National de l’Environnement 

Industriel et des Risques – France (INERIS), the mammals (ruminants) model by EDF and 

Università Ca’ Foscari Venezia, and finally, bioaccumulation models for aquatic organisms 

(phytoplankton, invertebrates and fishes) developed whithin the framework of this PhD 

http://ecolego.facilia.se/ecolego/show/HomePage
https://merlin-expo.eu/
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project  by Università Ca’ Foscari Venezia in collaboration with EDF. 

MERLIN-Expo is a software structure aimed at performing exposure assessment for both 

organic and inorganic chemicals for environment, biota and humans. It includes a library of 

environmental and human exposure models which can be flexibly combined to recreate 

several exposure scenarios, including different exposure pathways, to explore the evolution 

of ecological and human exposure (up to internal exposure in target organs/tissues) to 

chemicals over time. MERLIN-Expo allows the users to perform both deterministic and 

probabilistic dynamic simulations of exposure estimates and incorporate a set of 

functionalities for applying different methods of sensitivity analysis. 

The software is an advanced tool for higher tiers in exposure assessment; it includes 

dynamic modelling, a wide range of chemicals, uncertainty and sensitivity analysis, 

probabilistic simulations and a combination of health exposure assessment and 

environmental exposure assessment. Equipped with a flexible modular format, 

pharmacokinetic considerations, and uncertainty and sensitivity analysis functionality, 

MERLIN-Expo can enable robust, regulatory-relevant environmental and exposure 

assessments with ease and transparency. The main challenges in exposure modelling that 

MERLIN-Expo tackles are: (i) the integration of multimedia models (MM) simulating the fate 

of chemicals in environmental media, and of physiologically based pharmacokinetic (PBPK) 

models simulating the fate of chemicals in human body. MERLIN-Expo thus allows the users 

to determine internal effective chemical concentrations; (ii) the incorporation of a set of 

functionalities for uncertainty/sensitivity analysis, from screening to variance-based 

approaches. The availability of such tools for uncertainty and sensitivity analysis aimed to 

facilitate the incorporation of such issues in future decision making; (iii) the integration of 

human and wildlife biota targets with common fate modelling in the environment. MERLIN-

Expo is composed of a library of fate models dedicated to non biological receptor media 

(surface waters, soils, outdoor air), biological media of concern for humans (plants, 

mammals, milk, edible aquatic organisms), as well as wildlife biota and humans. These 

models can be linked together to create flexible scenarios relevant for both human and 

wildlife biota exposure. Standardized documentation for each model and training material 

were prepared to support an accurate use of the tool by end-users.  

One of the objectives of the 4FUN project was to provide standard documentation for each 

of the models included in the library, guaranteeing their transparency and the long-term 

technical viability of the tool. Contrary to analytical ‘simple’ models, the multimedia and 

PBPK models that are included in the MERLIN-Expo library involve a large set of entities, 
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i.e. a large set of compartments, state variables, forcing variables, parameters, equations, 

variables, and several regulatory outputs. They are then difficult to communicate in a 

comprehensive, unambiguous and accessible way. This situation could be shared with other 

complex models, but despite this background, it can be observed that no standard 

documentation protocol has been followed so far for describing large multimedia and/or 

PBPK models. In the 4FUN project, transparency was identified as a key criterion for 

evaluating models included in the MERLIN-Expo tool. In this context, an action was 

undertaken in the frame of the project in coordination with CEN (European Committee for 

Standardisation) to propose a standard documentation protocol (SDP) for exposure models. 

The SDP can be defined as a generic format and a standard structure by which all MM 

models could be documented.  

CHAPTER 2 INTEGRATION EXPOSURE ASSESSMENT 

2.1.  INTEGRATED RISK ASSESSMENT 

The National Research Council (NRC) defined risk assessment as “the use of the factual 

base to define the health effects of exposure of individuals or populations to hazardous 

materials and situations” (NRC 1983). It describes the assessment of risks from chemicals 

to the environment and human health as a four steps common paradigm consisting of: 

hazard identification, hazard characterization, exposure assessment and risk 

characterization (Figure 1). 

 

Figure 1 The risk-assessment process as defined by its four elements: hazard identification, dose–response assessment, exposure 
assessment, and risk characterization. Source: Adapted from NRC 2009. 

Human health and ecological risk assessment practice developed independently mainly 

from the health risk assessment framework developed by National Research Council (1983), 
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and ecological risk assessment framework developed by US EPA (1992). These frameworks 

differ as to how the assessment process is carried out, various type of data, models and 

assumptions.  

Narrow focus of the assessment of the risks to contaminants may lead to inadequate 

management decision. It has become apparent that the risk assessment should be 

broadened by involving more disciplines (Munns et al., 2003). One way to achieve it is to 

integrate human health and ecological risk assessments (WHO, 2001; Suter II et al., 2005). 

Integrated Risk Assessment (IRA) has been defined in a recent white paper (Wilks et al., 

2015) as “the mutual exploitation of Environmental Risk Assessment for Human Health Risk 

Assessment and vice versa in order to coherently and more efficiently characterize an 

overall risk to humans and the environment for better informing the risk analysis process”. 

A central feature to IRA is the connection of independent sources of information, such as 

toxicological and ecotoxicological data, that are usually kept separate, to enable a more 

comprehensive, efficient and informative RA (Bridges, 2003; Suter et al., 2005; Andersen et 

al., 2016). Despite the fact that HHRA and ERA target different receptors, human and 

nonhuman respectively, both frameworks can benefit from sharing information between 

them. The rationale behind integrating human health and ecological risk assessments is 

indeed to improve exchange of information between the two risk assessment domains in 

order to provide more complete inputs to decision making process.  

Some of the benefits of integrated risk assessment (Bridges, 2003): 

1. involvement of both the decision makers and stakeholders from both domains, 

2. information sharing in order to define common sources, stressors, system at risk and 

effects on the receptor, 

3. common analysis fostering the development of models (multimedia fate models, 

toxicokinetic models) for all receptors and pooling the knowledge necessary to feed such 

models, 

4. providing holistic integrated risk characterisation, including expression of variability and 

uncertainty for all endpoints. 

Indeed, with increased recognition of the need to protect both humans and the environment 

more effectively, an integrated approach to risk assessment that holistically addresses 

situations of multichemical, multimedia, multiroute, and multispecies exposures is needed. 

In fact the risk assessment has been evolving towards holistic assessment mainly due to 

available tools allowing to increase the speed at which information from various fields is 

obtained and thus expanding the amount of data available (Committee on Incorporating 21st 
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Century Science into Risk-Based Evaluations et al., 2017). 

The importance of IRA was recognised by the European Commission and highlighted as a 

key element of future action in its European Environment and Health Strategy (EC, 2003), 

fostering the development of the IRA concept as new EU research projects under the 6th/7th 

Framework Programmes (FP6/7) (e.g. HEIMTSA 

(http://cordis.europa.eu/project/rcn/81281_en.html), INTARESE (http://www.intarese.org/), 

NoMiracle (http://nomiracle.jrc.ec.europa.eu/), OSIRIS (http://www.ufz.de/osiris/), 2-FUN 

(http://www.2-fun.org/)), ENVIRISK http://envirisk.nilu.no/, HEROIC  http://www.heroic-

fp7.eu/.   

Within the EU chemicals are risk assessed within different regulatory frameworks depending 

on their intended use (Ågerstrand and Beronius, 2016). For different compound, even 

though similar risks to human and environmental health can be expected, the risk 

assessment process depends on the considered policy. Chemical risk assessment is 

included in several EU regulatory frameworks: Regulation (EC) No. 1907/2006 (REACH) 

(Industrial chemicals), Regulation (EC) No. 1107/2009 (Plant protection products), 

Regulation (EU) No. 528/2012 (Biocides), Regulation (EC) No. 1223/2009 (Cosmetics), 

Directive 2001/83/EC (Human pharmaceuticals in the environment), Directive 2001/82/EC 

(Veterinary pharmaceuticals in the environment), Regulation (EC) No. 178/2002 

(Contaminants in food), Directive 2000/60/EC (Water framework directive), Regulation 

1272/2008/EC (Classification, labelling and packaging). 

The fact that changes in ecosystem condition can influence the health and well-being of 

people both directly and indirectly is recognised in the ecosystem services (ES) concept 

(Maes et al., 2016). ES has been coined as a “common currency” potentially enabling 

integration of human health and ecological risk assessment into environmental decision 

making process (Munns et al., 2016, 2017; Selck et al., 2017). The concept was recently 

demonstrated by assessing risk for four ecosystem services (human health, water quality, 

recreation, and the recreational fishery) using a multiple stressor–multiple endpoint 

approach with Bayesian networks relative risk model where ecological services were 

incorporated as ecological and human health risk assessment endpoints (Harris et al., 2017; 

Landis et al., 2017). Another way for informing decision making using both ecosystem and 

human health data can be through integrating them as lines of evidence into a weight of 

evidence approach (Caeiro et al., 2017). 

Since exposure assessment and hazard characterization are the pillars of risk assessment, 

integrating Environmental Exposure assessment (EEA) (i.e. exposure of biota) and Human 

http://cordis.europa.eu/project/rcn/81281_en.html
http://www.intarese.org/
http://nomiracle.jrc.ec.europa.eu/
http://www.ufz.de/osiris/
http://www.2-fun.org/)
http://envirisk.nilu.no/
http://www.heroic-fp7.eu/
http://www.heroic-fp7.eu/
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Exposure assessment (HEA) can be a major component to be included in the IRA framework 

(Ciffroy et al., 2015). That is, in both HHRA and ERA frameworks the exposure assessment 

stage can be seen as a common denominator in a sense that both human and nonhuman 

targets are exposed to the same chemicals released to the same media where they undergo 

the same transport and transformation processes. 

There are other types of integration that could be used to support even further environmental 

decision making such as integration of exposure and effects, multiple endpoints, multiple 

receptors, multiple spatial and temporal scales, a product’s life cycle, management 

alternatives, and socioeconomics with risk assessment (Suter II et al., 2003a). However, to 

avoid “paralysis by analysis”, caused by unnecessary integration of too many aspects into 

the risk assessment process, the extent of integration should be decided during the problem 

formulation step (Suter II et al., 2003b).  

So far however, EEA and HEA have generally used and developed their own models 

parallelly, lacking appropriate linkage between them. 

2.2.  INTEGRATED HUMAN AND ECOLOGICAL EXPOSURE ASSESSMENT 

The exposure assessment is the most important phase in influencing the risk 

characterization since exposures can be controlled, whereas hazard identification and dose-

response assessments describe inherent features of the agent (US EPA, 2016). In general, 

exposure assessment involves the process of estimating or measuring the magnitude, 

frequency and duration of exposure to chemicals, along with the number and characteristics 

of the population exposed. An application of this field of science, has been crucial in helping 

to forecast, prevent, and mitigate exposure events that lead to adverse human or ecological 

health, to identify and protect highly exposed populations, and to assess and manage 

human health and ecosystem risks. The field of exposure science evolves as a result of 

advances in the tools and approaches such as personal monitors that will enable the 

measurement of individuals’ exposure over time or remote sensing and GIS-based spatial 

methods (Su et al., 2015, Vrijheid et al., 2014). The developments in infrastructure 

supporting exposure-data acquisition, collection, organization, and access lead to the 

improvement of the accuracy, completeness, efficiency, and transparency of exposure 

assessment and modelling (Glasgow et al., 2016). This also facilitated broadening the reach 

of exposure science from a traditional focus on discrete exposures to an integrated approach 

which considers exposures from source to dose, on multiple levels of integration (including 

time, space, and biological scale), multiple stressors, and scaled from molecular systems to 
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individuals, populations, and ecosystems (NRC 2012) (Figure 2). 

 

Figure 2 Conceptual overview of the scope of and common methods for exposure science. 

 
The ultimate goal of integrating exposure assessments is to have a reliable, validated, 

integrated source-to-receptor exposure modelling tool capable of generating realistic 

predictions of exposure to chemicals, which enables the determination of the proportion of 

contaminant exposures over different routes and sources (Vrijheid, 2014). The challenging 

concept of the exposome, encompassing all environmental exposures from the conception 

onwards, was defined in 2005 (Wild, 2005) in order to draw attention to the need for the 

developments in exposure assessment. On-going exposome projects 

(http://www.projecthelix.eu/, www.exposomicsproject.eu/) are trying to overcome technical 

and statistical challenges the concept is currently facing such as untangling from a wide 

range of exposures those that truly affect health outcomes (Siroux et al., 2016). 

Exposure assessment is generally considered as a weak point in risk assessment due to a 

lack of data and the inherent natural variability in exposure levels, leading to uncertainties 

in the estimates (Bundesinstitut für Risikobewertung, 2015). At the same time exposure 

characterisation is critical in allocating limited resources while managing risks to chemicals 

(Bogen et al., 2009).  From a regulatory point of view exposure estimation in general must 

face new challenges because of high uncertainties throughout the health risk assessment 

chain (Glorennec et al., 2005). Such uncertainties are recognized but rarely explicitly 

http://www.projecthelix.eu/
http://www.exposomicsproject.eu/
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quantified and integrated over the full impact assessment pathway (Bennett et al., 1999).  

There is a need to distinguish between uncertainty due to lack of knowledge and uncertainty 

due to variability (Hoffman and Hammonds, 1994). The uncertainty in parameters can result 

from measurement uncertainty, insufficient data, or incomplete knowledge of the processes 

and mechanisms that give rise to these parameters. The variability in parameters can result 

from human behavioural and physiological differences and can vary from individual to 

individual at the same location. The data used in exposure assessment (e.g. contamination 

levels in environmental media, population distribution) can exhibit significant temporal and 

spatial variability at various scales depending on the exposure target, and may differ 

between EEA and HEA. 

The committee of National Academies of Science, Engineering and Medicine emphasizes 

that insufficient attention has been given to analysis, interpretation, and integration of 

various data streams from exposure science, toxicology, and epidemiology (Committee on 

Incorporating 21st Century Science into Risk-Based Evaluations et al., 2017). Integrating 

exposure information such as data on environmental media, biomonitoring samples, 

conventional samples, and emerging matrices constitute a scientific, engineering, and big-

data challenge. This in fact is a key step in developing coherent exposure science, the 

challenge here however is to evaluate data homogeneity, and to determine confidence in an 

exposure assessment. 

Recognition of common challenges, limitations and shortcomings in terms of data quality, 

availability, accessibility, sharing and harmonization in the IEA framework point at areas 

where possible improvements can be made: (i) better exploitation, collection and sharing of 

existing exposure data; (ii) creation of integrated databases; (iii) harmonization and sharing 

of sampling design; (iv) better use of metrics. In a broader perspective this is also crucial in 

developing coherent exposure science (Exposure Science in the 21st Century, 2012). 

Actually, data allowing a better exploitation of exposure models sometimes exist, but not 

always in a format allowing them to be readily collected in a homogenous form. A way to 

better integrate monitoring data that were initially generated independently for EEA and HEA 

purposes could be to merge such data, even if sporadically available, with modeling results 

and/or expert judgment through e.g. Bayesian techniques (McNally et al., 2014). Exposure 

modelling results, eventually in conjunction with other existing knowledge gained e.g. from 

expert judgment, can form prior estimates of exposure (Quick et al., 2017). 
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2.3.  INTEGRATED EXPOSURE MODELLING 

In assessing the risks to chemicals tiered approaches are common. In order to screen out 

risks, first, low tier assessments using cautious assumptions and conservative worst-case 

exposure scenarios supported by simple deterministic models are used, whereas higher 

tiers involving typically complex scenarios and advanced models supported by the analysis 

of uncertainties are applied when potential risks cannot be ruled out by the low tier 

assessment. 

There are many sources and many routes by which human and biota are exposed to 

stressors. Exposure models integrating multi-source and multi-routes of exposure seem 

promising in characterisation of the full impact of chemicals on the receptor (Wania and 

Mackay, 1999). Specifically, such models show the capacity of: 1) integrating of exposure 

pathways by translating exposure into internal doses, 2) include tools and data for 

probabilistic assessments, 3) implementing appropriate mechanisms to underpin exposure 

routes and pathways, and 4) including tools for reverse dosimetry modelling, and hence 

allowing the identification of main exposure sources. Exposure data on many agents are 

often not available, but recent advances in computational tools for exposure science are 

expected to play a crucial role in most aspects of exposure estimation for risk assessments, 

not just high-throughput applications.  

The exposure to chemicals through multiple pathways is typically estimated by the so-called 

‘multimedia models’ (MM models) that calculate the distribution of chemicals over 

environmental media (MacLeod et al., 2010, Mackay and Arnot, 2011). Among the targeted 

environmental media which could be of interest for integrated exposure are for instance 

inhaled air, drinking water, and foodstuffs (Cousins et al., 2002, Bennett et al., 2002).  When 

combined with data describing human behavioural exposure factors (diet preferences, time 

activity pattern, etc.) MM models would provide an estimation of the daily dose inhaled or 

ingested by the population of interest (Pennington et al., 2005).  Fate models used in EEA 

and HEA for predicting the distribution of chemicals among physical and biological media 

are essentially based on properties of environmental compartments (soil, plants, etc.) and 

on common properties of chemicals. Species that are assessed in the frame of EEA can 

also form part of the human food chain (e.g. fish). 

In conclusion, to assess exposure of humans and biota with similar pathways of exposure a 

common modelling framework integrating environmental fate of chemicals with both human 

and environmental targets would be useful (Arnot et al., 2010a). 
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2.3.1. Exposure Models 

There has been growing amount of resources and tools dedicated to exposure assessment 

(https://www.epa.gov/expobox, OECD 2012). In this paragraph only selected exposure 

models are shortly described highlighting their main features: INTEGRA, MERLIN-Expo, 

EUSES, USEtox, CoZMoMAN (ACC-HUMAN), RAIDAR and SHEDS-multimedia. EUSES, 

RAIDAR and USEtox, which is used in the domain of Life Cycle Assessment, are examples 

of the models used for screening assessments rather than for higher realistic assessment 

tiers. In general ACC-HUMAN, SHEDS-multimedia, MERLIN-Expo and INTEGRA can be 

seen as high tier exposure models, acknowledging the scientific complexity of the nature, 

and routes of exposures. All four models have clear advantages in terms of their ability to 

address exposures to chemicals from multiple sources and via multiple routes compared to 

the lower tier tools. The CoZMoMAN is a dynamic model which combines the multimedia 

fate and transport model CoZMo-POP2 with the bioaccumulation model ACC-HUMAN. A 

detailed description of the physical model is provided in Wania et al., (2006). The 

CoZMoMAN model links these two models, using the environmental concentrations from 

CoZMo-POP2 to drive the bioaccumulation model ACC-HUMAN (Breivik et al., 2010). 

INTEGRA is a computational platform that integrates multimedia environmental and micro-

environmental fate, exposure and internal dose within a dynamic framework in time 

(Sarigiannis et al., 2014). INTEGRA was initially developed to address consumer exposure 

(Sarigiannis et al., 2016). This is reflected in the fact that INTEGRA provides the option to 

set up detailed consumer-oriented exposure scenarios, and accounts for dermal, oral and 

inhalation pathways. The MERLIN-Expo is an exposure assessment software tool that was 

developed over the course of two successive EU funded projects, 2FUN (FP6) and 4FUN 

(FP7) (Van Holderbeke et al., 2016). The software allows the users to carry out lifetime 

exposure assessments at the individual or population level, integrating exposure through 

multiple pathways. Benchmarking MERLIN-Expo against EUSES revealed that both models 

are comparable in their exposure predictions (Suciu et al., 2016). SHEDS-multimedia has 

been developed within the US EPA Policy, Regulation and Risk Assessment context, to 

support EPA in performing cumulative and aggregate assessments for multiple chemicals 

(Isaacs et al., 2014). The model gives equal importance and tiered level to dietary exposure 

as well as to residential exposure, i.e. non dietary exposure, including exposure via hand-

mouth contact. The model is not intended to be used as a full chain source-to-receptor model 

since the model does not include an environmental fate model. Moreover, the model is 

https://www.epa.gov/expobox
http://www.integra-lri.eu/
https://merlin-expo.eu/
https://ec.europa.eu/jrc/en/scientific-tool/european-union-system-evaluation-substances
http://www.usetox.org/
http://www.utsc.utoronto.ca/labs/wania/downloads/
http://www.arnotresearch.com/index_download1.html#!/page_Downloads
https://www.epa.gov/chemical-research/stochastic-human-exposure-and-dose-simulation-sheds-estimate-human-exposure


 

14 
 

based on records on food monitoring data in the US only. 

Models such as MERLIN-Expo and INTEGRA seem to be very flexible when compared to 

other exposure models, however this can be also a drawback, especially because setting 

up exposure scenario and parameter values may be time and effort consuming. Another 

downside to complex exposure models is their validation which appears to be very 

challenging and would require gathering of a huge number of environmental and person-

oriented records for dietary exposure, human activities, and monitoring levels in 

environmental media. There are however ongoing efforts aimed at collecting such chemical 

and non-chemical exposure factors on human exposure such as IPCHEM 

(https://ipchem.jrc.ec.europa.eu/RDSIdiscovery/ipchem/index.html#), FACET (Oldring et 

al., 2009, 2014) or ExpoFacts (http://expofacts.jrc.ec.europa.eu/). 

Among other models often used to assess human and environmental exposure are for 

instance CalTox (www.dtsc.ca.gov/AssessingRisk/caltox.cfm), and AQUATOX 

(water.epa.gov/scitech/datait/models/aquatox/); some models are dedicated to a given class 

of chemicals e.g. PEARL (www.pearl.pesticidemodels.eu/) and PRZM 

(http://www.epa.gov/oppefed1/models/water/#przm); another ones are dedicated to a given 

environmental media e.g. CLEA (www.gov.uk/government/publications/updated-technical-

background-to-the-clea-model) and CSOIL 

(www.rivm.nl/bibliotheek/rapporten/711701054.html).  

2.3.2. Bioaccumulation Models 

The bioaccumulation of chemicals can be generally described as a phenomenon leading to 

increase of the concentration of chemicals in a biotic compartment with respect to the 

surrounding medium (Arnot and Quinn, 2015; US EPA, 2012). Accumulation processes in 

living organisms can be classified on the basis of the uptake of chemicals:  i) uptake from 

the environment media together with dietary uptake is described as bioaccumulation, ii) 

bioconcentration accounts for accumulated contaminant resulting solely from uptake 

through respiratory surfaces (body surface, tracheal tubes, gills, lungs), and iii) 

biomagnification is distinguished from other modes because it includes transfer and 

accumulation of contaminants along trophic levels in a food web (Arnot and Gobas, 2006; 

Van Leuwen and Vermeire, 2007). 

 

The accumulation of a xenobiotics in biota has to be carefully evaluated in ecological risk 

assessment, because the knowledge of average concentrations in the whole organism or in 

https://ipchem.jrc.ec.europa.eu/RDSIdiscovery/ipchem/index.html
http://expofacts.jrc.ec.europa.eu/
http://www.dtsc.ca.gov/AssessingRisk/caltox.cfm
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some specific tissues can help in estimating the likelihood of adverse effects resulting from 

partitioning between contacting media and food web transfers, or in assessing the influence 

of large masses of biota on overall chemicals fluxes in the environment (Schwarzenbach et 

al., 2003; Müller and Nendza, 2007). The internal concentration level reached in aquatic or 

terrestrial organisms over long term exposures may cause adverse effect, either unspecific 

(e.g., narcosis) or specific (e.g., neurotoxic effects), after reaching a critical threshold, 

referred to as critical body burden. Since humans consume food originating from both the 

aquatic and terrestrial environment and represent the top consumers of food webs, 

bioaccumulation/biomagnification processes are relevant also for human health risk 

assessment (McLachlan et al., 2011) and measurement or modelling of bioaccumulative 

substances in edible plants and animals have to be performed to complete the assessment 

of chemical exposure through other routes (e.g., inhalation, dermal contact, soil/dust 

ingestion).  

The awareness that bioaccumulation/biomagnification can be phenomena lasting over 

decades and inducing effects (often irreversible) long after the environmental release of 

chemicals encouraged to include bioaccumulation assessment in many national and 

international legislative frameworks. Stockholm Convention (2004; Annex D and E) requires 

information on bioaccumulation as one of the screening criteria used in identifying persistent 

organic pollutants and in evaluating chemical risk profile. Bioaccumulation is also listed by 

Basel Convention among hazardous characteristics of toxic wastes or substances that are 

subject to transboundary movement, as possible threat to the environment (Basel 

Convention, Annex III). In the European Union, the Registration, Evaluation, Authorisation 

and Restriction of Chemicals (REACH) regulation (Regulation (EC) No 1907/2006) asks for 

the identification of chemicals with hazardous properties of concern, in particular substances 

which are persistent, bioaccumulative and toxic (PBT) or very persistent and very 

bioaccumulative (vPvB) have to be included in REACH Annex XIV (Authorisation list), 

meaning that after the “sunset date” they are banned for all uses except those specifically 

authorised by the European Commission (EC). REACH indicates that information on 

bioaccumulation in aquatic species is required for substances manufactured and imported 

in quantities of 100 tons per year or more (ECHA, 2014a). The EU Regulation No 528/2012 

on Biocidal Products states that information on bioconcentration is relevant to the 

assessment of the ecotoxicological profile of the biocidal active substance and that 

evaluation of aquatic bioconcentration should include an estimate of the bioconcentration 

factor (ECHA, 2014b). The European Food Safety Authority, following the EC Regulation 
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No 1107/2009 on authorisation of Plant Protection Products, recommends in its Guidance 

Document on Aquatic Ecotoxicology to further elaborate a risk assessment methodology to 

better address biomagnification in the future, and proposes to consider food-chain modelling 

as an option for higher tier assessment (EFSA PPR Panel, 2013). The importance of 

monitoring bioaccumulation in aquatic organisms is stressed by the European Commission 

also in the EU Directive 2013/39/EU. It states that for very hydrophobic substances which 

accumulate in biota and are hardly detectable in water, Environmental Quality Standards 

(EQS) should be set for biota (EC, 2011). For dioxins and dioxins-like compounds, EQS 

values refer to the concentration in fish, crustaceans, and molluscs (Schäfer et al., 2015).  

Bioaccumulation results from net competing uptake and elimination processes, or, more 

precisely, is the result of absorption, distribution, metabolism and excretion (ADME) of a 

substance in an organism. The degree to which bioaccumulation occurs can be expressed 

by different metrics (Mackay et al., 2013), which may also have a regulatory relevance and 

can be used for priority setting in chemicals management. The Bioaccumulation Factor 

(BAF) can be expressed as the steady-state (equilibrium) ratio of the substance 

concentration in an organism to the concentration in the surrounding medium. For sediment-

dwelling organisms, the BAF is often expressed as the ratio of the concentrations in the 

organism and the sediment, in which case the term is referred to as Biota Sediment 

Accumulation Factor (BSAF). In absence of dietary exposure, the Bioconcentration Factor 

(BCF) can be estimated, while the Biomagnification Factor (BMF) is the steady state ratio of 

chemical concentration between an organism and its food.  

Several approaches exist to estimate bioaccumulation metrics. Bioaccumulation data can 

be obtained from laboratory tests. A number of standardised test guidelines exist for 

estimating bioconcentration potential of organic compounds using laboratory experiments, 

such as Bioaccumulation in Fish - Aqueous and Dietary Exposure (TG 305; OECD, 2012), 

Bioaccumulation in Sediment-dwelling Benthic Oligochaetes (TG 305; OECD, 2008), and 

Bioaccumulation in Terrestrial Oligochaetes (TG 317; OECD, 2010). 

BAF are rarely estimated from laboratory tests, more commonly field data are used for this 

purpose. The advantage of these measurements is that they include environmentally 

relevant processes, however field measurements and thus bioaccumulation data are 

characterized by high variability, which provide challenges to the collection, interpretation 

and regulatory use of field bioaccumulation data (Nichols et al., 2015). 

Bioaccumulation metrics can be also predicted by Quantitative Structure-Activity 

Relationship (QSAR) models. The most common QSAR models are based on the relation 
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between BCF and chemicals hydrophobicity (Kow). The relationship can be explained by the 

analogy between n-octanol - water partitioning to that of tissue lipids - water partitioning. 

Common BCF/Kow QSARs for non-polar, hydrophobic organic chemicals include models by 

Veith et al., (1979), Mackay and Paterson (1982), Meylan et al., (1999), and Dimitrov et al., 

(2002). Linear correlation (Mackay and Paterson, 1982; Veith et al., 1979) is a good 

approximation of the BCF for non-ionic compounds, however this relation fails with more 

hydrophobic chemicals, overestimating BCF values due to reduced bioavailability of highly 

hydrophobic compounds, slow membrane transfer of large molecules, and processes 

affecting bioaccumulation such as growth of the organism, or metabolism (Schüürmann et 

al., 2007). Higher degree polynomial QSAR models (Dimitrov et al., 2002; Meylan et al., 

1999; Bintein, 1993; Connell and Hawker, 1988) show better performance than linear 

models in predicting BCF of highly hydrophobic chemicals. 

Furthermore, chemical bioaccumulation process can be simulated by mechanistic mass 

balance models for specific organisms, based on one or more body compartments (Korsman 

et al., 2015; Hauck et al., 2011; Hendriks et al., 2001; Gobas et al., 1993). In these models, 

different uptake processes (respiration, dietary uptake) as well as elimination processes 

(excretion, egestion, metabolism, growth dilution, reproductive losses) can be considered 

and described, each one characterized by a specific kinetic rate constant (Hendriks, 1995; 

Hendriks et al., 2001). Information on the target chemical and the organism, such as 

chemical partition coefficients or respiration and feeding rates and absorption efficiencies 

are needed by such kind of models (Mackay and Fraser, 2000).  

Mass-balance models for individual organisms (e.g., fish), can be incorporated into larger 

descriptions of food webs, to simulate chemical bioaccumulation resulting both from 

exposure to environmental media (air, water, soil) and diet.  Several food web 

bioaccumulation models are available, both for aquatic (e.g., Arnot and Gobas, 2004; 

Hendriks et al., 2001; Campfens and Mackay, 1997; Barber, 1991) and terrestrial food webs 

(e.g., Kelly and Gobas, 2003; Ardestani et al., 2014). The great advantage of these models 

is that food webs of any dimension can be described, with as many food sources as needed, 

and concentrations in all species can be calculated simultaneously.  

There has been substantial increase in the awareness of key parameters that influence all 

of the current metrics used to assess chemical bioaccumulation. Metabolic 

biotransformation rates of organic chemical have been identified as the most important 

source of uncertainty in modelling bioaccumulation (Papa et al., 2014, Webster and Ellis, 

2012). Complementing human exposure assessment to chemicals through various 
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pathways with food web bioaccumulation process such as bioconcentration, 

biomagnification, and biotransformation will allow better risk management decisions. Some 

commonly used models, such as EUSES, do not include mechanistic knowledge on uptake 

and elimination processes in biota, therefore they cannot provide substance and organism 

specific human exposure estimates (Undeman and McLachlan, 2011). Particularly, the food 

web biotransformation is shown to play an important role in human exposure estimation, 

and neglecting this process in multimedia model calculations is expected to result in 

substantial errors (Arnot et al., 2010). 

There is a strong drive towards the development of methods that could reduce and/or 

replace use of animals for testing (https://eurl-ecvam.jrc.ec.europa.eu/). Physiologically 

based pharmacokinetic (PBPK) models are dedicated tools that satisfy this need because 

they describe the fate of chemicals (and mixtures of chemicals) in the body of an organism 

and can predict their levels in the internal tissues. They consist of a series of mathematical 

equations with parameters based on the specific physiology of animal. 

Two mechanistic models were considered for application in the PhD project: Optimal 

Modeling for EcotoxicoloGical Applications (OMEGA) proposed by Hendriks and colleagues 

(Hendriks et al., 2001; Hendriks and Heikens, 2001) and Aquaweb by Arnot&Gobas 2004 

(Arnot et al., 2004, Gobas et al., 1993, 1988, 1986). The accumulation kinetics in the 

Aquaweb model were compared with those proposed in OMEGA. Although both approaches 

can represent exchange processes of contaminants between target organisms and its 

surrounding environment (i.e. overlying water, other biota systems representing its food) 

dynamically (Lopes et al., 2012, Infantino et al., 2013, Viaene et al., 2014, Ng et al., 2009), 

due to better availability of parameter values and their specific probability density functions 

(PDFs) (Hauck et al., 2011, de Leander et al., 2009, 2010), the selected model for 

implementation in the project is OMEGA. The model proposed by Arnot&Gobas 2004 

requires numerous organism specific parameters to describe accumulation rate constants 

making it hard to provide these parameters with right PDFs (Ciavatta et al., 2009), which are 

required for uncertainty analysis. On the other hand, the allometric scaling applied by 

Hendriks describes uptake and elimination kinetics of different species groups and trophic 

levels providing extensive information on physiological, and ecological parameters 

(Hendriks 1995, 1999, 2007). Moreover, OMEGA model and its derivatives have been 

recently used in a number of studies dealing with dynamic simulations and uncertainty 

analysis (Taffi et al., 2014, de Hoop et al., 2013, Foekema et al., 2012, Hauck et al., 2011). 

OMEGA features characteristics of the biodynamic approach, it describes accumulation 

https://eurl-ecvam.jrc.ec.europa.eu/


 

19 
 

rates of contaminants, it is mechanistically based, and reflects variability of organisms and 

contaminants by considering both biological and physico-chemical specific parameters. A 

biokinetic approach is used rather than an equilibrium-based approach to simulate the 

accumulation of both organic and inorganic contaminants by aquatic animals (Mackay and 

Fraser 2000). Dynamic modelling has the capacity to predict temporal patterns of 

bioaccumulation by taking into account biological and ecological process, providing an 

alternative to bioaccumulation models based on common assumption that organisms would 

achieve equilibrium state after rates of uptake and elimination of organic contaminant reach 

balance whithin the organism’s lifespan (McLeod et al., 2016). Apart from biological and 

ecological factors which affect bioaccumulation of chemicals in time also physico-chemical 

paramters were noted to prevent achieving equilibrium as in the case of highly hydrophobic 

chemicals which do not follow the steady state assumption (Arnot et al., 2006; Jonker and 

van der Heijden, 2007). The explanation is that the passive diffusion of organic contaminants 

through biological membranes slows down with increasing hydrophobicity and that the 

exchange rates between organism and environment show seasonal and temporal variability. 

Overall, using rates to express accumulation processes allows models to be flexible and 

predictive under changing conditions (Wallace and Blersch 2015). Additional strengths of 

the biodynamic model are the aspect of taking into account all uptake routes and thus 

capturing the biological processes that bioaccumulation phenomenon depends on. In case 

of metals, however, bioaccumulation is highly variable due to differences among species, 

the environmental chemistry or bioavailability of metals, and the complexities of the cycling 

of metals in aquatic ecosystems, therefore modelled results should be treated with caution 

(Luoma et al., 2005, Owsianiak et al., 2014, Ardestani et al., 2014, Groenenberg et al., 

2014). While processes involved in bioaccumualtion were assumed to be similar for fish and 

invertebrate species, for phytoplankton a simpler assumption was made to describe the 

accumulation of contaminant (Hendriks et al., 2001). Thus, only the uptake from water is 

considered since phytoplankton consist of autotrophic species, and dietary uptake can be 

disregarded (Frouin et al., 2013, Swackhamer and Skoglund 1993). 
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CHAPTER 3 MODEL DEVELOPMENT AND IMPLEMENTATION 

3.1.  ECOLEGO 

Within the present PhD project, the aquatic food web models (i.e. Phytoplankton, 

Invertebrate, Fish), drawing from previously existing modelling approaches were coded in 

Ecolego. A detailed model documentation is available on MERLIN-Expo website 

(http://merlin-expo.eu/learn/documentation/model-documentation/). 

Original models were first introduced in Ecolego (MATLAB toolbox for modelling dynamic 

systems) before transferring to MERLIN-Expo (Avilaa et al., 2003). Implementing models in 

Ecolego was done by adopting them to project’s assumptions such as probabilistic 

parameterisation of modelling approach for uncertainty and sensitivity analysis following 

CEN (European Committee for Standardisation) standard documentation protocol (SDP) for 

exposure models. The SDP can be defined as a generic format and a standard structure by 

which all multimedia models can be documented 

(ftp://ftp.cenorm.be/CWA/CEN/MERLIN_EXPO/CWA_to_public_commenting.pdf). 

The initial idea of Ecolego was to facilitate the creation of large and complex models and to 

be able to solve difficult numerical problems. With the purpose to make complicated models 

with many interconnections easier to overview, the models in Ecolego are represented with 

the help of interaction matrices instead of the traditional flow diagrams. Combined with 

hierarchical containers (sub-systems), the interaction matrix greatly facilitates construction 

and documentation of large and complex models. Objects can be assigned comments, 

images, units, and hyper links to other documents or Ecolego objects. Ecolego can also 

create reports that contain everything from interaction matrices, to parameter values, 

equations, decay chains, plots and tables. In order to increase the flexibility for the user, 

Ecolego has no restrictions on the order of creation – for instance, a parameter can be used 

in equations before it is defined. A real-time validation engine reports problems to the user, 

such as not-yet-defined objects, objects lacking values or having invalid equations. The 

typical Ecolego model is a compartmental model which requires a solver of differential 

equations. There is a wide array of numerical solvers to choose from. Some are optimized 

for stiff and numerically difficult models, others for trivial models. With an extensive list of 

probability density functions, together with Monte Carlo and Latin hypercube sampling and 

parameter correlation settings, Ecolego holds all the required tools to perform advanced 

probabilistic analysis. 

 

http://merlin-expo.eu/learn/documentation/model-documentation/
ftp://ftp.cenorm.be/CWA/CEN/MERLIN_EXPO/CWA_to_public_commenting.pdf
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3.2.  GENERAL DESCRIPTION OF BIOACCUMULATION PROCESSES IN AQUATIC 

FOOD WEBS 

The assessment of bioaccumulation processes plays a significant role in the evaluation of 

chemical risks. The awareness of long lasting and often irreversible effects of 

bioaccumulative chemicals on ecological and human targets encouraged the inclusion of 

bioaccumulation assessment in many national and international legislative frameworks. At 

the same time, various experimental and modelling approaches have been developed to 

estimate bioaccumulation metrics such as the bioaccumulation factor (BAF) or the 

biomagnification factor (BMF).  

The main objective of this pragraph is to describe the development of bioaccumulation 

models for organic and inorganic contaminants in aquatic environment implemented in 

MERLIN-Expo, taking into account recent progresses in description of the bioaccumulation 

of contaminants along food webs including phytoplankton, invertebrate and fish species, 

inlcuding the main processes governing bioaccumulation phenomena in selected groups of 

aquatic organisms.  

A prerequisite for developing a model describing accumulation of chemicals in an aquatic 

food web is a mechanistic understanding of bioaccumulation phenomena of organics and 

metals. The model is thus based on the description of main exchange processes between 

water and organism compartment, i.e. uptake via respiratory route, uptake via dietary route, 

elimination via respiratory route (excretion), elimination via gastro intestinal track (egestion), 

metabolism, and growth (Lim et al., 2011; van Leeuwen and Vermeire, 2007; MacLeod et 

al., 2010). The ‘Fish’ and ‘Invertebrate’ models should then include two compartments that 

correspond to two input/output pathways for chemical accumulation in organism, i.e. the 

respiratory system and the gastro intestinal tract (GIT) system. The media considered are 

represented in Figure 3. 
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Figure 3 Main bioaccumulation processes included ‘Fish’ and ‘Invertebrate’ model. Metabolism is not considered for metals. 

While processes involved in bioaccumulation may be assumed to be similar for fish and 

invertebrate species (Hendriks et al., 2001), for phytoplankton a simpler assumption can be 

made. The ‘Phytoplankton’ model can be represented by one compartment and only uptake 

from water is considered (Figure 4) since phytoplankton includes autotrophic species, and 

dietary uptake can be disregarded (Frouin et al., 2013).  

 

 
Figure 4 Main bioaccumulation processes included in ‘Phytoplankton’ model. 

3.3.  RESPIRATORY UPTAKE AND EXCRETION OF CHEMICALS 

3.3.1. Process Description 

Bioconcentration in invertebrates and fish partially results from chemical uptake via the 

respiratory surface (fish’s gill) of the organism. A variety of models addressing uptake of 

chemicals via respiratory route exist (Arnot and Gobas, 2004; Barber, 2008; Hendriks et al., 

2001). All these models can be based on different mathematical formulations and parameter 

names but they actually are consistent and consider common assumptions. In particular, 

they consider that uptake is governed by an assimilation rate that depends on biological 

attributes of the fish (e.g. water assimilation varies between freshwater and marine organism 

as a result of their distinct requirements for osmoregulatory balance), but also on chemical 

structure of the investigated substance and its affinity with lipids. Assimilation efficiency 

(AEgill) thus determines the amount of chemicals that fish extracts from the volume of water 

flowing across the gill membrane. Assimilation efficiency is generally related to the Octanol-
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Water partition coefficient (Kow) according to a relationship in the form (Equation 1):  

 

Equation 1 

ow

gill
K/BA

1
AE


  

 
where AEgill (dimensionless) is the assimilation efficiency; Kow (dimensionless) is the octanol-

water partition coefficient; A and B (dimensionless) are calibration parameters (see below). 

Several parameterizations based on empirical observations were proposed for this 

relationship (Gobas et al., 1988; Arnot et al., 2004; Barber, 2008). Some of them propose 

piecewise functions, i.e.  different A and B values for several logKow ranges. For example, 

Barber (2008) observed a positive correlation with Kow for hydrophilic and moderately 

hydrophobic chemicals and a negative correlation with Kow for extremely hydrophobic 

chemicals. The decreasing of Assimilation Efficiency for these latter compounds can be 

caused by the increasing water phase resistance. The applicability domain of these 

relationships has also to be checked before application. For example, the solution proposed 

by Gobas et al., (1988) is based on reliable data (i.e., number of observations, confidence 

intervals), but only chemicals with logKow > 4 were studied.  

The Hendrik’s model (Hendriks et al., 2001) gives a mechanistic interpretation for the A and 

B coefficients, i.e. they represent resistances in water and lipid membranes respectively. 

The resistances for diffusion through water layers can be considered to be the same for 

different chemicals because molecular weights and volumes are in the same order of 

magnitude (the use of the constant A derives from this assumption). The resistance during 

permeation through lipid layers was considered to decrease with the hydrophobicity of the 

compound (Gobas et al., 1986; Flynn and Yalkowsky, 1972; the use of the expression B/KOW 

derives from this assumption). In addition to resistances in lipid and water layers, fluxes can 

also be limited by delays in the flow of water through organisms. However, the delay 

imposed by the water flow can be ignored for aquatic species because ventilation and 

filtration are sufficiently fast in these organisms (Hendriks et al., 2001). 

Uptake of chemicals through the gill membrane also depends on the volume of water flowing 

across the gill membrane, i.e. on the ventilation rate. In some models, ventilation rates of 

fish (expressed in L.s-1) are assumed to be directly associated to its needs in oxygen. It is 

then estimated by the three variables that governs oxygen uptake, i.e. the fish rate of oxygen 

consumption (expressed in mgO2.s-1), the fish oxygen assimilation efficiency and the 
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dissolved oxygen concentration of the ambient water (in mgO2.L-1). Assuming that 

ventilation rates essentially depend on organism body weight, they can also be estimated 

by allometric scaling. 

In conclusion, Hendrik’s model (Hendriks et al., 2001) considers that respiratory uptake rate 

of a chemical depends on Kow, body weight W, and resistances layer_water  and layer_lipid  that 

substances encounter in lipid and water layers of the organism (Equation 2): 

 

Equation 2 
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where kuptake_resp (L.kg-1 fw.d-1) is the respiratory uptake rate; W (kg fw) is the organism weight; 

κ (dimensionless) is the allometric factor; ρwater_layer (kg.d.kg-1) is the water layer diffusion 

resistance for uptake of chemicals from water; ρlipid_layer (kg.d.kg-1) is the lipid layer 

permeation resistance; Kow (dimensionless) is the octanol-water partition coefficient. 

Such model is expected to accurately predict uptake rate and an uncertainty analysis was 

already performed by Hauck et al., (2011). 

QSAR uptake models are another alternative for estimating uptake across gill. Although 

such empirical models can provide useful conceptual insight, their utility for actual prediction 

must be carefully evaluated due to limited databases from which they were calculated and 

also their implicit assumption that biological determinants of uptake are either insignificant 

or constant across species or body size. 

The respiratory pathway includes chemical uptake, as described above, but also chemical 

excretion.  Excretion can be seen as a release of chemicals from fish’s water compartment 

via respiratory route. Chemical uptake via the respiratory surface (fish’s gill) of the organism 

is indeed associated to chemical excretion associated to the outflux of water via the 

respiratory surface. Both processes are influenced by the same factors connected with 

respiration. Many experiments were conducted under controlled laboratory conditions where 

dietary uptake is considered negligible. Under such conditions, equilibrium between 

concentration of the chemical in fish tissues and surrounding water can be reached. The 

bioconcentration factor (BCF), defined as the ratio at equilibrium of biota concentration of 

the substance to water concentration, can then be defined. As equilibrium condition is 

assumed to be reached, BCF also represents the ratio between respiratory uptake rate and 
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excretion rate. BCF can then be used in combination with the respiratory uptake rate 

resp_uptakek  to estimate the excretion rate resp_excretionk  and to reflect affinity of the substance 

for staying in the lipid compartment of the organism (Mackay and Fraser, 2000). The BCF 

concept was originally developed for hydrophobic organic substances and several QSAR 

techniques were proposed to predict BCF from chemical descriptors of hydrophobicity like 

octanol-water partition coefficients.  

3.3.1.1. Allometric scaling 

As described above, some models simulating uptake rate by respiration are based on 

allometric scaling. This is also the case for dietary uptake of fish or absorption rate of 

mammals. A short introduction to allometric scaling is then proposed here, and it is also valid 

for other parameters presented in other sections of this chapter. 

Allometric relationships provide body-size specific parameters instead of values that are 

arbitrary or taken from a well-known species. Allometry, or the biology of scaling, is the study 

of size and its consequences. It has become a useful tool for comparative physiology. There 

are several empirical allometric equations that relate body size to many parameters, 

including ingestion rate, lifespan, inhalation rate, mortality, age at maturity, maximum 

density, territory size, rate constants, etc. Even if these relationships were originally derived 

from empirical observations, there is a growing body of evidence that these relationships 

have their origins in the dynamics of energy transport mechanisms. From a meta-analysis 

based on 230 relationships, slopes of allometric regressions were shown to be mutually 

consistent with rate constants, and generally decrease with organism mass at a constant 

exponent (Hendriks, 2007). Slope of allometric regression κ is a component of each rate 

constant used in fish bioaccumulation model. The range of the slope of allometric regression 

is derived from reviews of empirical studies that have shown that the exponent is usually 

within the range of 0.25 to 0.33, theoretically explained by food web networks and surface-

volume relationships (Hendriks et al., 2001). 

3.4.  DIETARY UPTAKE AND EGESTION OF CHEMICALS 

The rate at which chemicals are assimilated from the diet via the gastro intestinal tract (GIT) 

is expressed by the dietary uptake rate constant (kg.kg-1.d-1), and the rate at which 

chemicals are eliminated from the organism body via the gastro intestinal tract (GIT) is 

expressed by the egestion rate constant (kg.kg-1.d-1). Although direct aqueous uptake is the 
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dominant route of accumulation for moderately hydrophobic chemicals, dietary uptake can 

be the dominant pathway for extremely hydrophobic chemicals (Barber 2008). Due to the 

fact that water is not a significant contributor to the storage capacity of highly hydrophobic 

organic chemicals, its value has a negligible impact on the mechanism of biomagnification 

for these chemicals. Once the dietary exposure pathway becomes dominant, an actual 

concentration of accumulated chemical can exceed those predicted by thermodynamic 

partitioning. This is because of fish’s decreasing ability to excrete highly hydrophobic 

chemicals across its gills, and also due to its ability to maintain high dietary diffusion 

gradients (Barber, 2008). The high diffusion gradient makes assimilation of digestion 

products more rapid than hydrophobic chemicals, leading to increase concentration of these 

chemicals in guts. 

In complement to what proposed for the respiratory pathway, Hendriks et al., (2001) 

proposed formulations to simulate uptake and egestion of chemicals via diet ingestion. It is 

assumed that chemical exchanges across the gastro intestinal tract (GIT) are driven by 

diffusion gradients, i.e. the concentration differences between phases within the fish and its 

food/feces. These exchanges are assumed to be mainly simple molecular diffusions. 

Although alternative diffusion mechanisms were proposed (e.g., lipid micelle-mediated 

diffusion model), their role in controlling dietary exchanges of fish is not well established 

(Barber 2008).  

The distribution of food between digested and undigested fractions respectively can be 

represented by an Assimilation Fraction AFfood. Assimilated food may be allocated to 

production of somatic or gonadal biomass. Dietary assimilation efficiencies reflect dietary 

matrix (e.g., organic matter quality and quantity), and digestive physiology of the organism 

(e.g., feeding rates and gut retention time). As the chemical can be both transported in food 

water and/or food lipids, the assimilation fraction of the chemical AFchemical can be different 

of those applied for food AFfood. For this purpose, food is assumed to be composed of lipids 

and water only, in respective proportions plipid_food and (1- plipid_food). The assimilation fraction 

of the chemical contained in water is directly related to the assimilation fraction of food 

AFfood; the assimilation fraction of the chemical contained in lipids is assumed to be related 

to the assimilation fraction of food AFfood corrected by the octanol-water partition coefficient 

Kow. 

Similar to what assumed for Hendrik’s respiratory uptake model, the dietary uptake is limited 

by two resistances in series reflecting transport across the water GIT layer and the lipid GIT 

membrane respectively. As for respiratory uptake, the resistance for diffusion through water 
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layer is considered to be the same for different chemicals, while partial resistance from lipid 

layer (encountered to and from food) is inversely proportional to Kow.  A flow delay of food 

and feces, depending on the fraction of undigested chemical contained in lipids, can also be 

considered. The mathematical formulation respecting these assumptions can be found in 

Hendriks et al., (2001), i.e.  

 

Equation 3 
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where kuptake_diet (kg fw.kg-1 fw.d-1) is the dietary uptake rate; AFfood (dimensionless) is the 

food assimilation efficiency; plipid,food (dimensionless) is the proportion of lipids in food; W (kg 

fw) is the organism weight; κ (dimensionless) is the allometric factor; ρwater_layer_food (kg.d.kg-

1) is the water layer diffusion resistance for uptake of chemicals from food; ρlipid_layer (kg.d.kg-

1) is the lipid layer permeation resistance; Kow (dimensionless) is the octanol-water partition 

coefficient; γfood (dimensionless) is the food transport coefficient (that represents delay in 

advective transport of chemical substances through organism due to limited supply of new 

food). 

Alternatively, bioaccumulation models employ dietary uptake formulations based on 

assimilation efficiencies at equilibrium. Models applying assimilation implicitly assume that 

chemical equilibrium assimilation efficiencies describe the net chemical exchange between 

fish and their food. These models describe a fish’s chemical elimination either as a single, 

lumped parameter process that is independent of the fish’s egestion rate or as a process 

that does not require an explicit fecal egestion term. Chemical assimilation efficiencies via 

food often have been considered only as functions of Kow, similarly to what is established for 

respiratory uptake. Moreover, as far as the fish’s dietary assimilation efficiencies are 

concerned, Thomann et al., (1992) concluded that a fish’s dietary and gill assimilation 

efficiencies could be estimated with the same empirical function of Kow. These relations are 

presented often as hyperbolic functions (i.e., AEdiet = (a0 + a1Kow)-1). One example of this 

approach is described by Gobas et al., (1988). 
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3.5.  METABOLIC BIOTRANSFORMATION 

One of the routes of chemical elimination in fish is metabolic transformation (or 

biotransformation), defined as a change of the parent substance to another molecule or a 

conjugated form of the parent substance. Negligible biotransformation rates are often 

assumed for screening level hazard and risk assessment, thus resulting in overestimates of 

bioaccumulation, exposure, and risk for chemicals that undergo biotransformation 

processes. Biotransformation can however lead to reduction in bioconcentration of some 

non-ionic substances due to reactions associated with certain functional groups. Metabolic 

biotransformation has a larger influence on bioaccumulation factor for more hydrophobic 

chemicals. This is because the rates of chemical elimination by gill respiration become 

slower with increasing hydrophobicity of contaminants. Schüürmann et al., (2007) states 

that for predictive BCF assessment, factors such as biotransformation should be taken into 

account. 

Biotransformation results in formation of a more hydrophilic compound which is more easily 

excreted that a parent compound. The organ that is most commonly involved in the 

biotransformation of xenobiotics is the liver. The main processes involved in metabolism of 

chemical in fish body are categorised in three phases (van der Oost et al., 2003): Phase I of 

metabolism involves such process as oxidation, reduction, or hydrolysis to unmask or add 

reactive functional groups to xenobiotic compound; Phase II of metabolism involves 

enzymes catalyzing conjugation of the xenobiotic or its metabolite with an endogenous 

ligand (e.g. glutathione, glucuronic acid), thus facilitating the excretion of chemical; Phase 

III involves enzymes (i.e. peptidases, hydrolases, and β-lyase) that catalyse metabolites to 

form products easily removable from the organism body. 

Models that include biotransformation generally assume first-order processes and do not 

estimate biotransformation rates that may occur under non-first-order conditions, such as 

enzyme saturation. Biotransformation half-lives and rate constants (λmetabolism) for organic 

chemicals in fish can be derived from QSAR models (under applicability domain limitations) 

(Arnot et al., 2009). QSAR predictions of metabolic biotransformation are functions of 

structural properties, and can be presented as normalised values (e.g., to 0.01 kg fish and 

15°C). In this latter case, for comparison of models’ estimates and use in mass balance 

models, it is recommended to convert QSAR predicted values to body weight and 

temperature specific values. Alternatively, biotransformation rate constant can be calculated 

as the difference between two quantities, a measured bioconcentration factor or elimination 
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rate constant, and a model-derived bioconcentration factor or elimination rate constant 

estimated assuming no biotransformation.  

3.6.  BIOCONCENTRATION FACTOR FOR METALS 

Bioaccumulation of metals via the respiratory pathway can occur across body surfaces, such 

as gill, and is generally described by the bioconcentration factor (BCF), defined as the ratio 

at equilibrium of the substance concentration in fish tissue to water concentration in water. 

The BCF concept was originally developed for hydrophobic organic substances. Simple 

passive diffusion across the lipid biomembranes is believed to be the key process for the 

accumulation of neutral hydrophobic substances in biota, which ensures BCF is independent 

of exposure concentrations (McGeer et al., 2003). In the case of metal, however, the 

assumption of BCF being independent of exposure concentrations is controversial. As a 

result of complex physiological processes such as sequestration, detoxification, storage, 

branchial elimination, biota is often actively able to regulate metal bioconcentration via 

dynamic reaction systems that respond to environmental loading and maintain homeostasis 

(Chapman et al., 1996; Hamilton et al., 1986). In addition, Deforest et al., (2007) 

hypothesized the trend in which metal uptake increases at lower exposure concentrations, 

according to the basis that organisms actively uptake essential metals at low concentrations 

to satisfy metabolic requirements. Non-essential metals would also be regulated because 

the mechanisms for regulating essential metals are not metal-specific (Phillips and Rainbow, 

1989). 

Based on the factors influencing metal uptake and accumulation described above, it can be 

assumed BCF values for metals are not independent of exposure. BCF can then assumed 

to be related to the metal concentration in water. Several authors observed an inverse linear 

relationship between BCF and the total metal concentration in water in log units (Hendriks 

et al., 2001; McGeer et al., 2003; Deforest et al., 2007; Tanaka et al., 2010), i.e. 

 

Equation 4 
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where BCF (L.kg-1 fw) is the Bioconcentration factor; Ctot_water (mg.L-1) is the total 

concentration of the chemical in water; aBCF and bBCF (dimensionless) are calibration 

parameters. 

For example, Tanaka et al., (2010) built a database containing BCF, as well as 
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concentrations in water, for five metals (Cd, Cu, Zn, Pb and As). Data were extracted from 

ECETOX and US EPA databases, as well as from data available in McGeer et al., (2003) or 

other more recent papers. Only chronic exposure conditions (> 28 days) were considered 

for deriving BCFs, because they are assumed to be relevant for equilibrium situations. As a 

result of the data selection, an estimation of the 
BCFa  and 

BCFb  parameters was thus obtained 

with confidence intervals. McGeer et al., (2003) also fitted BCF-Concentration relationships 

for Ag and Ni. 

An example the media and processes considered and their matrix representation is shown 

in Figure 5. 

 

 

Figure 5 Processes included in estimation of bioaccumulation in ‘Fish’  
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CHAPTER 4 INTEGRATED EXPOSURE MODELLING IN THE LAGOON OF 

VENICE 
 

4.1.  VENICE CASE STUDY 

Increasing the confidence in the applicability of the integrated exposure assessment and the 

MERLIN-Expo can be achieved through testing on complex realistic case studies. The case 

study can be seen as reference case that provides credibility in the integrated exposure 

assessment and potential guidance to future users on how to apply the models in different 

situations and how to interpret the results from the assessments.  

The lagoon of Venice can be divided into three main basins: southern, central and northern 

lagoon. For the integrated exposure assessment, the central lagoon has been selected as 

target area: it is close to Porto Marghera industrial area and has been strongly influenced 

by input of contaminants associated to industrial activities. Many studies on superficial 

sediments showed that the concentrations of persistent organic pollutants such as dioxins 

and PCBs in the central basin were higher than other areas (Frignani et al., 2001; Marcomini 

et al., 1997; Secco et al., 2005; Venice Water Authority, 2000a, 2000b, 1999). At the same 

time, central lagoon became the most relevant area for local shellfish industry. The biological 

resources of the lagoon have been exploited since centuries by traditional fishing and 

farming activities. After the introduction and the extensive diffusion of the bivalve Manila 

clam (Tapes philippinarum, which rapidly replaced the autochthonous species T. 

decussatus), since the early 90’s the mechanical clam harvesting became the most 

important activity in the fishing sector, with an annual production of clams up to 40.000 tons. 

Dredging grounds are mainly concentrated in the central basin of the lagoon, where high 

nutrient, organic matter, phytoplankton and microphytobenthos concentrations created the 

optimal conditions for clam growth (Pranovi et al., 2003; Sfriso et al., 2003, 2005). Even after 

the prohibition of fishing activities in the areas close to Porto Marghera (and the identification 

of suitable areas for clam harvesting), illegal fishing continued in the most contaminated 

areas (Boscolo et al., 2007). Therefore, according to a conservative approach, the selection 

of central lagoon as target area for exposure modelling made possible to consider the worst-

case scenario for both ecological and human exposure assessments. 

For human exposure assessment, it is worth remembering that the overall body burden of 

PCBs and dioxins (reflected in blood concentrations) depends on toxico-kinetic processes, 

governed by age-dependent human physiology and by physico-chemical properties of 

chemical, as well as on external environmental exposure. Environmental burdens of PCBs 
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and dioxins have changed over the last 70 years, as demonstrated by retrospective studies. 

For PCBs, a peak of exposure in the 70’s has been identified, followed by a decrease since 

the 80’s as consequence of chemical use and emission regulation (e.g., Fensterheim, 1993). 

It is therefore necessary to reconstruct possible past exposure scenarios to perform lifetime 

human exposure assessment. Emission data suitable to retrace the historical development 

of PCBs and dioxins contamination in Venice lagoon area are not available. As an 

alternative, sediment cores proved to be useful in reconstructing temporal contamination 

trends in Venice area (Frignani et al., 2005; Marcomini et al., 1999), also in combination with 

modelling approaches (Dalla Valle et al., 2005). In general, a significant increase of organic 

pollutants in lagoon sediment has been observed since the 1940’s, the maximum inputs of 

contaminants are on average associated with the period ’60-70’s, then an appreciable 

decrease was observed. However relative abundance and behaviour of individual 

substances might follow a different trend depending on emission patterns and chemical 

characteristics. Concentrations of PCBs and dioxins in different layers of a dated sediment 

core from central lagoon measured by Frignani et al., (2005) have been selected for the 

purposes of this study.  

With the aim of testing the accuracy of MERLIN-Expo models in predicting ecological and 

human exposure, measurements of chemical concentrations in biota and human tissues 

were required. Unfortunately, only few human biomonitoring studies have been performed 

in the Venice area. The selected study was conducted in 1998, funded by Venice 

municipality, and it involved 41 volunteers (adult males resident in the municipality of Venice) 

(Frangipane, 1999; Raccanelli et al., 2007). Concentrations of TCDD/Fs and PCBs were 

analysed in serum extracted by an isotope dilution method using a relative response factors 

previously obtained from five standard solutions injections, according to USEPA 

recommendations (USEPA methods 1613B/94 and 1668A/99). The lipid content of serum 

was analytically determined for normalization of chemical levels to serum fat content. The 

volunteers were divided into two groups according to their diet: 22 consumers of large 

amounts of locally caught fish and shellfish (at least 3 times a week) and 19 persons 

consuming little quantities of fish of any kind (less than 2 times a week). For the purpose of 

the present study, data related to high fish consumers were selected.  

For the same time period as human biomonitoring data, measurements of bioaccumulation 

of PCBs and dioxins were available for four aquatic species, namely Tapes philippinarum 

(Manila clam), Carcinus mediterraneus (Green crab), Zosterisessor ophiocephalus (Grass 

goby), and Chelon labrosus (Grey mullet) (Venice Water Authority, 1999). 
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According to the availability and suitability of chemical measurements in environmental, 

biota and human samples, PCB77, PCB126, PCB167, PCB169, PCB170, PCB180, 2,3,7,8-

TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HCDD were selected for the ecological exposure 

assessment, while the full chain assessment (i.e., up to human internal exposure) focused 

on PCB126 and 2,3,7,8-TCDD.  

4.2.  EXPOSURE SCENARIO 

Five models (i.e., Phytoplankton, Invertebrate, Fish, Human Intake and Man (PBPK) 

models) have been selected among those available in MERLIN-Expo library and coupled to 

recreate the target exposure scenario, as represented in Figure 6. All models were 

implemented in the library during 4FUN project. Specifically, within the present PhD project, 

the aquatic food web models (i.e. Phytoplankton, Invertebrate, Fish) drawing from previously 

existing modelling approaches were finally coded in Ecolego. A detailed model 

documentation is available on MERLIN-Expo website (http://merlin-

expo.eu/learn/documentation/model-documentation/). Figure 6 illustrates the linkages 

between the selected models, with grey arrows in the matrix representing output(s) of one 

model used as input(s) to another one. To recreate the required exposure scenario, all the 

models can be coupled in a model chain in MERLIN-Expo, by defining output(s) of one 

model as input(s) to another one. This can be done using Graph or Matrix design. Here the 

scenario is built as chain of models using the matrix feature, where models selected from 

the software library are pictured as boxes placed on matrix diagonal and connected by off-

diagonal ‘Connectors’. Aquatic food web models (i.e., Phytoplankton, Invertebrate and Fish) 

are connected based on the prey-predator relationships in the food web: this means that the 

estimated chemical concentration in each aquatic species and its lipid fraction are used by 

the subsequent model to estimate chemical dietary intake for the predator organism. Some 

of the organisms included in the Venice lagoon food web are edible organisms, which are 

commonly caught or harvested in the lagoon. In order to simulate the consumption of 

specific fish and shellfish species by local population and estimate human internal exposure 

to POPs associated with the diet, the aquatic food web models were linked to the Human 

Intake and to the Man model. For the case at hand, only dietary intake (i.e., ingestion of 

contaminated fish and seafood) is considered for human exposure. Inhalation is a 

recognized exposure route for many persistent organic compounds, but its relative 

contribution to the overall exposure can be considered to be small when compared with 

dietary exposure (Alcock et al., 2000). Significant dermal contact can usually be restricted 

http://merlin-expo.eu/learn/documentation/model-documentation/
http://merlin-expo.eu/learn/documentation/model-documentation/
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to few occupational exposure scenarios. Therefore, these two exposure routes are not 

further taken into account in human exposure modelling for the Venice lagoon case study. 

 

 

Figure 6 Models selected for the integrated exposure assessment in Venice lagoon visualized in the MERLIN-Expo matrix interface. 

 

As specified in more detail in the Chapter 3 Phytoplankton, Invertebrate and Fish models 

were used to dynamically simulate the bioaccumulation of chemicals in aquatic organisms 

and can be linked to recreate an aquatic food web of various dimensions and complexity. 

They are based on the “Optimal Modelling for EcotoxicoloGical Applications” (OMEGA) 

modelling approach proposed by Hendriks and colleagues (Hendriks et al., 2001; Hendriks 

and Heikens, 2001), with some adaptation needed to fit MERLIN-Expo requirements (e.g., 

population renewal in time). The Fish and Invertebrate models include two compartments 

corresponding to two input/output pathways for chemical accumulation, namely the 

respiratory system and the gastrointestinal tract (GIT) system, while Phytoplankton is 

represented by a single-compartment model. The main processes simulated by the models 

are: chemical uptake through respiration, chemical uptake through ingestion of food (preys) 

or sediment, elimination through respiratory excretion, elimination through egestion, growth 

and metabolism (Equations A1, A2). For Phytoplankton, uptake from water, elimination and 
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growth are considered (Equation A3). 

The Human Intake model estimates chemical daily intakes for human targets through 

different exposure pathways. This can be considered a kind of “connection model”, which 

has been created ad hoc to link environmental and human models in MERLIN-Expo. It is 

composed of a set of equations combining chemical concentrations estimated by other 

MERLIN-Expo models in environmental matrices (water, soil, dust, atmosphere, etc.) or food 

items (fish or aquatic invertebrates, grain, leafy vegetables, potato or root) with human daily 

intake rates (ingestion or inhalation rates) and human activity patterns (time spent 

indoor/outdoor) to derive the total quantity of chemical(s) ingested or inhaled per day by 

each individual. 

The Man model is a PBPK model composed of 22 compartments representing organs 

connected through blood floow (Beaudouin et al., 2010) and it is aimed at simulating the 

evolution of the amounts or concentrations of chemical compounds in tissues and organs of 

the human body over lifetime. Using as input the amount of inhaled or ingested contaminant, 

the Man model can predict internal dosimetry of the compound, as concentrations in target 

tissues that can be linked to toxic effect or in the form of biomarkers of exposure (such as 

concentration in blood or urine) that can be compared to appropriate reference or guidance 

threshold values (e.g. biomonitoring equivalents). The model accounts for the following 

processes: uptake processes (absorption of contaminant by ingestion and inhalation), 

distribution of the compound in body organs, metabolism by enzymatic processes and 

excretion from the body. Moreover, it takes into account the evolution of the anatomy and 

physiology over the lifetime of individuals, simulating all the physiological or biochemical 

changes arising during the development and growth from birth onwards. 

The Man model (PBPK model) is applied to predict time-dependent concentrations of 

organics in the blood of individual human males. The blood is represented in the model by 

two compartments: the arterial and venous blood. The arterial blood is distributed into all 

tissue compartments and the venous blood collects blood at the exit of most of the tissue 

compartments. Mass balance equations for calculating concentration in blood are described 

by Equations A4, A5. 
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4.3.  INPUT DATA 

4.3.1. Environmental Exposure 

In order to simulate the accumulation of target chemicals in aquatic organisms of Venice 

lagoon, the definition of a site-specific food web structure is required. A food web describes 

the pattern of trophic relationships among selected species in an ecosystem and provides a 

simplified representation of biomass and energy flows. Feeding relationships not only 

expose organisms to contaminants, but also represent a critical process of pollutants 

transfer, resulting in biomagnification phenomena as the consequence of dietary uptake 

(Kelly et al., 2007; Mackay and Fraser, 2000). The characterization of predator-prey 

interactions is pivotal to understand contamination patterns and associated adverse effects 

when moving from individuals to the ecosystem level (Rohr et al., 2006). A site-specific food 

web for the bioaccumulation assessment in Venice lagoon has been proposed by Micheletti 

et al., (2008) based on extended literature on Venice lagoon ecosystems assessment and 

modelling (e.g., Carrer and Opitz, 1999; Libralato et al., 2002; Pranovi et al., 2003). This 

food web has been slightly adapted for the application of MERLIN-Expo and it includes 17 

species plus the sediment compartment, which constitutes part of the diet for some benthic 

organisms. For some species (Tapes phillipinarum, Chelon labrosus, Sparus aurata, 

Dicentrarchus labrax), adult and juvenile individuals are considered as two separate 

components in the network, to account for differences in their metabolism, feeding habitat 

and internal tissue composition. The proposed food web includes species which have been 

selected to cover specific trophic roles (primary producers, top predators, etc.) and/or play 

an important role for fishing activity and can therefore be part of the human diet (i.e., they 

are also relevant in the perspective of human exposure assessment). 

The food web includes two planktonic groups, eight benthonic species/groups, eight 

nektonic species/groups (19 elements in total plus the sediment compartment). A diagram 

representing the Venice lagoon food web is presented in Figure 7 (only main trophic 

relationships are reported).  
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Figure 7 Aquatic food web for Venice lagoon. Adapted from Micheletti et al., (2008) and Libralato et al., (2002). 

 

Input data required by MERLIN-Expo models are grouped as: 

a) “parameters”, which are constant over each simulation and can be classified as 

chemical related parameters (e.g., physico-chemical properties of target chemicals) and 

biota related parameters (e.g., diet preferences, physiological parameters of selected 

species); 

b) “time series”, which are time-dependent environmental data (e.g. concentrations in 

environmental media such as water or sediment, water temperature). 

Phytoplankton, Invertebrate and Fish models require the same chemical-related parameters 

(i.e., octanol-water partition coefficient, bio-concentration factor, metabolic half-life of 

chemicals); moreover, Phytoplankton model requires also the water-organic carbon partition 

coefficient. Full list of input parameters used in bioaccumulation models along with their 

description is provided in the Tables A1-A3.  Contaminants specific parameter values were 

derived using QSAR models implemented in EPI Suite software (USEPA, 2012a): metabolic 

half-life of chemicals for organics (Arnot et al.,2008, 2009), bioconcentration factor for 

organics (Arnot and Gobas, 2003, 2006), water-organic carbon partition coefficient 

(Schüürmannet al., 2007), and octanol/water partition coefficient (Meylan and Howard, 
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1995). All input values for the selected substances are reported in Table 1.  

Table 1 Input values for chemical related parameters for aquatic food web models. 

Parameter 

Octanol-water 
partition coefficient 

(log Kow) 

Water-organic 
carbon partition 

coefficient (logKoc) 

Bioconcentrat
ion factor 

(BCF) 

Metabolic  
half-life of 
chemical 
(λmetabolism) 

unitless unitless unitless d-1 

PCB77 6.34 474 5.03 2254 

PCB126 6.8 4.93 5.08 288.4 

PCB167 7.5 5.22 4.75 271.64 

PCB169 7.46 5.17 5.64 413 

PCB170 8.27 5.64 3.69 799.83 

PCB180 8.27 5.29 6.20 716.2 

2,3,7,8-TCDD 6.92 4.83 3.54 16 

1,2,3,7,8-PeCDD 7.56 4.74 3.74 27.3 

1,2,3,7,8-HxCDD 8.21 5.38 3.64 46.5 

 

Input values for biological parameters for the species included in the Venice food web have 

been derived from available literature and free databases and are reported in Table 2 and 

Table 3.  

Table 2 Input values for biological parameters of Phytoplankton model.  

Parameter Unit Value Reference 

Allometric rate exponent unitless 0.25 Hauck et al., 2011 

Intercept of phytoplankton growth rate unitless 0.22 Marañón et al., 2013 

Slope of phytoplankton growth rate unitless 0.15 Marañón et al., 2013 

Lipid fraction of phytoplankton unitless 0.02 
Skoglund et al., 1999; 
Olenina et al., 2006 

Lipid layer permeation resistance kg.d /kg 97 Hauck et al., 2011 

Lipid layer resistance exponent unitless 0.41 Hauck et al. 2011 

Organic carbon fraction of phytoplankton unitless 0.29 
Skoglund et al., 1999; 
Olenina et al., 2006 

Phytoplankton cell volume μm3 7.68 Olenina et al., 2006 

Water layer diffusion resistance for uptake of chemicals from 
water 

kg.d / kg 0.0068 Hauck et al., 2011 
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Table 3 Input values for biological parameters of Invertebrate and Fish models. 

Parameter 
Allometric 
exponent 

Lipid fraction of 
invertebrate 

Food 
transport 

coefficient 

Fraction of 
assimilated 

food 

Lipid layer 
permeation 
coefficient 

Water 
layer 

diffusion 
resistance 
for uptake 

of 
chemicals 
from food 

Water 
layer 

diffusion 
resistance 
for uptake 

of 
chemicals 

from 
water 

Age at maturity 
Weight at 
maturity 

Fish lenght at 
maturity 

Intercept of 
lenght-weight 
relationship 

Slope of lenght-
weigth 

relationship 

               Units 
Species unitless unitless 

kg fw / kg fw 

d 
unitless kg.d / kg kg.d / kg kg.d / kg d kg fw cm unitless unitless 

INVERTEBRATE MODEL 

Zooplankton 

0.25 

0.05 0.03 0.73 97 0.0002 0.0068 20 3.42E-05 

  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  

Micro-
meiobenthos 

0.014 0.03 0.73 97 0.0002 0.0068 20 1.00E-04 

Macrobenthos 
Detritivorous 

0.014 0.03 0.73 97 0.0002 0.0068 90 3.20E-04 

Macrobenthos 
Omnivorous 
Filter Feeder 

0.012 0.03 0.73 97 0.0002 0.0068 548 6.71E-03 

Tapes 
philippinarum 
juv 

0.0125 0.03 0.73 97 0.0002 0.0068 90 1.00E-03 

Tapes 
philippinarum 

0.0125 0.03 0.73 97 0.0002 0.0068 910 7.00E-03 

Macrobenthos 
Omnivorous 
Mixed Feeder 

0.0262 0.03 0.73 97 0.0002 0.0068 90 1.41E-03 

Carcinus 
mediterraneus 

0.05 0.03 0.73 97 0.0002 0.0068 730 1.02E-02 

Macrobenthos 
Omnivorous 
Predator 

0.05 0.03 0.73 97 0.0002 0.0068 545 1.57E-03 

FISH MODEL 

Atherina boyeri 

0.25 

0.096 0.03 0.73 97 0.0002 0.0068 1778.5   
  
  
  
  
  
  
  
  

10.5 0.00603 3.07 

Chelon 
labrosus 0.068 0.03 0.73 

97 0.0002 0.0068 
4745 

30.3 0.00794 3.12 

Chelon 
labrosus juv 0.068 0.03 0.73 

97 0.0002 0.0068 
730 

3 0.0091 3.02 

Dicentrarcus 
labrax 0.1338 0.03 0.73 

97 0.0002 0.0068 
1095 

35.9 0.00891 3.05 

Dicentrarcus 
labrax juv 0.0076 0.03 0.73 

97 0.0002 0.0068 
75 

3 0.0076 3.2 
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Nekton 
carnivorous 
benthic feeder 0.08 0.03 0.73 

97 0.0002 0.0068 
1058.5 

32.5 0.0123 2.96 

Sparus aurata 0.0973 0.03 0.73 97 0.0002 0.0068 949 30 0.01259 3.03 

Sparus aurata 
juv 0.0973 0.03 0.73 

97 0.0002 0.0068 
365 

3 0.00923 3.28 

Zosterisessor 
ophiocephalus 0.1 0.03 0.73 

97 0.0002 0.0068 
1659.5 

16.3 0.00813 3.07 

REFERENCES 
Hauck  
., 2011 

R. Froese et al., 2014; 
M. Hauck et al., 2011; 

C. Micheletti et al., 
2008; 

http://www.fishbase.org/ 

Hauck et al., 
2011 

Hauck et al., 
2011 

Hauck et al., 
2011 

Hauck et al., 
2011 

Hauck et al., 
2011 

R. Froese et al., 2014 
http://www.fishbase.org/ 

Micheletti et al., 
2008; Durbin 
and Durbin, 

1978; P. 
Palmerini et al., 
1994; Robinson 

et al., 2010 

R. Froese et al., 2014 
http://www.fishbase.org/ 

R. Froese et al., 2014 
http://www.fishbase.org/ 

R. Froese et al., 2014 
http://www.fishbase.org/ 

 

 

 

 

 

 

 

http://www.fishbase.org/
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Description of the probability density functions is fully defined for all parameters in the 

documentation supporting developed models (http://merlin-

expo.eu/learn/documentation/model-documentation/).  

Fish and Invertebrate models require the user to define the diet preferences of each 

species included in the simulation. Components of organisms' diet can be either other 

aquatic organisms, such as invertebrate, fish or phytoplankton species (in this case 

the parameter to be informed is “Diet preference for food item”) or the organic fraction 

of sediment (in this case the parameter to be informed is “Diet preference for 

sediments”). In order to better clarify the trophic relationships between the considered 

species, these data are included all together in 

the so called “diet matrix”, which reports, for each target species, the fraction of each 

prey/food item over the total dietary intake (in the interval [0; 1]). Diet preferences for 

the Venice lagoon organisms have been defined according to available literature data 

and adapting the diet matrix proposed by Micheletti et al., (2008). The diet matrix is 

reported in Table 4.  

Table 4 Dietary preference for all aquatic species included in the Venice lagoon foodweb (adapted from Micheletti et al., 
2008). 
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Phytoplankton                                         

Zooplankton 0.50 0.50                     

Micro-meiobenthos 1.00                      

Macrobenthos 
detritivorous 

0.66   0.34                   

Macrobenthos 
Omnivorous Filter 
Feeder 

0.20 0.56 0.24                    

Tapes philippinarum juv 0.52 0.26 0.22                    

Tapes philippinarum 0.83 0.07 0.10                    

Macrobenthos 
Omnivorous Mixed 
Feeder 

0.34 0.25 0.28  0.09 0.04                 

Carcinus mediterraneus 0.25 0.15  0.20 0.10 0.04 0.06 0.10 0.10              

Macrobenthos 
Omnivorous Predator 

   0.25 0.20 0.04 0.20 0.16 0.15              

Chelon labrosus juv   0.69  0.31                  

Chelon labrosus 0.45 0.11  0.32 0.12                  

http://merlin-expo.eu/learn/documentation/model-documentation/
http://merlin-expo.eu/learn/documentation/model-documentation/
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Atherina boyeri   0.38 0.12 0.28    0.15 0.01 0.06            

Zosterisessor 
ophiocephalus 

   0.08 0.44  0.12  0.23 0.01    0.12         

Nekton carnivorous 
benthic feeder 

  0.04 0.41 0.18 0.15   0.15 0.01 0.06            

Sparus aurata juv   0.52 0.24 0.24                  

Sparus aurata     0.20 0.22 0.26 0.21 0.09 0.005    0.005 0.005 0.005       

Dicentrarcus labrax juv 0.12  0.48  0.18    0.16 0.01    0.05         

Dicentrarcus labrax 0.03 0.05 0.10      0.52 0.05    0.05 0.05 0.08 0.07      

 
 
Time dependent input values required by aquatic food web models include water 

temperature, chemical concentrations in dissolved water, and chemical concentrations 

in sediment. Water temperature affects organisms' uptake and excretion processes. A 

constant temperature of 15 °C is assumed for the Venice lagoon. Time series of 

concentrations of the target chemicals in sediment and in water are required by the 

food web models to simulate chemical uptake and obtain an estimate of time-

dependent chemical concentrations in phytoplankton, invertebrate and fish species. In 

order to cover the temporal scenario of several decades required by the human 

exposure assessment, concentration of individual congeners in different layers of a 

dated sediment core collected in central lagoon (sediment core named “E” in Frignani 

et al., 2005; Venice Water Authority, 2000b) were used to reconstruct historical trends 

of sediment contamination. Values between the measured points have been 

interpolated in order to reconstruct continuous temporal trends. Chemical 

concentrations dissolved in water (reported in Table 5) were calculated starting from 

chemical concentrations in sediment following the approach described below: 
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Table 5 Temporal trend of reconstructed chemical concentrations in sediment and water 

Year 
Sedimen
t depth 

(cm) 

 

PCB77 PCB126 PCB167 PCB169 PCB180 
2,3,7,8-
TCDD 

1,2,3,7,8
-PCDD 

1,2,3,4,7,
8-HCDD 

SEDIMENT  (mg/g dw) 

1920 21-18 3.00E-08 5.00E-09 2.00E-08 5.00E-09* 1.00E-07 2.50E-10 2.00E-10 4.00E-10 

1935 18-15 1.40E-07 2.40E-07 1.20E-07 5.00E-09* 6.40E-07 3.00E-10 6.00E-10 1.30E-09 

1940 12-15  4.50E-07 1.00E-08 4.00E-07 5.00E-09* 9.20E-07 7.00E-10 9.00E-10 1.70E-09 

1950 9-12  4.60E-07 1.60E-07 4.40E-07 5.00E-09* 1.82E-06 7.00E-10 1.70E-09 4.10E-09 

1960 6-9  5.20E-07 4.00E-08 7.00E-07 5.00E-09* 1.71E-06 2.50E-10* 2.30E-09 3.40E-09 

1975 3-6  3.50E-07 4.00E-08 2.61E-06 5.00E-09* 5.78E-06 2.50E-10* 1.50E-09 2.00E-09 

1998 1.5-3  2.30E-07 2.00E-08 7.80E-07 5.00E-09* 1.92E-06 4.00E-10 1.30E-09 2.00E-09 

WATER (mg/m3) 

1920 21-18  7.12E-07 2.01E-08 3.88E-09 2.19E-09 5.84E-10 6.11E-10 2.96E-11 3.08E-12 

1935 18-15  3.32E-06 9.65E-07 2.33E-08 1.35E-09 3.74E-09 7.33E-10 8.88E-11 1.00E-11 

1940 12-15  7.96E-06 2.88E-08 5.39E-08 8.06E-10 3.71E-09 1.21E-09 9.25E-11 9.02E-12 

1950 9-12  5.36E-06 2.88E-07 3.59E-08 4.88E-10 4.40E-09 7.52E-10 1.06E-10 1.31E-11 

1960 6-9  9.62E-06 1.21E-07 9.96E-08 8.52E-10 7.29E-09 4.57E-10 2.50E-10 1.91E-11 

1975 3-6  6.69E-06 1.26E-07 3.86E-07 8.86E-10 2.56E-08 4.74E-10 1.69E-10 1.17E-11 

1998 1.5-3  4.62E-06 6.64E-08 1.23E-07 9.42E-10 9.07E-09 8.03E-10 1.56E-10 1.24E-11 

Notes: * original value below the detection limit (<LOD); a value of LOD/2 has been used.  

 

Taking into account the partitioning process of chemicals between the aqueous and 

the solid phase, the total concentration of chemical in water (Cw,t in g/L) can be 

calculated according to Equation 5.  

 

Equation 5 

𝐶𝑤,𝑡 =
𝐶𝑠

𝐾𝑠𝑤
 

 
 
where Cs (g/kg) is the concentration in sediment and Ksw the partition coefficient 

between bottom sediment and water.  

Ksw can be estimated according to the relationship to the octanol-water partition 

coefficient (Kow) proposed by Seth and colleague (1999) (Equation 6):  

 

Equation 6 

𝐾𝑠𝑤 = 𝑓𝑜𝑐 ∙ 0.35 ∙ 𝐾𝑜𝑤 ∙ 𝑑𝑏𝑠 
 
 
where foc is the fraction of organic carbon in the sediment and dbs (kg/L) is the bottom 
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sediment density.   

Since the aquatic food web models require as input data the dissolved concentrations 

of chemicals in water, these have been derived according to the equation proposed by 

Gobas (1993) (Equation 7).  

 

Equation 7 

𝐶𝑤,𝑑 =
𝐶𝑤,𝑡

1+(
𝐾𝑂𝑊∙𝑀𝑂𝑀

𝑑𝑂𝑀
)
  

 
 
where MOM is the organic matter concentration in water (kg/L), and dOM is the organic 

matter density (kg/L). MOM can be estimated as the product of suspended solids 

concentration in water (kg/L) by the organic carbon fraction in suspended solids 

(assumed to be the same as sediment). The selected site-specific parameters for the 

Venice lagoon used for the calculation of dissolved concentration of pollutants in water 

are reported in Table 6.  

Table 6 Site specific parameters used for the calculation of dissolved concentration in water. 

Parameter Unit Value Reference 

Sediment density (dbs) kg/L 1.71 Venice Water Authority, 1999 

Suspended solids kg/L 3.60E-05 Venice Water Authority, 2000 

Density of organic matter (dOM) kg/L 0.9 Gobas et al., 2003 

Fraction of organic carbon (fOC) % 

Year fOC % 

Frignani et al., 2006 

1940 1.72 

1950 2.23 

1960 1.67 

1975 1.64 

1995 1.59 

 

4.3.2. Human Exposure 

Parameterization of the PBPK model. The Man model in MERLIN-Expo was 

parameterized for the two target chemicals selected for the human exposure 

assessment, namely 2,3,7,8-TCDD and PCB126. List of parameters used in the PBPK 

model is available in Table A3.  

Although chemicals absorbed from gut lumen enter the liver first, ingested 2,3,7,8-

TCDD and PCB126 were set to enter the blood flow directly in this model, assuming 

that they pass liver fast enough to avoid accumulation or first pass effects such as 

metabolic elimination. The option “Ingestion via the liver” available in MERLIN-Expo 
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for this purpose was then used. The absorption rate was obtained by Mclachlan, 

(1993). Only one elimination route was considered in the liver via biliary excretion, 

since urinary excretion of dioxins and PCBs can be neglected. The excretion rates 

were set to the values provided by Milbrath et al., (2009) and Ogura (2004). The most 

up to date elimination values derived by Ritter et al., (2011) are not available for the 

organic chemicals selected for this study. 

Tissue-blood partition coefficients of liver, kidney, fat, muscle and richly perfused tissue 

were calculated using dioxin concentration data in human tissues (Iida et al., 1999), or 

determined based on structural information of the chemicals (Parham et al., 1997). The 

fat-blood partition coefficients were estimated using a quantitative structure-activity 

relationship (QSAR) specific to PCBs (Parham et al., 1997). The other tissue-blood 

partition coefficients were obtained by multiplying the fat-blood partition coefficients by 

a factor related to the tissue composition. Input values for PBPK model parameters are 

reported in Table 7. 

Table 7 Input values for PBPK model parameters for 2,3,7,8-TCDD and PCB126 

Parameters 2,3,7,8-TCDD PCB 126 

Absorption rate   

Oral 0.97 1 

Excretion and metabolism 

Excretion rate in liver (min-1.kg-1) 4.257 x 10-7 - 

Clearance in liver (L.min-1.kg-1) - 5 x 10-5 

Partition coefficients 

Adipose 247 152 

Adrenal 9.8 20.7 

Blood 1 1 

Blood_Arterial 1 1 

Blood_Venous 1 1 

Bones 9.8 7.6 

Bones_NP 1 1 

Brain 4.1 18.2 

Breast 17 101.8 

Gut 9.8 10.5 

Gut_Lumen 1 1 

Heart 9.8 9.3 

Kidneys 3.1 7.9 

Liver 9.8 7.7 

Lungs 4.1 1.6 

Marrow 1 109.2 

Muscle 17 7.5 

Pancreas 9.8 21.8 

Sexual_Organs 9.8 8.2 

Skin 2.5 7.0 

Spleen 9.8 2.9 

Stomach 9.8 11.3 

Stomach_Lumen 1 1 

Thyroid 9.8 20.7 

Urinary_Tract 9.8 7.3 
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Daily food intakes. The most site-specific information on fish and seafood daily intakes 

for the municipality of Venice is available in the report “Fish production and fish 

consumption preferences of families in Venice municipality” (Pedenzini, 1996), based 

on the results of a survey performed in the different areas of Venice municipality 

(Venice historical centre; islands and coastal villages; mainland/Mestre city). The 

estimated average daily intake of fish and seafood in the Municipality was equal to 

2168 g/month, equivalent to 72.3 g/day. For individuals living in Venice lagoon islands 

and coastal villages, the average daily intake increased to 94.7 g/day. Typology and 

quantity of food intake vary depending on the age, it is therefore important to consider 

age dependent food intakes when simulating life time exposure for the same individual. 

Age dependent intake rates for Italian population were obtained from the INN-CA 

national survey (Turrini et al., 2001) performed in 1994–96 by the Italian National Food 

and Nutrition Research Institute (INRAN) based on the investigation of diet habits 

through individual questionnaires (7-day based survey technique), involving 1978 

individuals stratified into four main geographical areas. Data were aggregated into four 

age groups: children (1 to 9 years), adolescents (10 to 17 years), adults (18 to 63 

years) and elderly people (N 63 years). Data on daily intake of “fish and seafood (fresh 

and frozen)” for the different age groups were selected. The ratio between age group 

average daily intakes and overall average daily intake in INNCA survey was used to 

scale Venice daily intake to different age group intakes to get site-specific age 

dependent intake values. 

Ideally, to reconstruct historical exposure, changing diet patterns across different 

decades should be considered. However, due to the lack of historical data on diet 

habits in the area in the past (and generally in Italy), mean daily intakes for different 

age groups have been assumed as constant for all the simulation period.  

The survey by Pedenzini (1996) reported also information on diet preferences of local 

population for specific typologies of fish/seafood, considering the categories 

“molluscs”, “crustaceans” and “fish” and including some indications on most consumed 

species of fish or shellfish. This information has been used to “subdivide” the age group 

intake values into several aquatic species contributing to the overall intake, in order to 

link the outputs of the aquatic food web models (namely, concentrations in aquatic 

organisms from Fish and Invertebrate models) to the Human Intake model in MERLIN-

Expo. The age dependent daily intakes of different types of fish and seafood used as 

input data to MERLIN-Expo Human Intake model are reported in Table 8 for persons 
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classified as high fish consumers. 

Table 8 Age dependent daily intakes of different types of fish and shellfish. 

  DAILY INTAKE  (kg fw/day) 

Food items 
Children 

(1-9) 

Adolescents 

 (10-17) 

Adults  

(18-63) 
Elderly (>63) 

Macrobenthos filter feeders (mussel) 0.005 0.007 0.007 0.006 

Tapes phillipinarum (Manila clam)  

and similar sediment dwelling molluscs 
0.022 0.032 0.036 0.031 

Carcinus mediterraneus (Green crab) 0.008 0.011 0.012 0.010 

Atherina boyeri (Sand smelt) 0.003 0.004 0.004 0.004 

Chelon labrosus (Grey mullet) 0.006 0.008 0.009 0.008 

Dicentrarcus labrax (Sea bass) 0.008 0.011 0.013 0.011 

Sparus aurata (Gilt-head bream) 0.008 0.011 0.013 0.011 

Zosterisessor ophiocephalus (Grass goby) 0.004 0.006 0.006 0.005 

 
 

4.4.  SIMULATION SETTINGS 

Using the chain of models, MERLIN-Expo was applied to simulate PCBs and dioxins 

exposure of Venice lagoon aquatic organisms and high fish consumers from local 

population. Simulations were run for a maximum time period of about 27,000 days (74 

years), from 1924 (birth year of the oldest individual) to 1998 (collection of human 

biomonitoring data). Both deterministic and probabilistic simulations were run. Since a 

long-term exposure scenario was considered, where environmental contamination by 

persistent pollutants and, consequently, food contamination (i.e., exposure of aquatic 

organisms in the aquatic food web) change over decades, the year of birth influences 

the overall internal exposure and it was thus necessary to run separate simulations for 

different individuals born in different years. The tool in fact does not permit to consider 

individuals born after the starting date of the simulation. Therefore, individual exposure 

simulations were run separately with MERLIN-Expo, taking into account the year of 

birth of study participants (from 1924 to 1972). 

 

4.5.  UNCERTAINTY ANALYSIS AND PARAMETER SELECTION 

In addition to deterministic assessment, MERLIN-Expo enables an assessor to include 

uncertainty on input parameters by specifying probabilistic distribution functions 

(PDFs) for parameter values. For probabilistic analysis, parameters that have been 

assigned PDFs were selected. 5000 probabilistic simulations of the full model chain 

were run using Monte Carlo sampling scheme for the period of 24,091 days at 100-
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day time step. As a human target, a high-fish consumer individual born in 1932 was 

selected, so the time period represents 66 years of this individual's lifetime. 

Environmental and biomonitoring measurement data are available for year 1998, 

hence it was considered as a final time in all modelling exercises. Considering the five 

MERLIN-Expo models selected and coupled for this case study, in total 156 

parameters were included in the probabilistic assessment. 

Two invertebrate species, Tapes philippinarum (Manila clam), Carcinus mediterraneus 

(green crab), and two fishes, Chelon labrosus (mullet), and Zosterisessor 

ophiocephalus (goby), were included in the probabilistic assessment of time-varying 

whole body internal concertation of 2,3,7,8-TCDD and PCB126 over the period 1932-

1998. The uncertain input parameters used to estimate accumulated contaminant 

concentration in aquatic biota are represented as probability distributions based on 

literature review or analysis of available datasets (e.g., phytoplankton lipid content and 

cell volume) (Hauck et al., 2007, 2011; Hendriks, 1999, 2007; Olenina et al., 2006; 

Seth et al., 1999). The parameters representing generic trophic levels (fish, 

invertebrates, and phytoplankton) were probabilistically estimated, providing 

uncertainty in calibration data, by Hauck et al., (2011), by comparing observed and 

estimated rate constants for physiological and chemical uptake and elimination. 

Parameters were originally grouped into three categories reflecting different 

approaches to their estimation. The first group includes independent parameters 

whose values can be determined independently from transport coefficients and partial 

resistances. These parameters are: lipid fraction of organism and its food, fraction of 

food assimilated, and allometric rate exponent. However, we used organism specific 

data to parameterize the lagoon food web. The second group was defined as transport 

coefficients and consists of transport of water through the organism, transport of food 

through an organism, and the production of biomass – their values were estimated 

from allometric data. The third group of parameters includes partial resistances, which 

were derived by comparing the measured and estimated chemical rate constants and 

minimizing the differences by maximum likelihood estimation (Hauck et al., 2011; 

Hendriks, 2007). 

Contaminant-specific parameter values were derived using QSAR models 

implemented in EPI Suite software (USEPA, 2012): metabolic half-life of chemicals for 

organics (Arnot et al., 2008, 2009a), bioconcentration factor for organics (Arnot and 

Gobas, 2003, 2006), water-organic carbon partition coefficient (Schüürmann et al., 
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2007), and octanol/water partition coefficient (Meylan and Howard, 1995). PDFs were 

estimated based on the primary source where the given QSAR was developed. 

Assuming identical, independent and normally distributed errors, the uncertainty in a 

QSAR prediction (𝑋𝑝) was deduced from reported predicted mean (Xp), standard error 

of prediction (𝑆𝐸(𝑋𝑝)), and estimated student t-distribution based on reported number 

of data in a training set n and a number of descriptors k used originally in QSAR 

development (𝑡𝑛−𝑘−1). Described method is given by (Equation 8): 

 

Equation 8 

𝑋𝑝~𝑋𝑝 + 𝑡𝑛−𝑘−1 ∙ 𝐸(𝑋𝑝) 

 

The probabilistic parameterization of the models is described in details in MERLIN-

Expo documentation available on the dedicated website (http://merlin-

expo.eu/learn/documentation/model-documentation/).  

The ‘Human intake’ model was used to calculate the total ingested quantity of 

contaminants from contaminated food, i.e., ‘Ingestion rate for food’. It is a step function 

of age used to assign different rates for different age groups as ‘Age group ingestion 

rate for food’ time series. MERLIN-Expo was not designed to assign uncertainty to 

time-dependent inputs such as age-dependent quantity of ingested food, therefore the 

‘Human Intake’ model was not included in the uncertainty assessment. As for the ‘Man’ 

model, body weight and tissue-blood partition coefficients were included in uncertainty 

analysis. Individual's bodyweight is calculated as a function of age in order to include 

inter-individual bodyweight variability among same aged persons. Body weight is 

normally distributed, described by mean and standard deviation (Beaudouin et al., 

2010). A tissue-blood partition coefficient is defined as the equilibrium factor 

represented by ratio of the concentration in a tissue to the concentration in blood. The 

partition coefficient is a normally distributed variable with mean and standard deviation. 

Statistics were obtained from reported values in Plowchalk et al., (1992); Shin et al., 

(2009); Björkman et al., (1996); Ishizaki et al., (1991); Björkman et al., 1990, 1994; 

Csanády et al., (2002); Gearhart et al., (1993). Several normal probability distribution 

functions were parameterised for different tissues, separately for 2,3,7,8-TCDD and 

PCB126 that can be found in the PBPK model documentation (http://merlin-

expo.eu/learn/documentation/model-documentation/). 

http://merlin-expo.eu/learn/documentation/model-documentation/
http://merlin-expo.eu/learn/documentation/model-documentation/
http://merlin-expo.eu/learn/documentation/model-documentation/
http://merlin-expo.eu/learn/documentation/model-documentation/
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4.6.  SENSITIVITY ANALYSIS EXPERIMENT DESIGN 

MERLIN-Expo allows the user to select among several tools to perform sensitivity 

analysis, including local sensitivity analysis methods, screening methods based on 

optimized experimental designs, global regression methods, global variance-based 

methods. Sensitivity analysis is the study of how the variation in the output of a model 

(numerical or otherwise) can be apportioned, qualitatively or quantitatively, to different 

sources of variation. Sensitivity analysis highlights the inputs that have the greatest 

influence on the results of a model, therefore, it provides useful insights for model 

builders and users. Insights from sensitivity analysis can be used for: (i) identification 

of key sources of uncertainty, (ii) identification of key controllable sources of variability, 

and (iii) model refinement. SA methods available in MERLIN-Expo were organised in 

a stepwise structured approach, by starting from computationally ‘inexpensive’ Morris 

method to most costly variance-based methods. Since higher tier methods are targeted 

on those uncertainties that have most influence on the assessment outcome, one can 

use the screening step (Morris method) to narrow number of input factors to those that 

are most influential, so that time needed to run final step (e.g., FAST, EFAST, and 

Sobol methods) can be shortened. The Morris screening method followed by 

regression based method and EFAST were applied in order to first reduce the number 

of parameters and then produce three sensitivity measures standardised regression 

coefficient βi, first order sensitivity and total order sensitivity indices (Si and TSi). 

4.6.1. The Morris screening method 

Only a summary of the Morris method is presented in this paragraph, the complete 

description can be found in Morris (1991). The Morris method is a one-factor-at-a-time 

(OAT) method where the impact of changing the values of each factor (input 

parameter) is evaluated one by one in each run. It is a qualitative method providing a 

ranking of input parameters in order of importance but not a decomposition of the 

output variance. The Morris method is categorized as a global sensitivity analysis 

because the method covers the entire ranges over which the factors may vary. In the 

method based on OAT, each input factor may assume a discrete number of values 

which are selected within the factor's range of variation, and only one input parameter 

(xi) is modified by a fixed factor. Each parameter uncertainty interval is first divided into 

p equally large layers, due to generating a hyperspace Ω, identified by a n-dimensional 
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p-level grid, where n is the number of parameters. In the Morris method, uncertain 

parameters are considered to be uniformly distributed, subsequently transformed to 

the original distribution, which will be used in the model. Model simulation is performed 

based on a selection of parameters randomly sampled from the previously defined grid. 

Next, a single parameter is randomly selected and modified by a fix factor Δ, and a 

second simulation is performed. The Δ is a value in {1 (𝑝 − 1), … ,1 − 1/(𝑝 − 1)⁄ }, but 

a more economical design is suggested with 𝛥 = 𝑝/[2(𝑝 − 1)]. The model is evaluated 

for r trajectories within the parameter space. The starting point of a trajectory is 

selected randomly. For each trajectory, every single parameter is changed separately, 

whereas the new point of this trajectory is an element of the parameter space (Specka 

et al., 2015). Morris proposed a measure called elementary effects 𝐸𝐸𝑦(𝑥𝑖) based on 

calculating for each input 𝑋 = (𝑥1, … , 𝑥𝑛) a number of incremental ratios (Equation 9) 

from which basic statistics are computed to derive sensitivity information. 

 

Equation 9 

𝐸𝐸𝑦(𝑥𝑖) =
𝑦(𝑥1,…,𝑥𝑖+𝛥,…,𝑥𝑛)−𝑦(𝑥1,…,𝑥𝑖,…,𝑥𝑛)

𝛥
  

 

This procedure is repeated r times, which is equal to the sampling number, providing r 

elementary effects for each parameter. The cost of running screening test is based on 

the following relation 𝑟(𝑛 + 1). The method can distinguish between factors with 

negligible effects, linear and additive effects, and factors with non-linear or interaction 

effects. For each elementary effect 𝐸𝐸𝑦(𝑥𝑖) two sensitivity measures are computed: µ𝑖, 

which assesses the overall influence of the factor on the output, and 𝜎𝑖, which 

estimates the non-linear effect and/or the interaction effect with other factors. To 

classify parameters sensitivity, µ𝑖 values must always considered together with 

𝜎𝑖values. Campolongo et al., (2007) suggested the use of mean of the absolute 

elementary effects µ𝑖
∗ as to avoid cancelling of positive and negative effects. Morris 

proposed a method, which is particularly well-suited when the number of uncertain 

factors is high and/or the model is expensive to compute.  

4.6.2. Regression-based methods 

Regression sensitivity analysis is performed on probabilistic simulation outputs, and 

sensitivity indices are calculated after Monte Carlo simulation. The space of the input 
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factors is sampled via the Monte Carlo method and a linear regression model is built 

from the model output values. In the regression method, the Standard Regression 

Coefficients (βi) quantifies the effects caused by changing a model parameter from its 

mean by a fraction of its variance, while all others are kept at their initial values. This 

measure relates directly the sensitivity of the model outputs to the model parameters 

and are valid only when a model is linear. 

The coefficient of determination (denoted by R2) is a key output of regression analysis. 

It is interpreted as the proportion of the variance in the output variable that is 

predictable from the input parameters. 

Model coefficient of determination given by  

10, can be used for instance to identify nonmonotonic relationships between input and 

output.  

 

Equation 10 

𝑅𝑌
2 = ∑

(𝑌𝑖
∗ − 𝜇𝑌)2

(𝑌𝑖 − 𝜇𝑌)2

𝑁

𝑖=1

 

 

Where: 

𝑁 number of simulations 

𝑌𝑖 the simulation results 

𝑌𝑖
∗ is the 𝑌𝑖 derived from regression model 

𝜇𝑌 mean of output 𝑌 

𝑅2 can take a positive number between (0, 1). 𝑅2 coefficient higher than 0.7 

demonstrates that variation in the model output is explained by linear regression. 

 

The standardised regression coefficient is derived from (Equation 11): 

 

Equation 11 

β𝑖 = (
𝜎𝑋𝑖

𝜎𝑌
) 𝑏𝑖⁄  

 

Where: 

𝜎𝑥𝑖
 standard deviation of the input 
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𝜎𝑦 standard deviation of the output 

𝑏𝑖 is the estimate of the regression coefficient 

Squared standardised regression coefficient (𝛽𝑖
2) can be derived to show percentage 

of influence of the parameter on the output’s variation (Hall et al., 2009). 

 

4.6.3. EFAST 

Extended Fourier Amplitude Sensitivity Test (EFAST) (A. Saltelli, Tarantola, & Chan, 

1999) is a variance-based global SA method, which computes the Total Sensitivity 

Indices (TSi) of the model inputs. The TSi measures the main (first order) effect of each 

individual or a group of inputs on the model output, as well as all higher order effects 

(i.e. considering interactions) that can be attributed to that parameter. The EFAST 

method is based on mono-dimensional decomposition of the model along the search 

curve in the n-dimensional parameter space. The search curve is defined by a set of 

parametric equations. The range of variation in EFAST is explored for all parameters 

simultaneously.  

Total sensitivity indices not only consider the main effects of inputs but also take into 

account interaction effects. EFAST is independent of any assumptions regarding the 

relationship between input parameters and outputs. It provides the fraction of the 

output variance due to each input parameter. EFAST can compute both first-order 

(Equation 12) and total sensitivity indices (Equation 13).  

 

Equation 12 

𝑆𝑖 =
𝑉𝑥𝑖

(𝐸𝑥−𝑖
(𝑦|𝑥𝑖)

𝑉(𝑦)
 

 

Where: 

𝑆𝑖 is the first order sensitivity index 

𝑉𝑋𝑖
 is variance of output due to parameter 𝑥𝑖 

𝑉(𝑦) is the total variance of output 𝑦 

 

Equation 13 

𝑇𝑆𝑖 = ∑𝑆𝑘

𝑘#𝑖
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Where: 

𝑇𝑆𝑖 is the total sensitivity index 

#𝑖 represents all of the sets containing index 𝑖 

 

4.7.  EVALUATION OF BIOACCUMULATION MODEL PERFORMANCE 

The performance of the aquatic food web models was evaluated according to the 

approach proposed by Arnot and Gobas (2004). Model performance can be expressed 

quantitatively using model bias (MBj) calculated for all n chemicals in a single species 

j (Equation 14): 

 

Equation 14 

MBj = 10
(∑

[log(BAFp,i BAFo,i⁄ )]

n
n
i=1 )

 

 

 

where BAFp, BAFo are predicted and observed bioaccumulation factors, and subscripts 

i, and j refer to number of chemicals and species respectively. An overall model 

performance for all m species (MB) can be calculated as follows (Equation 15):  

 

Equation 15 

MB = 10[
 
 
 
 

∑

(∑
[log(BAFp,i,j BAFo,i,j⁄ )]

n
n
i=1 )

𝑚
𝑚
𝑗=1

]
 
 
 
 

 

 

 

4.8.  ESTIMATION OF HAZARD QUOTIENT 

From a regulatory or risk assessment perspective, ecological and human exposure 

estimates provided by MERLIN-Expo can be evaluated against existing quality 

standards or threshold values with the aim of deriving an estimate of risks posed to the 

selected ecological or human targets by the considered environmental contaminants, 

under the assessed scenario(s). 

As for ecological risk assessment, traditionally environmental regulation relies on 
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media-based quality guidelines, where chemical concentrations in water or sediment 

are used to quantify environmental risks considering selected target species or the 

entire ecosystem. However, water quality criteria for bioaccumulative chemicals should 

incorporate several specific perspectives in order to be sufficiently protective, such as 

the consideration of chemical uptake through multiple exposure routes including the 

diet, long term exposure scenarios and inclusion of all factors affecting chemical 

bioavailability and bioaccumulation (Sappington et al., 2011). To address all these 

needs, the tissue residue approach (TRA) has been proposed, based on the use of 

tissue residue as dose metric when evaluating exposure–response relationships 

(Meador et al., 2011). 

The Oregon Department of Environmental Quality (2007) proposed a Critical Tissue 

Level (CTL) for fish equal to 6.4 ∗ 10−6 mg/kg fw for dioxins and PCB in both freshwater 

and marine environments, expressed as 2,3,7,8-TCDD Toxic Equivalent (TE). CTLs 

correspond to concentrations in tissue at or below which approximately 95% of aquatic 

organisms bearing this residue would be highly unlikely (b 5% chance) to experience 

adverse health effects. 

To obtain an estimate of ecological risk for each fish species, a Hazard Quotient for all 

dioxins and dioxin-like PCBs can be calculated by comparing the exposure 

concentration (expressed as sum of Toxic Equivalents for the investigated substances) 

with the toxicity threshold (i.e., CTL value), as follows (Equation 16): 

 

Equation 16 

HQi = 
TEQi(PCDDs + DL − PCBs)

CTL
 

 
 
where i is the fish species. Toxic Equivalent Factors as defined by WHO for fish species 

have been used (Van den Berg et al., 1998).   
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CHAPTER 5 RESULTS AND DISCUSSION 
 

5.1.  DETERMINISTIC ANALYSIS 

The aquatic food web models included in MERLIN-Expo provided as output of the 

deterministic simulation the time trend of concentrations from 1924 to 1998 of all target 

chemicals in aquatic organisms included in the Venice lagoon food web.  

5.1.1. Environmental Exposure 

Time dependent concentrations of 2,3,7,8-TCDD and PCB126 in selected species are 

reported in Figure 8 and Figure 9 respectively. The results, expressed on a fresh weight 

basis, show the highest accumulated concentrations for phytoplankton for 2,3,7,8-

TCDD and for Tapes philippinarum (Manila clam) for PCB126. The lowest 

concentrations are obtained for Sparus aurata (Sea bream) for 2,3,7,8-TCDD, while 

the species showing the lowest internal concentrations of PCB126 is Dicentrarcus 

labrax (Sea bass). Time dependent concentrations in biota reflect the shape of time 

trend of contamination in sediment and water compartment, although with appreciable 

differences in the magnitude of peaks depending on the specific biological and 

physiological characteristics of each animal and on physico-chemical characteristics 

of target chemicals. Despite the trend generally observed in dioxins and PCBs 

environmental contamination, in the case at hand it is possible to notice that each 

considered substance follows an individual, specific trend, with peaks in specific 

decades, which is reflected by simulated concentrations in aquatic biota.  
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Figure 8 Modelled concentrations of 2,3,7,8-TCDD in selected organisms of the Venice aquatic food web. 

 

 

 

Figure 9 Modelled concentrations of PCB126 in selected organisms of Venice lagoon food web. 

With the aim of obtaining a preliminary evaluation of model performance, the estimated 

concentrations in aquatic organisms were compared to available measurements in 

organisms sampled in the central lagoon area and in northern lagoon area (in the case 

of mullet) in 1998 (Venice Water Authority, 1999). Number of sampling locations and 

number of sampled individuals for each species are reported in Table 9.  
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Table 9 Number of selected sampling sites in central lagoon and total sampled organisms for chemical concentration 

measurements in aquatic organisms (Venice Water Authority, 1999). 

Species N° of sampling sites 
N° of sampled 

organisms 

Tapes philippinarum (Manila clam) 3 70 

Zosterissessor ophiocephalus  
(Goby) 

1 10 

Carcinus mediterraneus  (Crab) 1 50 

Chelon labrosus  (Mullet) 4 18 

 

In Table 10, the comparison of measured and simulated concentrations of target 

chemical compounds in aquatic species is reported. Since biota samples were 

collected in 1998, simulated concentrations for the same year were selected for the 

comparison. 

 

Table 10 Comparison of measured and modelled concentrations of chemicals in selected aquatic species 
(mg/kg fw).  

 

Concentration in aquatic species (mg/kg fw) 

Tapes philippinarum  
Carcinus 

mediterraneus 
Chelon labrosus 

Zosterissessor 
ophiocephalus 

Chemical 
Measured 

a 
Simulate

d 
Measure

d 
Simulate

d 
Measure

d 
Simulate

d 
Measure

d b 
Simulate

d 

2,3,7,8-TCDD 1.40E-08* 3.90E-07 1.01E-07 1.66E-07 6.72E-07 5.27E-08 8.58E-08 6.42E-09 

1,2,3,7,8-PCDD 2.13E-08* 1.96E-06 1.86E-07 8.33E-07 7.20E-07 2.80E-07 1.54E-07 2.03E-08 

1,2,3,4,7,8-
HCDD 

4.21E-08* 5.35E-06 1.29E-07 2.09E-06 
1.54E-

07* 
7.16E-07 4.76E-08 2.65E-08 

PCB 77 1.77E-05 3.57E-04 1.53E-04 2.55E-04 2.64E-04 1.41E-03 1.13E-05 4.88E-04 

PCB 126 2.30E-06 5.67E-05 1.62E-05 5.26E-05 5.79E-05 3.65E-05 2.26E-05 6.78E-06 

PCB 167 5.37E-05 2.59E-03 5.44E-04 2.12E-03 1.27E-03 1.37E-03 3.31E-04 1.08E-04 

PCB 169 2.85E-07 1.68E-05 3.46E-06 1.45E-05 5.28E-06 1.14E-05 6.09E-06 8.90E-07 

PCB 170 1.49E-04 8.01E-03 9.31E-04 5.44E-03 5.31E-03 4.24E-03 1.98E-03 1.61E-04 

PCB 180 3.91E-04 1.47E-02 2.44E-03 9.82E-03 1.01E-02 7.32E-03 3.85E-03 2.86E-04 

 
Notes: 
a mean value estimated from data in three sampling sites; b mean value estimated from data in four sampling sites.  
* at least one of the considered measurement values was below the limit of detection (LOD); value equal to half LOD has 
been used in the calculation of the mean. 

 

The observed bioaccumulation factor (BAFo) was calculated for each species and each 

chemical as the ratio of the measured concentration in the organism and the 

corresponding concentration in water, while the predicted bioaccumulation factor 

(BAFp) has been calculated as the ratio of the simulated concentration in the organism 

and the corresponding chemical concentration in water. Figure 10 shows observed 

versus predicted logBAFs for all target chemicals and for T. philippinarum, C. 

mediterraneus, C. labrosus and Z. ophiocephalus. 
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Figure 10 Observed versus predicted log bioaccumulation factors (logBAF) for the target chemicals for the species Tapes 
philippinarum, Carcinus mediterraneus, Chelon labrosus and Zosterisessor ophiocephalus. 

 
In general terms, a model tends to over-predict when MB>1 and tends to under-predict 

when MB<1. MB is a geometric mean of the log-normally distributed ratio BAFp/BAFo, 

of all chemicals in all species. Therefore, the 95% confidence interval (CI) of the 

geometric mean represents the accuracy of the model. MB and its 95% CI include the 

following sources of error: model parameterisation, model structure, also errors in 

analytical and empirical data. The analysis of changes in MB values can be used as 

an indicator of model performance under various scenarios. The calculated model bias 

indicators for each species and the overall model bias are reported in Table 11.  

 

Table 11 Indicators of model performance for single species and for the overall model. 

  
Tapes 

philippinarum 

Carcinus 

mediterraneus  

Chelon 

labrosus 

Zosterisessor 

ophicephalus 

Model bias (MBj) for single 

species 
46.05 3.97 0.95 0.30 

Overall model bias (MB) 12.82 

 

It is possible to observe that the model overestimates of at least one order of magnitude 

chemical concentrations, and accordingly logBAF, for the species T.philippinarum for 

all considered chemicals. This is confirmed by a high value of the model bias estimated 
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for this species. It is worth mentioning that the sampling sites where clams were 

collected was not exactly close to the sampling site of the considered sediment core. 

Since clams are sessile organisms (not moving across different areas as fish species), 

the distance between sediment and biota samples might affect significantly the 

comparability of modelling and monitoring concentrations. It was therefore decided to 

test the model on an additional set of data, including sediment concentrations (surficial 

sediment, first 15 cm) and clam concentrations in the same location from the same 

monitoring campaign, considering only one-time point for 2003 (data available from 

ICSEL project, 2003). The results are reported in Table 12, from which it can be noticed 

that the difference between measured and monitored data improved if compared with 

1998 data. 

 

Table 12 Chemical concentration in superficial sediment and Tapes philippinarum from ICSEL project (2003) and comparison 
with simulated concentrations in the same species estimated with MERLIN-Expo 

Chemical 

Concentration in 
sediment 

Concentration in Tapes philippinarum  (mg/kg fw) 

(mg/kg dw) Measured Simulated   

2,3,7,8 -TCDD 4.00E-04 2.00E-05 3.90E-04 

1,2,3,7,8-PCDD 4.00E-04 2.20E-05 6.03E-04 

1,2,3,6,7,8-HCDD 6.00E-04 3.00E-05 1.61E-03 

PCB 126 1.30E-05 2.00E-06 1.36E-05 

PCB 167 1.20E-05 4.10E-05 9.12E-05 

PCB 169 5.00E-06 2.00E-06 1.67E-05 

PCB 170 9.95E-04 7.80E-05 9.01E-04 

PCB 180 2.08E-03 2.26E-04 1.59E-03 

 

Anyway, an overestimation of model predictions in comparison with measurement data 

can still be observed for Tapes philippinarum: further testing of the model on more 

extended datasets (from both temporal and spatial perspective) can help in 

understanding better the behaviour of the Invertebrate model for filter feeder organisms 

under different scenarios and support the identification of possible adjustments to 

improve its capability of approximate real bioaccumulation measurements. At the same 

time, it is possible to observe that results obtained for other species are encouraging 

and turn out to be quite consistent with measured concentrations in biota samples, with 

differences depending on the species and the individual chemical. This is particularly 

true in the case of C. labrosus, for which the estimated model bias achieves a value of 

0.95, therefore quite close to the target value of 1.  
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The results for all fish species included in the simulated food web are reported in Table 

13. It can be observed that the highest HQ is estimated for juveniles of D. labrax (equal 

to 0.27), but in general for all considered species the estimated HQ is below 1, meaning 

that no potential adverse effects for the considered species are expected as a 

consequence of the exposure to the two investigated contaminants. 

 

Table 13 Calculation of Hazard Quotient for selected fishes considering dioxins and dioxin-like PCBs included in the 
ecological exposure estimation 

Chemical   
Chelon 

labrosus 

Zosterissesso
r 

ophiocephalu
s  

Atherina 
boyeri 

Sparus 
aurata 

Dicentrarcu
s labrax 

Dicentrarcu
s labrax juv 

Sparus 
aurata 

juv 

Chelon 
labrosus 

juv 

    Simulated concentrations (mg/kg fw)  

2,3,7,8-TCDD 

  
  
  
  
  
  
  

5.27E-08 6.42E-09 6.14E-09 2.38E-09 3.39E-09 1.27E-07 1.15E-08 1.22E-08 

1,2,3,7,8-PCDD 2.80E-07 2.03E-08 2.20E-08 1.30E-08 1.88E-08 7.53E-07 3.10E-08 4.91E-08 

1,2,3,4,7,8-
HCDD 

7.16E-07 2.65E-08 2.38E-08 2.21E-08 4.31E-08 1.39E-06 1.96E-08 6.06E-08 

PCB 77 1.41E-03 4.88E-04 4.19E-04 3.47E-04 4.12E-04 3.42E-04 1.57E-04 4.73E-04 

PCB 126 3.65E-05 6.78E-06 1.11E-05 8.64E-06 8.13E-06 2.63E-05 5.20E-06 1.34E-05 

PCB 167 1.37E-03 1.08E-04 7.04E-05 1.09E-04 1.08E-04 5.76E-04 2.77E-05 5.76E-05 

PCB 169  1.14E-05 8.90E-07 5.71E-07 9.52E-07 9.42E-07 3.69E-06 1.97E-07 5.56E-07 

 

WHO TEF 
for fish 

Concentration (mg TEQ/kg fw) 

2,3,7,8-TCDD 1 5.27E-08 6.42E-09 6.14E-09 2.38E-09 3.39E-09 1.27E-07 1.15E-08 1.22E-08 

1,2,3,7,8-PCDD 1 2.80E-07 2.03E-08 2.20E-08 1.30E-08 1.88E-08 7.53E-07 3.10E-08 4.91E-08 

1,2,3,4,7,8-
HCDD 

0.5 3.58E-07 1.33E-08 1.19E-08 1.10E-08 2.16E-08 6.97E-07 9.81E-09 3.03E-08 

PCB 77 0.0001 1.41E-07 4.88E-08 4.19E-08 3.47E-08 4.12E-08 3.42E-08 1.57E-08 4.73E-08 

PCB 126 0.005 1.83E-07 3.39E-08 5.56E-08 4.32E-08 4.06E-08 1.31E-07 2.60E-08 6.68E-08 

PCB 167 0.000005 6.86E-09 5.39E-10 3.52E-10 5.46E-10 5.41E-10 2.88E-09 1.39E-10 2.88E-10 

PCB 169  0.000005 5.71E-11 4.45E-12 2.85E-12 4.76E-12 4.71E-12 1.84E-11 9.86E-13 2.78E-12 

SUM TEQ  1.02E-06 1.23E-07 1.38E-07 1.05E-07 1.26E-07 1.74E-06 9.42E-08 2.06E-07 

HQ  0.16 0.02 0.02 0.02 0.02 0.27 0.01 0.03 

 

5.1.2. Human Exposure 

Taking into account the available human biomonitoring data, MERLIN-Expo has been 

applied to simulate lifetime internal exposure to 2,3,7,8-TCDD and PCB126 for a group 

of men classified as “high fish consumers” and born between 1924 and 1972 

(Frangipane, 1999). The final outputs of interest provided by the Man model consist of 

time-dependent chemical concentrations in different human tissues and organs (e.g., 

blood, adipose tissue, brain, liver), but it is important to remind that MERLIN-Expo can 

provide additional intermediate outputs (e.g., total quantity of chemical ingested 

through the dietary pathway at different ages, quantity of chemicals excreted or 
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metabolised by the organism at different time), which can support the understanding 

of exposure pathways and toxicokinetic processes. 

Figure 11 shows the changing lifetime concentrations of 2,3,7,8-TCDD in human blood 

for selected individuals born between 1924 and 1972, accompanied (in order to 

support the interpretation of results) by time trends of chemical concentrations in 

sediment and water from 1924 to 1998 used as input to the model chain (i.e., inputs to 

aquatic food web models). Figure 12 illustrates the results for PCB126. In general, the 

trend in environmental concentrations is in some way reflected into human internal 

exposure values, but it is “modulated” by absorption, distribution, metabolism and 

elimination processes regulated by chemical-specific characteristics (such as KOW and 

metabolic half-life). 

 

 

Figure 11 Lifetime concentrations of 2,3,7,8-TCDD in blood of high fish consumers born between 1924 and 1972. 
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Figure 12 Lifetime concentration of PCB126 in blood of high fish consumers born between 1924 and 1972. 

 

The chart in Figure 11 shows that individuals born after 1956 tend to have lower blood 

concentrations of 2,3,7,8-TCDD than individuals born before 1951. Body burden of 

PCBs and dioxins has been shown to increase with age (e.g., Hardell et al., 2010; 

Sweetman et al., 2000) but this is not the only factor significantly affecting the overall 

burden. From Figure 11 it is possible to conclude that trends in 2,3,7,8-TCDD 

concentrations in blood are not only related to the age of individuals but rather reflect 

a time-dependent chemical input profile, obtained as a combination of changing 

environmental (and food web) contamination and age-dependent dietary intakes. As 

for PCB126, lifetime concentrations illustrated in Figure 12 show a similar trend for all 

individuals, in most cases with a peak of different magnitude (depending on the year 

of birth) in the first years of life, followed by an overall decrease. These early life peaks 

can be observed also for 2,3,7,8-TCDD, even if in this latter case they are less evident. 

These peaks cannot be explained only by a higher level of food contamination, 
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because they are visible also when simulations with constant environmental 

concentrations over lifetime are run (a test was performed, without changing the values 

of other input data). These peaks can be associated to the use of an average daily 

intake of fish and seafood for children between 1 and 9 years, according to the 

available food intake statistics. This low resolution in intake rates for toddlers combined 

with the low weight in early life stages can explain the observed peaks and suggests a 

refinement of intake input data for young population groups whenever possible. 

With the aim of evaluating the performance of applied models in reconstructing human 

internal exposure, simulated results have been compared to the available human 

biomonitoring data, i.e., concentrations of PCB126 and 2,3,7,8-TCDD in blood serum 

of 22 adult males living in Venice municipality and classified as “high fish consumers”. 

Since MERLIN-Expo provides concentrations of target chemicals in whole blood as 

output of the Man model, measured concentrations in serum have been properly 

transformed into equivalent concentrations in blood. Considering that in the case of 

PCBs and dioxins a significant fraction of chemical tends to distribute in blood serum 

(Schecter, 2012), the concentration in blood has been assumed half of the 

concentration in serum, as recommended by Health Canada (Tsuji et al., 2005) for 

PCBs. In general, the comparison between human biomonitoring data and simulated 

blood concentrations is not straightforward because cross-sectional data generated 

through biomonitoring studies are based on group of individuals sampled at the same 

time, while longitudinal estimates provided by MERLIN-Expo represent single 

individual over their whole lifetimes. Available biomonitoring data have been compared 

with the simulated concentrations (22 persons) for year 1998. In Table 9 the 

comparison of statistics for measured and modelled blood concentrations of 2,3,7,8-

TCDD and PCB126 is reported. The available biomonitoring data for PCB126 follow a 

lognormal distribution, while 2,3,7,8-TCDD concentrations do not follow neither 

lognormal nor normal distribution (and a significant number of values was below the 

detection limit), therefore for sake of completeness in Table 9 different statistics are 

reported. 

As an overall outcome, it can be observed that simulated data are in a relatively good 

agreement with measured data obtained from 1998 survey in Venice municipality from 

high fish consumers. Measured and simulated data have similar orders of magnitude, 

the geometric mean (GM) of simulated 2,3,7,8-TCDD values in blood is about three 

times the GM of measured values, while for PCB126 the geometric mean of simulated 
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values is one order of magnitude lower than GM of measured data. 

It is noteworthy to remind the assumptions related to the assessment framework, which 

play a relevant role in influencing modelling results and have to be considered in their 

evaluation. First, a worst-case scenario was adopted in the assessment, where it was 

assumed that all fish and seafood consumed by the population were caught in a very 

contaminated area of the lagoon, very close to industrial emission sources. This worst-

case assumption helps in exploring the upper bound of human exposure to target 

chemicals, but it also leads to an overestimation of blood concentrations in comparison 

with realistic exposure conditions (i.e., fish and seafood from different sources and 

probably from less contaminated areas, especially after the ban of fishing activities in 

front of Porto Marghera in the 1990s). At the same time, the contribution to chemical 

exposure from other food items such as meat or dietary products was not considered 

in the assessment. Even if fish and seafood can probably be considered among the 

most relevant sources of TCDD and PCB126 in the diet for high fish consumers, the 

exclusion of other dietary sources likely leads to an underestimation of internal 

exposure. Finally, it has to be considered that in the reconstruction of human exposure, 

only average value of daily intakes of fish and seafood for different age groups were 

used, since quantitative data on daily consumption of different food types were not 

available for each participant. This condition hampers the comparison of data at the 

individual level, because the model provides identical results for all individuals born in 

the same year if other parameters, such as food intake rates, are not varied. 

Blood concentrations (mg/L) of 2,3,7,8-TCDD and PCB126 obtained by MERLIN-Expo 

simulation for individual high-fish consumers were converted into lipid-adjusted serum 

concentration by multiplying for a factor of two (blood to serum concentration 

conversion according to Health Canada, 2003) and by adjusting for the total lipid 

concentration of individual serum samples as reported by Frangipane (1999). TEQs 

concentration of PCB126 were obtained by multiplying the concentrations by PCB126 

TEF, defined as equal to 0.01 for humans (WHO, 2005).  

Table 14 provides a comparison of statistical values for the internal exposure estimates 

calculated by MERLIN-Expo with the selected BE. It can be noticed that HQ values are 

all below the value of 1, even in the case of the 95th percentile. However, it is important 

to remind that the HQ is calculated only taking into account two chemicals, 2,3,7,8-

TCDD and PCB126, therefore the inclusion of other dioxins and other dioxin-like PCB 

congeners in the assessment might lead to higher values. 
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Table 14 Evaluation of internal exposure estimates of 2,3,7,8-TCDD and PCB126 obtained by MERLIN-Expo against 
Biomonitoring Equivalent for Dioxin TEQ. 

Dioxin TEQs estimated for 22 high fish consumers (sum of 2,3,7,8-TCDD and PCB126) 
– pg/g serum lipid 

 
MEAN 

GEOMETRIC 
MEAN 

95th percentile 
Biomonitoring 

Equivalent (BE) 

4,56 4,22 7,69 21 

HQ 0,22 0,20 0,37  

 

5.2.  PROBABILISTIC ANALYSIS 

The procedure and simulation settings are described in § 4.5. 

5.2.1. Environmental Exposure 

The accumulation of 2,3,7,8-TCDD and PCB 126 in biota soft tissue was simulated 

over the time period 1932-1998 with a time step of 100 days. Mean concentrations and 

5th and 95th percentile confidence interval are shown in Figure 13.  
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Figure 13 Simulated concentration of PCB126 (mg/kg fw) and 2,3,7,8-TCDD (mg/kg fw) including all routes of exposure and 
uncertainty ranges of internal concentration (95th-5th %tile interval) in: Tapes philippinarum, Carcinus mediterraneus, Chelon 
labrosus, and Zosterisessor ophiocephalus, over period 1932-1998. 

 
The curve evolution is specific for the contaminant in question. The accumulated PCB 

126 reaches different levels in different species but the concentration trend is similar 

for all four species. The same observation can be made for 2,3,7,8-TCDD: all species 

share similar internal concentration trend; however, they differ in the level of 

accumulated chemical. Two concentration peaks are observed for PCB 126 in all 

reported species, the first high peak in 1935 and the second, smaller one in 1952. After 

the second peak, the concentration decreases rapidly until 1960s, and steadily 

continues to decline for the rest of the simulated period until 1998 (Table 15). 
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Table 15 Mean concentration and lower and upper confidence intervals for PCB 126 and 2,3,7,8-TCDD at maximum 
concentration predicted in 1935 and 1940 and concentrations for both chemicals simulated in 1998. 

Species 

DETERMINISTIC 
PROBABILISTIC 

Mean (5th% ; 95th%) 
OBSERVED 

PCB126 
(mg/kg fw) 

2,3,7,8-
TCDD 

(mg/kg fw) 

PCB 126 (mg/kg fw) 
 

2,3,7,8-TCDD 
(mg/kg fw) 

 

PCB126 
(mg/kg fw) 

2,3,7,8-
TCDD 

(mg/kg fw) 

Carcinus 
mediterraneus 
 

5.26E-05 1.66E-07 
5.2E-05  

(1.7E-05 ; 1.1E-04) 
3.5E-07  

(9.6E-08 ; 7.1E-07) 
1.62E-05 1.01E-07 

Chelon 
labrosus 
 

3.65E-05 5.27E-08 
6.8E-05  

(1.5E-04 ; 2.0E-04) 
1.6E-07  

(3.4E-07 ; 1.3E-06) 
5.79E-05 6.72E-07 

Tapes 
philippinarum 
 

5.67E-05 3.90E-07 
7.4E-05  

(1.0E-05 ; 2.8E-06) 
3.6E-07  

(2.6E-08 ; 2.8E-09) 
2.30E-06 1.40E-08 

Zosterisessor 
ophiocephalus 

 
6.78E-06 6.42E-09 

2.4E-05  
(1.7E-05 ; 1.1E-04) 

7.3E-08  
(9.6E-08 ; 7.1E-07) 

2.26E-05 8.58E-08 

 

The mean 2,3,7,8-TCDD concentration reaches its maximum in the early 1940′s, 

reaching a plateau lasting until early 1950s, when a sudden decrease can be observed 

continuing until early 1960s. Afterwards the concentration is maintained at the same 

level, and starts building up slowly from mid-1970s until 1998. Overall, PCB 126 

accumulates in organisms to higher concentrations than 2,3,7,8-TCDD. Estimated 

whole body mean concentration of 2,3,7,8-TCDD and PCB 126 is higher for 

invertebrates in Tapes philippinarum (clam) comparing to Carcinus mediterraneus 

(green crab), and, among fishes, concentration in Chelon labrosus (mullet) is higher 

than in Zosterisessor ophiocephalus (goby). 

The accumulation of PCB126 is burdened with lower uncertainty than uncertainty on 

accumulated 2,3,7,8-TCDD. The confidence interval in the case of PCB126, after 

reaching the second concentration peak, tends to diminish towards the end of the 

simulation, while uncertainty on accumulated 2,3,7,8-TCDD after mid-1970′s shows 

growth when approaching 1998. In general, uncertainty varies along the simulated 

concentration and follows the same behaviour. The difference between uncertainty 

ranges (95th–5th percentile) is always between 2 and 3x the mean value and invariable 

between species when all routes of exposure are considered. 
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5.2.2. Human Exposure 

Figure 4 shows the uncertainty on 2,3,7,8-TCDD and PCB 126 concentration in man’s 

blood. PCB126 concentration in blood reaches two distinctive peaks in early 1930’s, 

right after person’s birth, and in early 1950’s (Figure 14). The former is roughly twice 

higher than the latter one. PCB126 concentration decreases as simulation approaches 

the end.  

 

 

Figure 14 Simulated concentration of PCB126 (mg/L) and 2,3,7,8-TCDD (mg/L) and uncertainty ranges of internal 
concentration (95th-5th percentile interval) in man’s blood over period 1932-1998. 

 

The amount of 2,3,7,8-TCDD in blood slowly increases arriving to a maximum 

simulated value of 1.3x10-7 (mg/L) in 1950’s. On the contrary, 2,3,7,8-TCDD 

accumulates in blood in higher concentration than PCB 126 at the final time of the 

simulation. In fact, Ruiz et al., (2014) noted that the concentrations of 2,3,7,8-TCDD in 

serum increases with age due to higher environmental dioxin levels in past exposure, 

the number of years of past exposure, and slower elimination among older persons. 

Results reported in § 5.1.2. on 2,3,7,8-TCDD levels in blood are in accordance with 

Ruiz observations. Similarly, to the results from ecological exposure assessment, PCB 

126 has the tendency to accumulate to greater level than 2,3,7,8-TCDD (Table 16). 
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Table 16 Mean concentration and lower and upper confidence intervals for PCB 126 and 2,3,7,8-TCDD in human blood at 
maximum concetration predicted in 1935 and 1954 respectively, and concentrations for both chemicals simulated in 1998. 

 

Simulated 
concentrations of 
PCB126 in blood 

(mg/L) 

Simulated 
concentrations of 
2,3,7,8-TCDD in 

blood 
(mg/L) 

Blood 1935 1998  1954  1998  

Mean 1.2E-05 2.0E-07 6.5E-08 5.0E-08 

5% 4.9E-06 8.0E-08 1.7E-08 1.2E-08 

95% 2.2E-05 3.9E-07 1.3E-07 1.0E-07 

 

By comparing concentration trends in biota and environment (Figures A1-A4) one can 

arrive to the conclusion that the temporal evolution of internal concentration in aquatic 

organism is shaped mainly by the chemical concentration in exposure media, albeit 

more by the concentration of contaminants in sediments than in water. A significant 

drop in the accumulated concentration over simulation period in aquatic species and 

consequently in human blood can be observed, with regard to the concentration 

calculated when all food web bioaccumulation routes are active (2,3,7,8-TCDD down 

by 98% and PCB126 by 94%). Furthermore, exposure concentration in diet (seafood) 

affects computed temporal variation of concentration levels of the contaminants in 

blood (Figure A3 bottom pane).  

 

A cross-correlation function (CCF) is used to show potential influence of the 

environmental concentration time series on the concentration in blood (Figure 15, right 

pane). The negative line segments correspond to events that are not correlated. In 

order to apply the cross-correlation function, concentrations in water and sediments 

were used as input time series and computed concentration in blood as output time 

series. A positive relationship with positive time lag is characteristic for the dioxin time 

trend in sediments and blood. Nevertheless, the correlation is weak, largest value at 

lag -10 reaches 0.49. Concentration of 2,3,7,8-TCDD in water poorly correlates with 

concentration in blood too. It weakly correlates at lag -10 (0.24), but mostly the lack of 

relationship is predominant with highest negative values at lag 10 (-0.78). Interestingly, 

it takes roughly 15 years for 2,3,7,8-TCDD to reach peak concentration in blood after 

the occurrence of the environmental peak exposure.  
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Figure 15 Left pane: Concentration of 2,3,7,8-TCDD and PCB 126 in dissolved water (mg/m3) and human blood (mg/L); Right 
pane: Cross-correlograms showing influence of chemical concentration in water on concentration in human blood. ACF is 
defined as autocorrelation function.  

 

The simulated PCB126 concentration response is immediate with respect to the 

concentration in water and sediments. This is noticeable by pronounced strong positive 
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correlation over simulation period between both environmental concentration time 

trends and concertation computed in blood. High peak 0.93 points out strong 

correlation and it occurrence and lag -2.0 signifies that PCB’s concentration in water 

and sediments slightly leads concentration in blood. 

Several studies inform about environmental concentrations as a critical source of 

uncertainty in modelling bioaccumulation in aquatic food webs (De Laender et al., 

2010; Ciavatta et al., 2009; Nfon and Cousins, 2007). It is also well recognised that 

human dietary exposure concentration together with information on food consumption 

are one of the most important sources of variability and uncertainty in dietary exposure 

assessment (Kettler et al., 2015; Kennedy and Hart, 2009). We stress that 

uncertainties in our reconstructed historical concentration trends are high and remain 

unquantified. Details on measurements of environmental input concentration and the 

method applied to calculate historical exposure concentration in water is described in 

§ 5.1.2.. 

5.3.  SENSITIVITY ANALYSIS 

In order to account for all important model parameters and their effects, sensitivity 

analysis was performed as a sequence of methods. The presented results are show 

for most influential parameters with regard to 2,3,7,8-TCDD and PCB126 concentration 

in man's blood. 

5.3.1. Morris method 

The model was run for 24,091 days. 1790 model evaluations were run including 156 

parameters in the analysis of PCB 126 and 2,3,7,8-TCDD in blood. Figure 16 presents 

parameters sorted according to their influence on simulated concentration of the 

substance in blood in 1998 (that is 24,091st day of the simulation). The results were 

used to reduce number of parameters to be included in further sensitivity analysis 

steps. Parameters with 𝜇𝑖
∗ (mu*) higher than 2.0 × 10−8 and σi (sigma) higher than 1.0 

× 10−8 were considered important for calculating concentration of 2,3,7,8-TCDD in 

blood. Factors deemed as significant for modelling PCB 126 in blood were restricted 

to those characterised by 𝜇𝑖
∗ higher 5.0 × 10−8 and with σi higher than 7.0 × 10−8. 

Regardless of the considered compound, chemical metabolic half-life and man's body 

weight were found to be the most important parameters. There are differences in the 
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two sets of influential parameters, for instance tissue-blood partition coefficient for 

adipose for 2,3,7,8-TCDD was noted as important but not for PCB 126. On the other 

hand, lipid content in zooplankton and phytoplankton seems to be more important in 

case of PCB 126 than for 2,3,7,8-TCDD. Overall, the results of the Morris screening 

method imply that parameters used in ‘Invertebrates’ bioaccumulation model for Tapes 

philippinarum (lipid fraction, food assimilation efficiency, water-layer diffusion 

resistance for uptake of chemicals from food, metabolic half-life of chemicals, 

allometric rate exponent, food transport coefficient) are predominant among influential 

parameters and matter most in calculating concentration in blood for both 

contaminants in question. Those parameters identified as important in the Morris 

methods (Figure 16) were used in further steps of the sensitivity analysis. 
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Figure 16 Most influential parameters for calculating 2,3,7,8-TCDD concentration and PCB126 concentration in human blood 
PCB 126 based on Morris method. 

 

5.3.2. Results of regression-based analysis 

A regression-based analysis to assess the influence of uncertain input factors on model 

output variance was performed using Monte Carlo sampling scheme by drawing 2000 

samples. Correlations between 4 uncertain input parameters and probabilistically 

simulated 2,3,7,8-TCDD and PCB 126 concentration in man’s blood are visualised on 

scatterplots (Figure 17). The parameters included in scatterplots were selected for 

each contaminant based on the highest mu* and sigma scores indicated in the Morris 

method. The examination of the scatter plots reveals various patterns between 

selected input parameters and model output, hence informing about various 

relationship. The scatter plots reveal metabolic half-lives and lipid content in Manila 

clam to be positively correlated with computed output, and negative correlation in case 

of variability in bodyweight and liver-blood partition coefficient with concentration of 

contaminants in blood. The standardised regression coefficient 𝛽𝑖
2, decomposed 

according to 10 input factors, captures 73% of the model output variance in case of 

computed 2,3,7,8-TCDD concentration in blood (Table A5). Table A6 shows individual 

𝛽𝑖
2 values for 12 input parameters accounting for 71% of variation in computed PCB 

126 concentration in blood. The quality of regression model is assessed by the R2 

which for both computed chemicals in blood is above 0.7, indicating that the linear 

regression fits well model output and that an appreciable fraction of output variance 
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can be apportioned to linear component of the model (Manache and Melching, 2008). 

Nevertheless, 25% and 29% of the variation in computed concentration of 2,3,7,8-

TCDD and PCB 126, respectively, remains unexplained by the 𝛽𝑖
2. Therefore, further 

analysis was applied to understand the contribution of uncertain parameters to model 

output variance. 

 

 

 
Figure 17  Scatter plots of concentration distribution of 2,3,7,8-TCDD (two upper rows) and PCB 126 (two bottom rows) in 

blood versus uncertain input parameters at simulation time 24091 (1998). 
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5.3.3. EFAST 

The final step of the sensitivity analysis was performed on parameters selected during 

the screening step. First and total sensitivity indices (Si, TSi) representing the main 

effect and interactions between parameters were calculated using EFAST method with 

number of Fourier coefficients set to 4, and sampling size 1000.  

5.3.3.1. 2,3,7,8-TCDD in blood 

The sum of first order sensitivity indices (Si) explains 76% of the model output variance 

and implies that the remaining 24% is due to higher order interactions taking place 

among the uncertain factors. Two parameters with the highest Si, metabolic half-life of 

2,3,7,8-TCDD and variability in the bodyweight, account for 50% of the variation in the 

computed 2,3,7,8-TCDD concentration in blood. 

The total sensitivity indices (TSi) inform that the most important parameter for 

computing 2,3,7,8-TCDD concentration in blood is its metabolic half-life, which is used 

as an input parameter to ‘Invertebrate’ bioaccumulation model, and turned out to be 

responsible for 47% of the output variance. The second most important parameter is 

the inter-individual variability of the body weight, accounting for 24% of output’s 

variation (Table A5). TSi values computed for metabolic half-life and variability in body 

weight are respectively 15% and 6% higher than Si indices, indicating small interaction 

among the parameters. All global SA methods consistently show metabolic half-life of 

2,3,7,8-TCDD and variability in the bodyweight as the most influential parameters for 

computing 2,3,7,8-TCDD concentration in blood. 

The time evolution of the total sensitivity index for a set of parameters is plotted in 

Figure 18. The key relations are the decreasing index for adipose tissue-blood 

partitioning coefficient and the increasing index for body weight. Also interesting is the 

increase in liver tissue-blood partition coefficient total sensitivity index: its importance 

begins to grow only starting from 1950’s. Among parameters specific to aquatic biota, 

the allometric scaling parameter (kappa), used to model bioaccumulation in Manila 

clam, shows a significant drop from the beginning of the simulation. 
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Figure 18 Change of total sensitivity index of 10 parameters over simulation time 1932 – 1998, considering as output the 
2,3,7,8-TCDD concentration in blood. 

  

Biotransformation half-lives of organic chemicals are known to affect exposure 

estimates in aquatic food webs (Arnot et al., 2010). Metabolic half-lives of 2,3,7,8-

TCDD is burden with uncertainty attributable to QSAR modelling, which was originally 

intended to provide screening level predictions of the fish whole body biotransformation 

half-lives of chemicals restricted to model’s applicability domain (Arnot et al., 2009b). 

In the applied PBPK model the bodyweight is expressed as a function of age in order 

to account for inter-individual variability of the bodyweight for persons of the same age 

(Bois et al., 2010). Variations of the bodyweight in adulthood are assumed to be 

variations of the volumes of the adipose tissues, possibly for that reason variability in 

the body weight is responsible for more variance in computing 2,3,7,8-TCDD 

concentration in blood than adipose tissue. 

5.3.3.2. PCB126 in blood 

The most important parameters detected by the three computed global sensitivity 

indices are lipid content and fraction of assimilated food specific to Manila clam (Table 

A6). Si calculated for 12 input parameters arrives at 81% of variation leaving 19% to 

be explained by interaction between parameters. First order effects computed for lipid 

content and fraction of assimilated food capture together 35% of output variance. Total 

effects show that 28% percent of variation in the simulated internal concentration of 

PCB 126 is explained by uncertainty in lipid content of Manila clam (Tapes 
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philippinarum) and 22% is due to the fraction of assimilated food. It is interesting to 

note that contribution of these factors to the output variance through interaction is weak 

as the difference between TSi and Si is small, respectively 8% and 7% for each of the 

parameter (Table A6). The estimated TSi for the top three parameters reported in Table 

A6 captures 86 % of the variation in concentration of 2,3,7,8-TCDD, while 66% of 

variation in concentration of PCB 126 is explained by the three most influential 

parameters (Table A6). Overall, the fractions of variation in PCB 126 concentration in 

blood given parameters are responsible for, are less discernible than in the case of 

2,3,7,8-TCDD.  

The time evolution of total sensitivity index for the most influential parameters for 

accumulation of PCB 126 in blood does not show any significant changes over time, 

as depicted in Figure 19, possibly due to the weak interactions between parameters. 

Two bumps, one in 1940s and the other one smaller in 1960s, for several parameters 

(Figure 19) seem to be related to two distinctive spikes in environmental concentration 

of PCB126 in sediments and water. 

 

 

Figure 19 Change of total sensitivity index of 12 parameters over simulation time 1932 – 1998 considering as output PCB 
126 concentration in blood. 

The calculation of respiratory and dietary uptake and elimination kinetics of organic 

chemicals in aquatic species is based on parameters related to animal physiology, 

such as food assimilation efficiency, and partition of hydrophobic organic chemicals to 

lipid content, hence these factors are expected to have an effect on bioaccumulation 

and human exposure estimates. This is confirmed in our study of influential parameters 

where, indeed, parameters representing lipid content and food assimilation efficiency 
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are the most important ones. The estimation of PDF assigned to assimilation efficiency 

for Manila clam should attract more attention then, given that it was originally estimated 

as a generic factor describing efficiency of assimilation in aquatic invertebrates (and 

not specifically for clam). 

Overall, sensitivity analysis yielded a R2 value close to 0.7, that helps to classify model 

as quasilinear (Cariboni et al., 2007). Si estimated around 80% for both chemicals 

implies that only a small part of output variation can be attributed to interaction between 

parameters. The fact that no particular differences between total and first order indices 

exist would confirm this observation (Saltelli, 2004). 

One significant factor having the potential to strongly influence obtained results is the 

food intake rate for man, which for Manila clam is the highest among the considered 

seafood items (Figure 20) This may be the reason why five parameters directly related 

to the clam are relevant for estimating PCB 126 in man’s blood and four for estimating 

2,3,7,8-TCDD. Both chemicals are highly hydrophobic (logKOW_2,3,7,8-TCDD = 6.9, 

logKOW_PCB126 = 6.8). 2,3,7,8-TCDD tends to concentrate in lipid-rich tissues, as 

discussed by Diliberto et al., (2001) and TCDD lipid solubility is particularly important 

at low doses. However, despite high hydrophobicity of PCB126, higher concentration 

was found in liver than in fat due to most likely protein binding (Lohitnavy et al., 2008). 

This difference between the two chemicals could be addressed in the PBPK by 

additional data collection and model parameterisation. 

 

 

Figure 20 % contribution of the four selected species to the total ingested seafood by human as a function of age (years). 
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CHAPTER 6 CONCLUSIONS 

Overall conclusion of the study is that it is feasible to incorporate human receptor and 

expanding the typical concepts of assessing environmental quality adopted for 

instance in WFD (2000) where quality of waters is assessed through integrity of 

ecological, physical, chemical and biological parameters.  

Integrated exposure modelling was applied to assess the bioaccumulation of a set of 

dioxins and PCBs in the aquatic food web of the Venice lagoon and the exposure of 

local population (high fish consumers sub-group) through the intake of contaminated 

seafood from the same lagoon. The source of chemical concentrations input data are 

sediment cores which are known to be a good record of past contamination trends of 

organic contaminants. In order to address exposure problem in the Lagoon of Venice, 

first three bioaccumulation models were developed and later implemented in EU-

backed MERLIN-Expo tool. Overall, the five models from MERLIN-Expo library were 

combined (Phytoplankton, Invertebrate, Fish, Human Intake and Man models) and 

both deterministic and probabilistic simulations were run for a time period of several 

decades, from 1930s to 2000s. For the considered classes of chemicals, the project 

demonstrated the feasibility of reconstructing detailed long-term exposure scenarios 

addressing both ecological and human exposure issues and considering different 

targets. The flexibility of the modular structure of MERLIN-Expo made possible to 

reconstruct a rather complex aquatic food web, representative of the Venice lagoon 

ecosystem and including 17 different aquatic species. Moreover, simulated 

concentrations in edible species were used, together with age dependent food intake 

rates, to reconstruct human internal exposure for local population subgroup (adult 

males, high fish consumers). The ecological exposure assessment targeted different 

congeners of PCBs and dioxins, demonstrating the possibility to run simulations for 

several contaminants at the same time (not mixtures). This feature facilitates easy 

comparison of the behaviour of the chemicals with different physico-chemical 

characteristics and helps to explore their potential for bioaccumulation and/or bio-

magnification in a straightforward way. MERLIN-Expo proved to be flexible and 

suitable to support integrated exposure assessment of dioxins and PCBs where both 

ecological and human targets are considered, even for long term scenarios, and the 

model performance, evaluated against real monitoring data, are satisfying if all the 

assumptions included in the assessment framework are considered. 
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The scarcity of historical contamination data represented a challenge to the PhD 

project, nevertheless the available data give the idea about the general contamination 

trend over several decades, which in fact agrees well with pollution emissions in the 

Lagoon of Venice (contamination peaks in 1940s and 1950s). Despite the uncertainties 

associated with the assessment framework and data availability and treatment (e.g., 

reconstruction of water concentrations, interpolation, blood to serum transformation), 

the results of the described application can already show that the proposed integrated 

exposure modelling framework for PCBs and dioxins is valid to reconstruct real 

biomonitoring data with a good approximation (comparable orders of magnitude 

between simulated and measured concentrations in blood).  

The results obtained from the application were used to perform a preliminary ecological 

and human health risk assessment for the considered chemicals, by comparing the 

internal exposure estimates against existing benchmark values available in literature. 

No conditions of significant ecological or health risk have been detected for the 

considered worst-case scenario, however it is important to remind that the case study 

application included only a very restricted set of target chemicals and only dietary 

pathway regarding human exposure and it would be relevant to extend the application 

to other substances with similar modes of action in order to perform a full risk 

assessment for local ecosystem and human population. Moreover, the consideration 

of different and more complete exposure scenarios would permit to better explore the 

implications of temporal and spatial changes in environmental contamination and 

exposure variable (such as diet habits) on the overall exposure. The uncertainties 

associated with the presented exposure assessment in the Venice lagoon should be 

properly identified and assessed, with the aim of quantifying the margin of variability of 

the model outputs attributable to uncertainty and variability in input parameters. 

The scope of the probabilistic exposure assessment was to provide transparency and 

credibility to the historical lifetime exposure assessment of a human individual and of 

a food web, through the application of different uncertainty and sensitivity analysis tools 

offered by MERLIN-Expo software. The main driver for ecological exposure to POPs 

resulted to be environmental concentration, especially in sediments. After disabling the 

consumption of sediments by the considered aquatic species, it was found that this 

exposure route is the most important one (sediment is a part of diet items but its 

ingestion is modelled separately due to water-organic carbon partitioning and organic 

carbon content used specifically in the sediment uptake model). Even though 2,3,7,8-
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TCDD concentration in water and sediments is not well correlated with blood 

concentration, a huge decrease was observed in biota and human blood concentration 

after shutting down the sediment ingestion exposure route. The general conclusion 

with regard to the obtained results after first two steps of SA (i.e., application of Morris 

method and regression-based analysis) is that model is quasilinear. With regard to the 

uncertain model parameters related to simulated concentration of PCB126 and 2,3,7,8-

TCDD in man blood, EFAST yielded body weight and liver tissue-blood partition 

coefficient and, additionally, adipose tissue-blood partition coefficient in the case of 

exposure to 2,3,7,8-TCDD was distinguished. However, the indices values are low, 

suggesting that other more dominant sources of uncertainty exist. Overall, human 

exposure to POPs depends on a significant number of parameters, processes and 

behaviours. Results from SA are spread across many model parameters and do not 

clearly identify a reduced number of influential factors. However, in case of exposure 

to 2,3,7,8-TCDD there is still some contribution from metabolic half-life used in 

invertebrate model (when human body weight variability and clam lipid content are 

considered, this contribution goes up to almost 90%). These factors and the high 

ingested quantity of seafood with major presence of clam in the daily intake would add 

up to factors strongly affecting concentration of 2,3,7,8-TCDD in human blood. The 

environmental concentration of the dioxin shows, however, very weak correlation with 

concentration in human blood. PCB126 in blood, on the other hand, is noticeably more 

correlated to environmental concentration both in sediments and water. Also PCB’s 

contribution from seafood intake is larger than that of 2,3,7,8-TCDD. SA does not show 

any major driver of PCB126 concentration in blood among model parameters. The 

obtained results suggest that environmental concentrations and eating behaviours 

should be scrutinized better in order to elucidate contribution of uncertainty to model 

outputs and also encourage to include functionalities in MERLIN-Expo for considering 

uncertainty in time series inputs in UA/SA. While ecological parameters affect the level 

of accumulated concentration in biota, and should be better considered in order to 

obtain more accurate bioaccumulation estimates, for human exposure to POPs they 

do not play such an important role, what is confirmed by rather low values of the SA 

measures. 

As a further development of this work, a more refined characterization of exposure 

scenarios could be carried out in order to make the predicted results and the 

biomonitoring data fully comparable and provide a quantitative evaluation of modelling 
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performance. To complement or support the interpretation of existing monitoring data 

or to explore future exposure scenarios it is advisable to test these potentialities for 

other classes of chemicals (e.g., PAHs, phthalates, pesticides, metals). 

The potential for practical application of integrated ecological and human exposure to 

both organic and inorganic substances is substantial. One instance where application 

of integrated exposure modelling may be further explored regards direct and indirect 

effects of human activities (e.g. maintenance of waterways, navigation or fishing) 

affecting quality of the Venetian lagoon. An example of such impact is resuspension of 

the sediments and subsequent remobilisation of buried contaminants which re-enter 

into the environment resulting in lower status, and creating situation of increased 

chance of exposure of ecological and human receptors to chemicals stressors. 

Similarly, the workflow adopted in the presented PhD project could be used to 

conceptualise such an event by coupling of ecological and human exposure models, 

including the uncertainty and sensitivity analysis, enabling the environmental decision-

makers to explore series of various actions and corresponding uncertainties. 

Further testing of the applied models on new environmental and human biomonitoring 

datasets and on an expanded set of bioaccumulative chemicals, as well as the 

refinement of the selected input data for the most influential parameters (through 

additional literature data or experimental activities) can support an improvement of the 

model capability to reconstruct real bioaccumulation data. 

It would be of interest to explore integration of other components in order to expand 

the presented exposure assessment by for instance integrating exposure and effects 

modelling. Such opportunity is offered by the GUTS model (Jager et al., 2011). It would 

make possible to expand the current modelling framework of additional module aimed 

at stimulating stochastic death and individual tolerance. At the same time, this should 

stimulate experimental activity towards collection of ecotoxicological data in order to 

support the validation of the effect model. Apart from addressing bioaccumulation in 

individual organisms the bioaccumulation models could be expanded to address 

accumulation/magnification/effects phenomena in populations and communities. 

Following the currently broadly addressed topic of global climate change the presented 

integrated modelling framework could include temporal changes in exposure 

parameters, such as temperature, for the analysis of bioaccumulation metrics and 

effects on human internal exposure in the context of climate change.  

Overall, the study demonstrates that integrated human and ecological exposure 
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modelling used in complex exposure scenario can be useful for supporting 

experimental analysis (§ 5.1 & 5.2) and pointing out gaps in knowledge such as 

variables that should be studied in more details and which strongly affect the 

assessment of external/internal exposures to environmental organic contaminants (§ 

5.3). 
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APPENDIX A 
 

Equations 
 

The concentration in fishes caught for human food at time corresponding to mature 

age, taking into account continuous renewal of fish population (i.e. death of old 

potentially contaminated individuals replaces by newborn non contaminated 

individuals), is given by: 

Equation A 1 

Cfish_human_food[t]  = max(0;
(Qfish_respiratory_system[t] + Qfish_GIT_system[t])

Wfish

−
Qfish_respiratory_system[t − timefish_life] + Qfish_GIT_system[t − timefish_life]

Wfish

∙ exp(−(kexcretion + kegestion + kgrowth + λmetabolism) ∙ timefish_life) 

 

Where: 

 

Qfish_respiratory_system is a quantity of a chemical in fish respiratory system (mg) 

Qfish_GIT_system is a quantity of a chemical in fish gastro intestinal system (mg) 

Wfish is weight of a fish (kgfw) 

timefishlife is fish age at maturity (d) 

kexcretion is respiratory elimination rate constant (d-1) 

kegestion is dietary egestion rate constant (d-1) 

kgrowth is growth rate constant (d-1) 

λmetabolism is metabolism rate constant (d-1) 

 

The concentration in invertebrate caught for human food at time corresponding to 

mature age, taking into account continuous renewal of invertebrate population (i.e. 

death of old potentially contaminated individuals replaces by newborn non 

contaminated individuals), is given by: 

 

Equation A 2 

CInvertebrate_human_food[t]

= max(0;
(QInvertebrate_respiratory_system[t] + QInvertebrate_GIT_system[t])

WInvertebrate

−
QInvertebrate_respiratory_system[t − timeInvertebrate_life] + QInvertebrate_GIT_system[t − timeInvertebrate_life]

WInvertebrate

∙ exp(−(kexcretion + kegestion + kgrowth + λmetabolism) ∙ (timeInvertebrate_life) 
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Where: 

QInvertebrate_respiratory_system is a quantity of a chemical in invertebrate respiratory system 

(mg) 

QInvertebrate_GIT_system is a quantity of a chemical in invertebrate gastro intestinal system 

(mg) 

WInvertebrate is weight of a invertebrate (kgfw) 

timeInvertebrate is invertebrate age at maturity (d) 

kexcretion is respiratory elimination rate constant (d-1) 

kegestion is dietary egestion rate constant (d-1) 

kgrowth is growth rate constant (d-1) 

λmetabolism is metabolism rate constant (d-1) 

 

Differential equation for calculating amount of chemicals in phytoplankton cell 

Equation A 3 

dQPhytoplankton

dt
= WPhytoplankton ∙ (kuptake ∙ C diss_water) − (kecretion + kgrowth) ∙ QPhytoplankton 

 
 

Where: 

QPhytoplankton is a quantity of a chemical in phytoplankton (mg) 

WPhytoplankton is a phytoplankton weight (kg fw) 

kuptake is a direct uptake from overlaying water (L*kg fw-1*d-1) 

Cdiss_water concentration of the chemical dissolved in water (mg*m-3) 

kexcretion is esxrection rate constant (d-1) 

kgrowth is growth rate constant (d-1) 

 

Differential equations for blood (ArterialBlood, VenousBlood) 

 

Equation A 4 
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Where: 

ArterialBlood is the amount in the arterial blood (mg), 

CBlood_Arterial is the concentration in the arterial blood (mg/L), 

CLungs is the concentration in the lungs (mg/L), 

QC is the cardiac output (total blood flow) (L/min), 

PCLungs is the lungs:blood partition coefficient (unitless) 

ArterialBlood_to_MetabolitesArterialBlood is a transfer describing the metabolism 

in the arterial blood (mg/min), 

ArterialBlood_to_Excretion is a transfer describing the excretion in the arterial blood 

(mg/min). 

 

The equation for venous blood is: 

 

Equation A 5 

   
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QQQQQ
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dt
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Cpt

Cpt

Cpt
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

  

 

Where: 

Cpt designates the following compartments: adipose, adrenal, bone, brain, breast, 

heart, kidney, marrow, muscle, sexual organs, skin, thyroid, and urinary tract,  

VenousBlood is the amount in the venous blood (mg), 

CBlood_Venous is the concentration in the venous blood (mg/L), 

CCpt is the concentration in the compartment Cpt (mg/L), 

QC is the cardiac output (total blood flow) (L/min), 

QCpt is the blood flow entering in the compartment Cpt (L/min), 

PCCpt is the Cpt:blood partition coefficient (unitless) 

VenousBlood_to_MetabolitesVenousBlood is a transfer describing the metabolism 

in the venous blood (mg/min), 

VenousBlood_to_Excretion is a transfer describing the excretion in the venous blood 

(mg/min). 
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Description of input parameters to the used models 
 

Table A 1 Input parameters to FISH/INVERTEBRATE models 

Name Unit Description Full name 
a_W_fish unitless The relationship between weight and length is 

expressed by an allometric  formula including 
intercept a_W_fish. Used in calculating weight of 
fish  at a given age, based on a given fish 
length. 

Intercept of weight-length relationship 

Assimilated_food unitless This parameter represents fraction of ingested 
food that is absorbed or  digested by the 
organisms in the gastro intestinal tract. Its 
estimation  depends on prey (food) position in 
the food web. Used in calculating  fish’s inflow 
and outflow rates of chemicals through 
water/food and feces,  respectively. 

Fraction of assimilated food 

b_W_fish unitless The relationship between weight and length is 
expressed by an allometric  formula including 
slope b_W_fish. Used in calculating weight of 
fish at a  given age, based on a given fish 
length. 

Slope of weight-length relationship 

gamma_food kg.fw kg.fw-1 d^-1 Food transport coefficient represents delay in 
advective transport of  chemical substances 
through organism due to limited supply of new 
food. 

Food transport coefficient 

hl_metabolic_norm d^-1 Defines time after which amount of chemical in 
the organism decreases to  half of its starting 
amount, due to metabolic activity. Half lives are  
normalised values to 0.01 kg fish and 15°C. 

Metabolic half-life of chemicals 

kappa unitless Allometric relationships provide body-size 
specific parameters instead of  values that are 
arbitrary or taken from a well-known species. 
Allometric  regression exponent κ expresses 
body size correlation with animals  physiological 
characteristics i.e. rates, transport coefficients 

Allometric rate exponent 

L_fish cm Used in calculating weight of fish at maturity 
according to an allometric  relationship 

Fish length at maturity 

log10_BCF_organic L kg.fw^-1 Represents the partitioning at equilibrium of 
chemicals between fish  organism and water in 
absence of diet contribution 

Bioconcentration Factor for organics 

log10_K_oc unitless Organic carbon is assumed to be the main 
particulate media interacting  with hydrophobic 
chemicals potentially present in water bodies. 
The  Water-Organic Carbon partition coefficient 
represents the ratio at  equilibrium of the 
chemical associated to particulate organic 
matter and  present in water respectively. 

Water-organic carbon partition coefficient 
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log10_K_ow kg kg-1 Kow partition cooefficient is used as a measure 
of hydrophobicity of the  organic substance at 
equilibrium concentrations between octanol and 
water  phase. Experimental Kow values are 
provided for number of chemicals. 

Octanol/water partition coefficient 

p_carbon_sediment unitless Organic carbon is considered to be the main 
sorbing phase in water and  sediments for 
neutral organic compounds. It is used to express 
affinity of  organic contaminants to organic 
matter in sediments. 

Fraction of organic carbon in sediment 

p_lipid_fish unitless Lipid fraction of fish. Used to calculate the 
partition of chemical  between water and lipids in 
fish 

Lipid fraction of fish 

p_lipid_invertebrate unitless Lipid fraction of invertebrates. Used to calculate 
the partition of  chemical between water and 
lipids in invertebrates 

Lipid fraction of invertebrate 

p_lipid_phytoplankton unitless Lipid fraction of phytoplankton. Used to calculate 
the partition of  chemical between water and 
lipids in phytoplankton 

Organinc carbon fraction of phytoplankton 

pref_diet unitless Fish diet preference for food item 1 used to 
calculate the concentration  of the chemical 
substance that is absorbed with ingested diet 1. 
Ten  potential diets are arbitrary defined in the 
MERLIN-Expo model. All diet  preferences for 
food items, inlcuding sediments, should sum up 
to 1. 

Fish diet preference for food items 

pref_diet_sed unitless Fish diet preference for sediment used to 
calculate the concentration of  the chemical 
substance that is absorbed with ingested 
sediments. It should  be inlcuded in the overall 
diet preferences of a given animal. 

Fish diet preference for sediments 

rho_lipid_layer kg d kg-1 Represents time of passive diffusion of organic 
contaminant through lipid membranes. 

Lipid-layer permeation resistance 

rho_water_layer kg d kg-1 Represents time of diffusion of organic 
contaminant contained in water through 
aqueous layer. 

Water-layer diffusion resistance for uptake of 
chemicals from water 

rho_water_layer_food kg d kg-1 Represents time of diffusion of organic 
contaminant from ingested food through 
aqueous layer 

Water-layer diffusion resistance for uptake of 
chemicals from food 

time_fishlife d It is used for correcting concentration of 
contaminant in fish body for a given age of fish.It 
is also used for calculating growth rate. 

Fish age at maturity 
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Table A 2 Input parameters to PHYTOPLANKTON model 

Name Unit Description Full name 
a_growth unitless Coefficient a_growth describe relationship 

between cell size and growth  rate in the 
size scaling model of phytoplankton 
growth applied in the  MERLIN-Expo. 

Intercept of phytoplankton growth rate 

b_growth unitless Coefficient b_growth describe relationship 
between cell size and growth  rate in the 
size scaling model of phytoplankton 
growth applied in the  MERLIN-Expo. 

Slope of phytoplankton growth rate 

b_lipid_layer_resistance unitless Exponent is a measure of nonlinearity of 
the relation between  concentration of 
sorbate and  concentration of chemical in 
the solution.  b_lipid_layer_resistance 
coefficient is influenced by exposure  
concentration of metals. 

Lipid layer resistance exponent 

kappa unitless Allometric relationships provide body-size 
specific parameters instead of  values that 
are arbitrary or taken from a well-known 
species. Allometric  regression exponent κ 
expresses body size correlation with 
animals  physiological characteristics i.e. 
rates, transport coefficients 

Allometric rate exponent 

log10_K_ow kg kg-1 Kow partition cooefficient is used as a 
measure of hydrophobicity of the  organic 
substance at equilibrium concentrations 
between octanol and water  phase. 
Experimental Kow values are provided for 
number of chemicals. 

Octanol/water partition coefficient 

p_carbon_phytoplankton unitless Carbon fraction represents phytoplankton 
cell carbon pool, where  accumulation of 
metals may take place. Carbon fraction is 
used in  expressing excretion of the 
metals (k_ excretion_metals) from the  
planktonic cell. 

Organic carbon fraction of phytoplankton 

p_lipid_phytoplankton unitless Lipid fraction of phytoplankton. Used to 
calculate the partition of  chemical 
between water and lipids in phytoplankton 

Lipid fraction of phytoplankton 

rho_lipid_layer kg d kg-
1 

Represents time of passive diffusion of 
organic contaminant through lipid  
membranes. 

Lipid-layer permeation resistance 

rho_water_layer kg d kg-
1 

Represents time of diffusion of organic 
contaminant contained in water  through 
aqueous layer. 

Water-layer diffusion resistance for uptake of 
chemicals from water 

V_cell µm^3 Cell biovolume is used in estimating 
phytoplankton cells weight. 

Phytoplankton cell volume 

volume_to_weight µg µm-
3 

volume_to_weight conversion factor is 
used in transforming cell biovolume  to 
weight of phytoplankton cell. 

Volume to weight conversion factor 
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Table A 3 Input parameters to PBPK model 

Name Unit Description Full name 
Abs_ingestion unitless The fraction of contaminant absorbed via 

ingestion was defined to control the 
quantity of contaminant that is absorbed 
by ingestion (via the gastro-intestinal tract 
or modelled as a direct input in the liver). 
This fraction was introduced to take into 
account mechanisms that may not be well 
described for some contaminants 
between an intake and the subsequent 
concentrations in the body. Absingestion is 
used to compute the quantity of 
contaminant ingested. 

Fraction of contaminant absorbed via 
ingestion 

Abs_inhalation unitless The fraction of contaminant absorbed via 
inhalation (Absinhalation) was defined to 
control the quantity of contaminant that is 
absorbed by inhalation. This fraction was 
introduced to take into account 
mechanisms that may not be well 
described for some contaminants 
between an intake and the subsequent 
concentrations in the body. Absinhalation is 
used to compute the quantity of 
contaminant inhaled. 

Fraction of contaminant absorbed via 
inhalation 

BDW_Variability unitless The parameter BDWVariability was created to 
allow inter-individual variability of the 
bodyweight for persons of the same age. 
The user can use this parameter to 
constraint the bodyweight to a specific 
value or to simulate a random population. 

Variability in the bodyweight 

BIND mg/L Parameter to take into account the 
partitioning in blood for chemicals such as 
lead. For most of the chemicals, we 
assume no partitioning in blood. 
The parameter BIND is the maximum 
capacity of erythrocytes to bind the 
contaminant.  

Capacity of erythrocytes to bind 
contaminants 
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CL_perBDW L/min*kg The clearance is the rate at which a 
substance is removed or cleared from an 
organ or the body by metabolism (here). 
In the PBPK, the user has to inform the 
clearance per kg of bodyweight (CLperBDW) 
that will be used together with the 
calculated bodyweight to compute the 
clearance. The clearance then increases 
with age. The parameter CLperBDW is used 
to compute the quantity of contaminant 
metabolized. 

Clearance per kg of bodyweight 

DensityOrgan kg/L This parameter gives the organ density for 
each compartment. The density of an 
organ or a tissue is its mass per unit of 
volume. 

Density of organs 

InitialAge year The age of the individual when the 
simulation starts (in years). 

Age at the beginning of the simulation 

Ka_gut 1/min Kagut is a rate constant of the absorption 
of the contaminant in the intestines. The 
absorption is modelled by a diffusion 
process. 

Absorption from the gut lumen to the gut 
wall 

Ka_stomach 1/min Kastomach is a rate constant of the 
absorption of the contaminant in the 
stomach. The absorption is modelled by a 
diffusion process. 

Absorption from the stomach lumen to 
the stomach wall 

KBIND mg/L Parameter to take into account the 
partitioning in blood for chemicals such as 
lead. For most of the chemicals, we 
assume no partitioning in blood. 
The parameter KBIND is the half-
saturation constant used in describing the 
partition of contaminants between blood 
and plasma. 
  

Saturation constant for partitioning 
between blood and plasma 

Ke_bile 1/min This parameter reflects the elimination of 
the contaminant from liver through bile. A 
compound excreted in bile may be 
reabsorbed from the gastro-intestinal tract 
and returned to the general circulation. 
If the user wants to model the excretion of 
the compound from the body without the 
reabsorption, he/she should use the 
parameter Kex_perBDW. 

Biliary excretion rate 
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Kex_perBDW 1/min*kg The excretion rate reflects the process of 
excretion  of the contaminant by the 
different organs (for instance, the urinary  
excretion in the kidneys or blood). In the 
PBPK, the user has to inform  the 
excretion rate per kg of bodyweight 
(KexperBDW) that will  be used together with 
the calculated bodyweight to compute the 
excretion  rate as a function of age. The 
excretion rate increases with age. This  
parameter is used to compute the quantity 
of contaminant excreted. 

Excretion rate per kg of bodyweight 

Km mg/L The Michaelis constant (Km) is a 
parameter of the Michaelis-Menten 
equation used to describe the metabolism 
of the contaminant. Km is defined as the 
substrate concentration at which the 
reaction rate is half of Vmax and is an 
inverse measure of the affinity of the 
contaminant for the enzymes (a small Km 
indicates a high affinity). The parameter 
Km is used to compute the quantity of 
contaminant metabolized. 

Michaelis constant 

MainCYP unitless The parameter MainCYP allows the user 
to indicate which cytochrome P450 
(CYP1A2, CYP2B6, CYP2C8, CYP2C9, 
CYP2D6, CYP2E1, CYP3A, CYP3A4, 
CYP3A5, CYPC18, CYPC19, and others) 
is mainly involved in the metabolism of the 
contaminant. If none of the cytochromes 
proposed metabolizes the contaminant, 
the user has to choose the option 
“Others”. The parameter MainCYP is used 
to select a function that apportions the 
clearance or Vmax values to the enzyme 
content as a function of the age of the 
individual in order to compute the quantity 
of contaminant metabolized. 

Main cytochrome P450 involved in 
metabolism 

Option_BindingRBC unitless The parameter is chosen by the user 
when the partioning of the contaminants 
between blood and plasma is modeled. 
This parameter informed the general 
variable BindingRBC. The value is 1. 

Binding to erythrocytes - option 

Option_IngestionGIT unitless The parameter is chosen by the user to 
inform the general variable Ingestion, 
when he/she wants to model the 
absorption via the gastro-intestinal tract of 
ingested contaminants. The only possible 
value is 1. 

Ingestion via the GI tract 
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Option_IngestionSkipGIT unitless The parameter is chosen by the user to 
inform the general variable Ingestion, 
when he/she wants to model a direct input 
in the liver of ingested contaminants. The 
only possible value is 2. 

Ingestion via the liver 

Option_NoBindingRBC unitless The parameter is chosen by the user 
when the partioning of the contaminants 
between blood and plasma is not 
modeled. This parameter informed the 
general variable BindingRBC. The value 
is 0. 

No binding to eryhtrocytes - option 

PC unitless This parameter is the partition coefficients 
tissue over blood in the different tissues. 
A tissue:blood partition coefficient is 
defined as the ratio of the concentration in 
a tissue to the concentration in blood. 

Tissue:blood partition coefficients 

PC_BloodAir unitless The blood:air partition coefficient is the 
ratio of the concentration in  blood over 
the concentration in air at equilibrium. The 
blood:air  partition coefficient is used to 
describe the uptake and the elimination  
via lungs. 

blood:air partition coefficient 

scQ_adult unitless The relative blood flows in adults are 
scaling factors used to compute the blood 
flow entering in an organ/tissue according 
to the cardiac output. 

Relative blood flows in adults 

scW_adult unitless The relative organ weights in adults 
(scWadult) are the proportions of the weight 
of an organ/tissue compared to the 
bodyweight for an adult person. 

Relative organ weight in adults 

Vmax_perBDW mg/min*kg The maximum velocity of the metabolic 
reaction per kg of bodyweight 
(Vmax_perBDW) is used to compute the 
maximum velocity (Vmax), a parameter of 
the Michaelis-Menten equation used to 
describe the metabolism of the 
contaminant. The parameter 
Vmax_perBDW is used to compute the 
quantity of contaminant metabolized. 

Maximum velocity per kg of bodyweight 
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Exposure pathways contribution to the level of internal exposure concentration of 

PCB126 and 2,3,7,8-TCDD 
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Figure A 1 Effect on computed concentration of 2,3,7,8-TCDD (mg/kg fw) and PCB 126 (mg/kg fw) and on uncertainty range 

in selected aquatic species and man’s blood when uptake from sediment is disabled 
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Figure A 2  Effect on computed concentration of 2,3,7,8-TCDD (mg/kg fw) and PCB 126 (mg/kg fw) and on uncertainty range 

in selected aquatic species and man’s blood when uptake from diet is disabled 
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Figure A 3 Effect on computed concentration of 2,3,7,8-TCDD (mg/kg fw) and PCB 126 (mg/kg fw) and on uncertainty range 

in selected aquatic species and man’s blood when uptake from water is disabled 

 
 

Summary of the calculated sensitivity indices 
 

Table A 4 Squared standardised regression coefficient (𝛽𝑖
2) and coefficient of determination (R2), first order sensitivity index 

(Si), total order sensitivity index (TSi) for 10 input parameters accounting for variance in computed 2,3,7,8-TCDD 

concentration in blood, in year 1998. Scores are ordered according to decreasing TSi. 

Input Squared 
standardised 
regression 
coefficient 

(𝜷𝒊
𝟐) 

First order 
sensitivity 
index (Si) 

Total Order 
Sensitivity 
Index (TSi) 

 R2 = 0.75  

Metabolic half-life of chemicals 
(2,3,7,8-TCDD) 

0.27 0.32 0.47 

Variability in the bodyweight (Man) 0.21 0.18 0.24 

Lipid fraction of invertebrate (Tapes 
philippinarum) 

0.06 0.07 0.15 

Water-layer diffusion resistance for 
uptake of chemicals from food 

0.00 0.02 0.11 

Tissue:blood partition coefficients 
(2,3,7,8-TCDD) (Liver) 

0.06 0.06 0.10 

Fraction of assimilated food (Tapes 
philippinarum) 

0.08 0.04 0.08 

Food transport coefficient (Tapes 
philippinarum) 

0.03 0.04 0.08 

Allometric rate exponent (Tapes 
philippinarum) 

0.01 0.02 0.05 

Tissue:blood partition coefficients 
(2,3,7,8-TCDD) (Adipose) 

0.01 0.01 0.04 

Water-organic carbon partition 
coefficient (2,3,7,8-TCDD) 

0.00 0.00 0.04 
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Table A 5 Squared standardised regression coefficient (𝛽𝑖
2) and coefficient of determination (R2), first order sensitivity index 

(Si) total order sensitivity index (TSi) for 12 input parameters accounting for variance in computed PCB126 in blood, in year 

1998. Scores are ordered according to decreasing TSi. 

Input 

Squared 
standardised 
regression 
coefficient 

(𝜷𝒊
𝟐) 

First 
order 
sensitivity 
index (Si) 

Total 
Order 
Sensitivity 
Index 
(TSi) 

 R2 = 0.71  

Lipid fraction of invertebrate (Tapes philippinarum) 0.18 0.20 0.28 

Fraction of assimilated food (Tapes philippinarum) 0.14 0.15 0.22 

Variability in the bodyweight (Man) 0.09 0.10 0.16 

Tissue:blood partition coefficients (PCB 126) (Liver) 0.14 0.10 0.16 

Lipid fraction of invertebrate (Zooplankton) 0.04 0.08 0.15 

Metabolic half-life of chemicals (PCB126) 0.03 0.05 0.12 

Water-organic carbon partition coefficient (PCB126) 0.03 0.03 0.11 

Water-layer diffusion resistance for uptake of chemicals 
from food 

0.00 0.04 0.11 

Invertebrate age at maturity (Tapes philippinarum) 0.02 0.02 0.07 

Food transport coefficient (Tapes philippinarum) 0.02 0.02 0.07 

Lipid fraction of invertebrate (Phytoplankton) 0.01 0.01 0.05 

Allometric rate exponent (Tapes philippinarum) 0.01 0.01 0.04 

 


