Supplementary Material

Article title: Homogenization of the long instrumental daily temperature series in Padua, Italy (1725-2023)

Claudio Stefanini 1, Francesca Becherini 2,*, Antonio della Valle 3, and Dario Camuffo 3

- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, 30170 Venice Mestre, Italy; stefac88@gmail.com (C.S.)
- National Research Council-Institute of Polar Sciences, Via Torino 155, 30172 Venice Mestre, Italy (F.B.)
- ³ National Research Council-Institute of Atmospheric Sciences and Climate, Corso Stati Uniti 4, 35127 Padua, Italy; a.dellavalle@isac.cnr.it (A.d.V.); d.camuffo@isac.cnr.it (D.C.)
- * Correspondence: francesca.becherini@cnr.it

Table S1. Transfer functions from *PD_AM* of the period 1 Jan 1980 – 31 Dec 2022 to *PD_OB* for minimum temperature.

1980-2022	PD_AM (1 Jan 1980 – 31 Dec 2022) to PD_OB	
Month	Tmin (°C)	\mathbf{r}^2
January	$Y = 0.9177 \cdot X + 1.20$	0.957
February	$Y = 0.9240 \cdot X + 1.38$	0.959
March	$Y = 0.9242 \cdot X + 1.52$	0.956
April	$Y = 0.9491 \cdot X + 1.33$	0.960
May	$Y = 0.9696 \cdot X + 1.00$	0.962
June	$Y = 0.9935 \cdot X + 0.60$	0.964
July	$Y = 0.9848 \cdot X + 0.87$	0.953
August	$Y = 0.9777 \cdot X + 1.05$	0.960
September	$Y = 0.9333 \cdot X + 1.70$	0.960
October	$Y = 0.9225 \cdot X + 1.51$	0.975
November	$Y = 0.9172 \cdot X + 1.35$	0.975
December	$Y = 0.9197 \cdot X + 1.19$	0.964

Table S2. Transfer functions from *PD_AM* of the period 1 Jan 1980 – 31 Dec 2022 to *PD_OB* for maximum temperature.

1980-2022	PD_AM (1 Jan 1980 – 31 Dec 2022) to PD_OB	
Month	Tmax (°C)	r^2
January	$Y = 1.0112 \cdot X - 0.05$	0.980
February	$Y = 1.0090 \cdot X + 0.00$	0.986
March	$Y = 1.0272 \cdot X - 0.13$	0.987
April	$Y = 1.0377 \cdot X - 0.39$	0.983
May	$Y = 1.0265 \cdot X - 0.28$	0.986
June	$Y = 1.0090 \cdot X + 0.04$	0.984
July	$Y = 1.0055 \cdot X + 0.12$	0.980
August	$Y = 1.0022 \cdot X + 0.17$	0.982
September	$Y = 1.0163 \cdot X - 0.41$	0.986
October	$Y = 1.0055 \cdot X - 0.41$	0.987
November	$Y = 0.9946 \cdot X - 0.15$	0.983
December	$Y = 0.9986 \cdot X - 0.10$	0.977

Table S3. Transfer functions from *PD_Idrografico* of the period 1 Jan 1951 – 31 Dec 1977 to *PD_AM* for minimum temperature.

1951-1977	PD_Idrografico (1 Jan 1951 – 31 Dec 1977) to PD_AM		
Month	Tmin (°C)	r ²	
January	$Y = 0.9943 \cdot X - 0.38$	0.983	
February	$Y = 1.0069 \cdot X - 0.44$	0.988	
March	$Y = 1.0109 \cdot X - 0.59$	0.984	
April	$Y = 1.0119 \cdot X - 0.61$	0.971	
May	$Y = 1.0109 \cdot X - 0.62$	0.966	
June	$Y = 0.9889 \cdot X - 0.20$	0.966	
July	$Y = 0.9969 \cdot X - 0.32$	0.957	
August	$Y = 1.0049 \cdot X - 0.45$	0.957	
September	$Y = 1.0090 \cdot X - 0.61$	0.973	
October	$Y = 1.0175 \cdot X - 0.62$	0.982	
November	$Y = 1.0174 \cdot X - 0.42$	0.978	
December	$Y = 1.0078 \cdot X - 0.33$	0.982	

Table S4. Transfer functions from *PD_Idrografico* of the period 1 Jan 1951 – 31 Dec 1977 to *PD_AM* for maximum temperature.

1951-1977	PD_Idrografico (1 Jan 1951 – 31 Dec 1977) to PD_AM	
Month	Tmax (°C)	\mathbf{r}^2
January	$Y = 1.0044 \cdot X - 0.17$	0.984
February	$Y = 0.9978 \cdot X - 0.15$	0.989
March	$Y = 0.9926 \cdot X - 0.18$	0.989
April	$Y = 0.9861 \cdot X - 0.10$	0.984
May	$Y = 0.9892 \cdot X - 0.25$	0.979
June	$Y = 0.9882 \cdot X - 0.07$	0.981
July	$Y = 0.9993 \cdot X - 0.59$	0.975
August	$Y = 0.9980 \cdot X - 0.29$	0.973
September	$Y = 0.9971 \cdot X - 0.18$	0.980
October	$Y = 1.0017 \cdot X - 0.02$	0.985
November	$Y = 0.9920 \cdot X + 0.00$	0.983
December	$Y = 0.9911 \cdot X - 0.09$	0.985

Table S5. Transfer functions from $PD_Specola$ of the period 1 Jan 1920 – 31 Dec 1955 to $PD_Idrografico$ for minimum temperature.

1920-1955	PD_Specola (1 Jan 1920 – 31 Dec 1955) to PD_Idrografico	
Month	Tmin (°C)	r ²
January	$Y = 1.0149 \cdot X - 0.81$	0.940
February	$Y = 1.0289 \cdot X - 0.88$	0.946
March	$Y = 1.0537 \cdot X - 1.09$	0.938
April	$Y = 1.0265 \cdot X - 1.14$	0.940
May	$Y = 0.9766 \cdot X - 0.59$	0.950
June	$Y = 0.9712 \cdot X - 0.59$	0.937
July	$Y = 0.9576 \cdot X - 0.43$	0.931
August	$Y = 0.9671 \cdot X - 0.59$	0.931
September	$Y = 0.9793 \cdot X - 0.78$	0.945
October	$Y = 1.0187 \cdot X - 1.27$	0.940
November	$Y = 1.0275 \cdot X - 1.04$	0.949
December	$Y = 1.0232 \cdot X - 0.73$	0.954

Table S6. Transfer functions from *PD_Specola* of the period 1 Jan 1920 – 31 Dec 1955 to *PD_Idrografico* for maximum temperature.

1920-1955	PD_Specola (1 Jan 1920 – 31 Dec 1955) to PD_Idrografico		
Month	Tmax (°C)	r ²	
January	$Y = 1.0398 \cdot X + 0.41$	0.945	
February	$Y = 1.0375 \cdot X + 0.78$	0.948	
March	$Y = 1.0474 \cdot X + 0.69$	0.964	
April	$Y = 1.0219 \cdot X + 0.88$	0.969	
May	$Y = 0.9974 \cdot X + 1.11$	0.975	
June	$Y = 0.9635 \cdot X + 1.76$	0.959	
July	$Y = 0.9900 \cdot X + 1.19$	0.960	
August	$Y = 0.9993 \cdot X + 1.25$	0.961	
September	$Y = 1.0125 \cdot X + 1.05$	0.971	
October	$Y = 1.0361 \cdot X + 0.57$	0.955	
November	$Y = 1.0094 \cdot X + 0.67$	0.939	
December	$Y = 0.9976 \cdot X + 0.46$	0.963	

Uncertainties estimation

Over 1725-1773, three types of errors have been considered:

- 1) Observation errors (σ_1). These errors were evaluated in Camuffo and Bertolin 2012 [4]. Sources of error related to time transformation, sampling made at different times, conversion from original temperature units to °C, calibration and drift of the thermometer, building and solar beams influence, were corrected and discussed in previous works [1,5,6,7].
- 2) Propagation errors (σ_2). These errors are related to the transfer functions which homogenize the time series. Winter has the largest errors while summer has the lowest values.
- 3) Reanalysis errors (σ_3). These errors are linked to the uncertainties associated to the ModE-RA reconstructions for the pixel nearest to Padua. Errors in summer are slightly higher than in winter.

The total standard errors (σ) are given by:

$$\sigma = \sqrt{\sum_{i=1}^{3} \sigma_i^2}$$

All the uncertainties are reported in Table S7.

Table S7. Daily mean temperature uncertainties.

Period		Observation errors	Propagation errors	Reanalysis errors	Total error
	1 enou	G 1	G 2	σ 3	σ
	1725-1739	0.6°C	1.0-1.3°C	0.1°C	1.2-1.5°C
	1740-1768	0.3°C	1.0-1.3°C	0.1°C	1.1-1.4°C
	1769-1773	0.3°C	1.0-1.3°C	0.1-0.2°C	1.1-1.4°C