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Abstract

Smart contracts have played a pivotal role in the evolution of blockchains and Decentralized Applications (DApps). As DApps
continue to gain widespread adoption, multiple smart contract languages have been and are being made available to developers,
each with its distinctive features, strengths, and weaknesses. In this paper, we examine the smart contract languages used in major
blockchain platforms, with the goal of providing a comprehensive assessment of their main properties. Our analysis targets the
programming languages rather than the underlying architecture: as a result, while we do consider the interplay between language
design and blockchain model, our main focus remains on language-specific features such as usability, programming style, safety
and security. To conduct our assessment, we propose an original benchmark which encompasses a wide, yet manageable, spectrum
of key use cases that cut across all the smart contract languages under examination.

Keywords: smart contracts, blockchain, decentralized applications, cryptocurrencies, programming languages

1. Introduction

Smart contracts have played a pivotal role in the evolution
of blockchain technology, paving the way for the emergence of
the new paradigm of Decentralized Applications (DApps). As
the DApps continue to gain popularity and become pervasive,
the complexity of their business logic and the distributed, often
open, nature of the underlying platforms over which they exe-
cute make their development an increasingly challenging task.
In this article, we review the current advances in smart contract
languages and assess them to gain fresh insights into their de-
sign principles and the impact on the programming practices
they convey. Our analysis targets the programming languages
rather than the underlying architectures, acknowledging that the
design of robust smart contract languages is a prerequisite for a
principled development of reliable and secure DApps.

Methodology We start with an analysis of the tiered structure
of blockchain platforms: our goal here is to single out the key
architectural choices that affect the design and implementation
of smart contracts. We then analyse and compare a selection
of mainstream smart contract languages, based on an original
benchmark we have developed to encompass a wide spectrum
of key real-world DApp use cases [1].

To carry out our comparative analysis, we isolate six paradig-
matic smart contract languages and their underlying blockchains
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– Solidity on Ethereum, Rust on Solana, Aiken on Cardano,
(Py)TEAL on Algorand, Move on Aptos, and SmartPy on Tezos
– as representatives of the permissionless platforms that have
become mainstream and have gained widespread adoption in
the development of DApps. While some of these platforms ex-
ist in different incarnations – e.g. Vyper is an alternative to So-
lidity on Ethereum, as Ligo is to SmartPy on Tezos and Plutus
to Aiken on Cardano – the results of our analysis remain largely
consistent across these alternatives. In fact, languages operat-
ing on the same platform generally exhibit the same relevant
properties relative to the features we target in our assessment,
namely security, code readability, and usability.

The focus of our assessment is permissionless blockchains.
Permissioned blockchains, in turn, are out of our present inter-
ests, as they usually come with general-purpose programming
languages in which all the blockchain-specific features are man-
aged within ad-hoc libraries that interact with the underlying
blockchain consensus layer [2].

Main contributions Several analyses of blockchain platforms
and smart contract languages have appeared in the recent lit-
erature (cf. Section 5). One of the distinctive features of our
present endeavor, one which sets it apart from previous exper-
iments, is the hands-on nature of our experience with the use
cases developed for benchmarking smart contracts. The bench-
mark itself, “Rosetta Smart Contracts” [1], constitutes a major
contribution, in that it encompasses a representative selection
of common cases in DApp development that provides a smart
contract chrestomathy, the initial core of a standard test bed
for a qualitative assessment of current and future smart con-
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tract languages (and platforms). Experimenting with the imple-
mentation of the use cases across the different languages proves
very effective to enhance the understanding of the challenges in
smart contract design, and of how such design is influenced by
the tiered structure of the underlying blockchain. Specifically,
we identify the choices made at the contract layer (as opposed
to the lower, consensus layer) as the most influential for the
design and the relevant properties of the overlying smart con-
tract languages. At the contract layer, the blockchain is best
understood as an asset-exchange state machine, where trans-
actions activated by smart contract rules contribute to a state
transition by either creating new assets or exchanging assets
among users. Based on this view, we propose a categorization
of smart contract languages based on the distinction between
the two main models incarnating an asset-exchange state ma-
chine: the account-based model and the UTXO model. This
perspective sheds new light on the interplay between the block-
chain data and computational models on the one side, and the
design principles of smart contracts on the other side.

Our analysis also emphasizes the relevance of adequate lan-
guage support for the key aspects of smart contract design: as-
sets management, contract-to-contract interactions, and costs.
Specifically, tailored type-level abstractions for creating, ex-
changing and operating with assets are a fundamental ingre-
dient in preventing common errors and vulnerabilities such as
asset loss, double spending, or unauthorized transfers. On a
different, but related account, native support for certain func-
tionalities of the underlying platform (e.g., custom tokens) is
pivotal for key properties in security as well as in efficiency.

Structure of the paper We start in Section 2 with an overview
of smart contract platforms. Besides serving to set a common
terminology for the analysis, this section also highlights how
the basic choices at the contract layer influence smart contracts
development, security and performance. We demonstrate this
by discussing the (pseudo-code) implementation of a common
use case in the account-based model (both in its stateful and
stateless incarnations) and for the UTXO model. In Section 3
we take a brief tour of the six smart contract languages in our
selection, discussing their main features. The core of the pa-
per is Section 4, where we develop our hands-on comparative
analysis. In Section 5 we contextualise our contribution in the
scientific literature. Finally, in Section 6 we conclude with a
discussion of the key insights derived by our analysis.

2. Smart contracts on blockchains

Blockchain smart contracts are best understood as collec-
tions of executable rules that are triggered by user transactions
to activate the exchange of assets and other forms of interaction
between users. The underlying architecture is a tiered structure
comprising two main layers1 both of which influence the way

1Blockchains are typically described as comprising more layers, including,
from the bottom up, network, consensus, data and application [3]. The two-tier
representation we adopt allows us to isolate the aspects that are relevant to our
present focus on smart contracts and smart contract languages.

Figure 1: Life cycle of transactions. The blue, green and red boxes represent,
respectively, the users submitting transactions, the networking nodes and the
consensus nodes of a blockchain. In section 1 of the figure, the users create
transactions and transmit them to some networking node (NN); the networking
nodes, in turn, run a gossiping protocol to share the knowledge of the received
transactions. The mempool (dashed green container) is a distributed data struc-
ture that represents this shared knowledge of transactions. In section 2, we see
the consensus nodes (CN) collect the transactions from the mempool, propose
blocks of transactions (the yellow boxes), and gossip them to the other con-
sensus nodes. Section 3 shows the blockchain extended with the new block
selected by the consensus nodes.

smart contracts are programmed, their efficiency and the secu-
rity properties they convey. Below, we outline the key aspects
of the design of smart contract languages in relation to the dis-
tinguishing features of this layered architecture.

2.1. The Consensus layer
The consensus layer rests on the data and network services

provided by the underlying infrastructure and sets the rules for
participation in the blockchain platform. The rules vary from
platform to platform, but generally include a protocol for prop-
agating transactions across the networking nodes, and a con-
sensus protocol for ordering the transactions and grouping them
into blocks. In the transaction gossiping protocol (part 1 of Fig-
ure 1), the networking nodes broadcast the transactions they re-
ceived from users, collecting them into a distributed data struc-
ture (called mempool).2 In the consensus protocol (part 2), the
nodes select a set of transactions from the mempool, and order it
into a block that they propose to the other consensus nodes. The
consensus nodes then run a protocol to choose, among the pro-
posed blocks, which one will be the next block in the sequence
of blocks constructed so far — the so-called blockchain. Once
the consensus nodes reach an agreement on one of the proposed
blocks, the chosen block is cryptographically linked to the pre-
vious ones (e.g., the new block contains the hash of the previous
one), effectively making it part of the blockchain (part 3).

At the consensus layer, the blockchain can be seen as a
global state machine whose state (replicated at all consensus

2A few blockchain platforms (e.g., Hedera and IOTA) deviate from this de-
sign pattern, avoiding the transaction mempool.
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nodes) is the blockchain, and the state transitions coincide with
(the steps that contribute to) the additions of new blocks.

2.1.1. Key properties and incentives
The consensus layer must guarantee three key properties:

safety (honest nodes have the same view of the blockchain),
liveness (new transactions are regularly added to the blockchain),
and finality (the transactions added to the blockchain are never
reverted). In permissionless blockchains, our focus in the present
paper, these properties must be enforced without assuming any
specific notion of trust among nodes, except that the majority
of resources (computational or financial) is controlled by ra-
tional nodes that participate in the protocols for profit. Conse-
quently, the consensus protocols must be resistant to Sybil at-
tacks, making sure that artificially crafting new nodes does not
give more than a negligible advantage to the adversary. Such at-
tacks are mitigated by providing economic incentives to honest
nodes that play by the rules. In addition to block rewards, these
incentives come in the form of fees that depend on various fac-
tors, e.g. the amount of work needed to execute a transaction,
the size of the allocated storage, and the pace at which a transac-
tion is included in a block. To avoid incurring higher costs than
needed, developers must adopt design patterns that reduce the
amount of on-line computations and on-chain storage in favour
of their off-chain counterparts.

2.1.2. Transaction ordering
Most consensus protocols leave the participant nodes free

to choose which transactions from the mempool to include in
a block, and in which order. As a result, such protocols pro-
vide no guarantee of a fair ordering [4] on how transactions are
processed. This, in turn, may open the door to attacks against
contracts whose logic depends on the order in which their trig-
gering transactions are processed: e.g., a user may send a trans-
action to reveal the solution to a bounty contract, while an-
other user front-runs that transaction to win the bounty. Some
blockchain platforms are systematically targeted by these at-
tacks, which have detrimental effects on decentralization, trans-
parency, and trustworthiness [5, 6]. From the point of view of
developers, transaction-order dependence could be mitigated,
in principle, by crafting contracts so that any transaction can be
executed in exactly one state. In practice, doing so would create
an unacceptable congestion effect in high-bandwidth contracts,
like e.g. those used in DeFi. More effective forms of mitigation
are possible through ad-hoc protocols [7].

2.2. The Contract layer

The contract layer sits on top of the consensus layer and
hosts the execution environment for smart contracts. Whereas
at the consensus layer we see the blockchain as a state ma-
chine whose state transitions correspond to the additions of new
blocks, at the contract layer what we observe is the execution
of each transaction, i.e. the smart contract rules it activates and
their interaction with the environment. As a result, though smart
contracts may be programmed to perform arbitrary tasks, espe-
cially in Turing-complete languages, at the contract layer the

blockchain is best understood as an asset-exchange state ma-
chine in which the state keeps track of the asset balance for each
user, and every transaction contributes to a state transition by
either creating new assets or exchanging existing assets among
users. Smart contracts and smart contract languages may be
classified accordingly, based on the model they adopt for repre-
senting the balance state and the accounting of assets.

2.2.1. Accounting models
Two main models have emerged so far: account-based and

UTXO models.3 The former was first introduced by Ethereum
and then adopted or revisited by other mainstream blockchains,
including e.g. Solana, Avalanche C-Chain, Aptos, Hedera, Al-
gorand and Tezos. The latter was introduced by Bitcoin, and
then extended by Cardano and IOTA.

Account-based model In the account-based model, the block-
chain state stores the deployed contracts and keeps track of the
asset balance (henceforth the balance state) as a map that asso-
ciates each account with the amount of assets the account owns.
Accounts come in two types: user accounts and contract ac-
counts, each equipped with a balance. Transactions update the
balance state by either deploying a new (user or contract) ac-
count or changing the account-balance map: an asset-transfer
transaction is enabled only if the sender account owns all the
assets to be transferred. In general, in the account-based model
a transaction specifies (i) the users who have signed the trans-
action, (ii) the receiver account (in case it is a contract account,
the transaction includes the function to be invoked and its ar-
guments), (iii) the amounts of assets to be transferred from the
signers to the receiver, and (iv) the transaction fee.

To illustrate, a Bank contract handling deposits and with-
draws would be structured as in the following pseudo-code:

contract Bank {
var accounts // map (user => asset )
deposit () {

expect [k]= tx. signed // tx is signed by k
v = tx.from(k) // tokens sent to contract
accounts [k]+=v // trace transfer

}
withdraw (amnt) {

expect [k]= tx. signed
require accounts [k]>= amnt
send(amnt ,k) // transfer to k
accounts [k]-= amnt // trace transfer

}
getTotalBalance () {

return balance // contract balance
}

}

The contract uses the local (persistent) accounts variable, a
key-value map that keeps track of the amounts deposited and
withdrawn: this map provides the code-level representation cor-
responding to the underlying cryptocurrency balances associ-
ated with the Bank contract and its users’ accounts. Once the

3Given that there appears to be, as yet, no standard terminology for these
concepts, we adopt naming schemes that we believe are best suited to render the
underlying concepts and help grasp the key features of the existing platforms.
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contract is created, the deposit and withdraw actions oper-
ate at two levels: on the accounts map and on the underly-
ing balances of the accounts involved in the transaction. The
accounts map is updated explicitly by the contract code, while
the underlying balances are updated implicitly by the runtime.
A user A willing to deposit cryptocurrency tokens may do so by
signing a transaction with receiver Bank that invokes deposit.
Executing the action checks that the amount is authorized by
the signer, automatically subtracts the specified amount of to-
kens from A’s account (assuming that there are enough), and
adds an equal amount to the balance of the Bank account (noted
balance in the pseudo-code). The withdraw method, in turn,
allows anyone to withdraw from the Bank, provided that they
have previously deposited enough tokens. If so, send(amnt,k)
removes amnt tokens from the contract balance and adds them
to the balance of the signer’s account, updating the accounts
map accordingly.

UTXO model Unlike the account-based model, the UTXO
model makes no reference to any explicit notion of account bal-
ance in its representation of the contract-level blockchain state.
Instead, the balance for each user is traced implicitly by the in-
puts and outputs carried along within the executed transactions.
Transaction outputs include an amount of assets and a script
that specifies the spending condition for these assets, i.e. the
condition stating how they can be redeemed by (i.e. unlocked
to be transferred to) another transaction. Transaction inputs, in
turn, are references to unspent (i.e. yet to be transferred) outputs
of previous transactions, and provide data and the witnesses to
unlock (i.e. validate) the spending conditions of the referenced
output. In other words, each new transaction spends outputs
of previous transactions, and produces new outputs that can be
consumed by future transactions. Each unspent output can only
be consumed once, as a whole, by exactly one input. Then,
the blockchain state is encoded as the set of unspent transaction
outputs: the balance for each user is the sum of all the unspent
outputs within the transactions that can be redeemed by the user
(i.e. those directed to the public keys the user controls).

To illustrate, the transaction below has a single unspent out-
put holding one token, noted 1:T. Its script requires the redeem-
ing transaction (rtx) to include A’s signature in its signers list:

T1

· · ·

out[0]:
script = A in rtx.signed
value = 1:T

To spend T1’s single output (noted T1.out[0]), a redeem-
ing transaction must refer to T1 from its inputs and validate the
script by having A as (one of) its signers. This is accomplished
by the transaction T2 below:

T2

in[0]:
out = T1.out[0]

signed = [A]
out[0]:

script = owner in rtx.signed and rtx.out[0].script == script and rtx.out[0].value == value
data = {owner:A}
value = 1:T

T2 is signed by A and its script checks that (i) the redeeming
transaction is signed by the user stored in the owner field of the
current transaction; (ii) the script and the value in the redeem-
ing transaction are the same as in T2. Note that, although any
transaction redeeming T2 must preserve its script and value, it
can change the owner. In a sense, the script implements a non-
fungible token (NFT): to change the ownership of the NFT, the
current owner must spend the output with a new transaction
(signed by herself) that specifies the new owner.

Account-based vs. UTXO We can compare the two account-
ing models along two main dimensions: (i) the design patterns
induced by their representation of the contract-level state, and
(ii) their interaction with the underlying consensus protocols.

At the design level, the account-based model is typically
perceived as more intuitive and friendly, as it rests on program-
ming concepts that are familiar to developers. Simply, contracts
are standalone modules collecting executable services to be in-
voked by the users via transactions that operate on the assets
kept in their accounts. In the UTXO model, instead, assets and
contracts are interdependent, the latter acting as guards for the
former, both embedded within transactions with no explicit ref-
erence to any notion of user account. In the simplest incarna-
tions of the UTXO model (such as the one in the previous ex-
ample), each unspent output is managed by the associated script
in the transaction. More complex scripts are also at the avail of
programmer, to express transactions that consume multiple un-
spent outputs and create multiple new outputs. Still, the result-
ing programming practice remains somewhat cumbersome (cf.
Section 2.3 for a comparison on a concrete example, and Sec-
tion 4.2 for a discussion of actual smart contract languages).

As to the interaction with the underlying consensus layer,
the two models have trade-offs. On the one hand, UTXO mod-
els are exposed to liveness failures, as triggering a transaction
may get stuck because all the referenced UTXOs are spent by
other transactions. The resulting UTXO congestion effect, oc-
curring when multiple transactions try to spend the same out-
put, represents a non-trivial challenge for developers, especially
for high-bandwidth contracts such as, e.g., Decentralized Fi-
nance (DeFi) protocols [8, 9]. On the other hand, the account-
based model appears weaker in that it is exposed to transaction-
ordering attacks. As we said earlier (cf. Section 2.1.2), given
that the balance state is updated only when transactions are
committed, account-based models leave transaction senders with
no means to predict whether, when and in which balance state
their transactions are executed. The resulting effect, known as
transaction-ordering dependence, is troublesome as it opens
the door to a variety of security attacks [10]. In blockchains
where the consensus protocol does not guarantee fair transac-
tion ordering, such attacks are carried out systematically by
colluding consensus nodes, which leverage the economic incen-
tives of contracts to extract value from user transactions [5, 6].
A further class of attacks exploit the dependency on transaction
ordering to alter the contract execution flow and, consequently,
the transaction fees. In the UTXO model, instead, a transaction
can be executed in exactly one state, given by the UTXOs in its
inputs. As a result, UTXO scripts do not have any dependency
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on transaction ordering, nor do they incur in attacks exploiting
transaction fees.

2.2.2. Contract storage models
While the choice of the accounting model is certainly the

classification dimension for contract languages, another aspect
that is worth emphasizing is the way that smart contract lan-
guages account for a notion of persistent contract state. Smart
contracts often require some kind of memory to keep track of
data and information that should persist across multiple execu-
tions. In programming language jargon that memory would be
called state, but to avoid confusion with other notions of block-
chain state we refer to it as (contract) storage. Account-based
models typically encompass stateful contracts, which encapsu-
late the storage directly with themselves as the accounts map
in the Bank contract. Notable exceptions are Aptos and Solana,
in which the contract storage is held in separate data structures
(e.g., accounts) and referenced from the contract. In UTXO
models, instead, contracts are by default stateless scripts that
are discarded once their associated output is spent. A state-
ful form of UTXO contract may still be accounted for, how-
ever, by using the transaction fields as storage, and requiring
the spending and redeeming transactions to contain the same
contract with updated data in transaction fields (cf. the UTXO
version of the bet contract in Section 2.3)

2.3. Exemplifying smart contracts at work: a bet contract
We conclude this overview with a more extensive example

that illustrates the different design patterns in the account-based
and UTXO models. We use again pseudo-code to show the
core concepts and stay away from the specific features of the
different blockchains and contract languages.

The contract involves two players who can join the bet by
depositing 1 unit of token T each. When the players join, they
choose an oracle who will determine the winner, and set a dead-
line to close the bet 1000 blocks after the one where the join oc-
curred, at the latest. When the oracle announces the winner, the
winner can redeem the whole pot of 2:T; if instead the oracle
does not choose the winner by the deadline, then both players
can redeem their bets, withdrawing 1:T each.

Figure 2 shows the stateful version of the account-based
contract. The stateless version in Figure 3 follows the same
design with the difference that the contract variables must be
stored in a separate account, owned by the contract, and ac-
cessed from within the contract with a reference to that account
that is passed as an argument to all the contract methods.

The UTXO contract, in Figures 4 and 5, draws on very dif-
ferent design principles. The Tinit transaction constructs the
contract script UTXO_Bet, which is then passed unchanged to
Ttjoin along with an updated data field. The transactions Tjoin,
Twin and Ttimeout in Figure 4, in turn. act as the activating ac-
tions for the contract rules corresponding to the account-based
methods. Finally, TA and TB represent the players’ bets. The
script UTXO_Bet ensures that (i) the contract is preserved when
spending Tinit with Tjoin, (ii) the storage is updated correctly,
(iii) and the terminal transactions Twin and Ttimeout correctly
transfer the funds from the contract to the players.

contract STFUL_ACCT_Bet {
var p1 ,p2 ,oracle , deadline ; // storage
join (o) {

require balance ==0:T // init condition
expect [k1 ,k2 ]= tx. signed
require tx.from(k1)==1:T // get 1:T from k1

&& tx.from(k2)==1:T // get 1:T from k2
// at this point , balance ==2:T
p1=k1; p2=k2; oracle =o
deadline = blockH +1000 // block height + 1000

}
win( winner ) {

expect [o]= tx. signed
require o== oracle && balance ==2:T
require winner == p1 || winner == p2
send (2:T, winner )

}
timeout () {

require blockH > deadline && balance ==2:T
send (1:T,p1); send (1:T,p2)

}

Figure 2: Account-based contract: stateful code. The players start the contract
by calling join, which requires them to deposit 1:T each and to set an oracle.
The first condition ensures that join is the first action triggered: the (system
controlled) variable balance is initialized to 0 and automatically updated by
the transaction (referenced to by tx) invoking the join method. The expect
clause requires that the transaction is signed by exactly two keys, and binds
them to k1 and k2. The next condition requires that each player deposits 1:T
in the contract along with the call: namely, executing join removes 1:T from
the accounts of both players, and adds 2:T to the contract balance. Finally, the
players and the oracle identifiers are recorded in the contract storage together
with the deadline. The win action transfers 2:T to the winner, chosen between
the two players by the oracle, who is the only possible caller. Both players can
call timeout after the deadline to redeem their bets.

contract STLESS_ACCT_Bet {
join (s,o) {

require owns( STLESS_ACCT_Bet ,s)
require s. balance ==0:T
expect [k1 ,k2 ]= tx. signed
send(k1 ,1:T,s); send(k2 ,1:T,s)
s.p1=k1; s.p2=k2; s. oracle =o
s. deadline = blockH +1000

}
win(s, winner ) {

require owns( STLESS_ACCT_Bet ,s)
expect [o]= tx. signed
require o==s. oracle && s. balance ==2:T
require winner ==s.p1 || winner ==s.p2
send(s ,2:T, winner )

}
timeout (s) {

require owns( STLESS_ACCT_Bet ,s)
require blockH >s. deadline && s. balance ==2:T
send(s ,1:T,s.p1); send(s ,1:T,s.p2)

}
}

Figure 3: Account-based contract: stateless code. Each method takes an extra
parameter s, that is an account to store the contract state: deploying an instance
of the contract requires to generate a new account to store its state. The con-
dition owns(STLESS_ACCT_Bet,s) ensures that the store is controlled by the
contract: if not, it would be easy for an adversary to execute a contract action
in an illegal state, subverting the contract rules. Unlike in the stateful version
of the contract, inbound tokens are not passed along with the contract call, but
are rendered as explicit send actions. The owners of the accounts where these
tokens are taken from must authorize the transfer, by signing the transaction (as
done in the join method).
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TA
· · ·

out[0]:
script = A in rtx.signed
value = 1:T

Tinit
· · ·

out[0]:
script = UTXO_Bet
value = 0:T

TB
· · ·

out[0]:
script = B in rtx.signed
value = 1:T

Tjoin
in[0]: in[1]: in[2]:

out = Tinit.out[0] out = TA .out[0] out = TB .out[0]
wit = {op:"join", p1:A, p2:B, oracle:O, winner:−} wit = {} wit = {}

signed = [A, B]
out[0]:

script = UTXO_Bet
data = {p1:A, p2:B, oracle:O, deadline:h}
value = 2:T

Twin
in[0]:

out = Tjoin.out[0]
wit = {op:"win", · · · , winner:A}

signed = [O]
out[0]:

script = A in rtx.signed
value = 2:T

Ttimeout
in[0]:

out = Tjoin.out[0]
wit = {op:"timeout", · · · }

signed = []
out[0]: out[1]:

script = A in rtx.signed script = B in rtx.signed
value = 1:T value = 1:T

Figure 4: Transactions for the UTXO-based bet contract. Tinit creates the
contract: the script UTXO_Bet is specified in Figure 5. Players join the con-
tract by sending Tjoin, which spends Tinit (preserving its script), and the two
1:T bets provided by the players. Note that both players must sign Tjoin, and
so they must agree on the values of the witnesses p1, p2 and oracle. Tjoin
records these witnesses in its storage, as well as the deadline. Tjoin can be
spent either by Twin or Ttimeout, which terminate the contract. Twin must be
signed by the oracle, and can be spent only by the winner set in the witnesses.
In the figure, we assume that the winner is A, and accordingly the script of Twin
requires that the redeeming transaction (rtx) is signed by A. Ttimeout requires
no signatures, and it splits 2:T in two outputs of 1:T each, that can be spent by
the two players. The script UTXOBet in Tjoin ensures that the transactions Twin
and Ttimeout are constructed according to these rules.

2.4. Cross-chain interactions

DApps can span across multiple blockchains, making it pos-
sible the exchange of different native crypto-assets [11, 12, 13].
In general, cross-chain interactions presuppose a communica-
tion layer (e.g., a decentralized bridge systems), and a consensus-
agnostic communication protocol (e.g., CCIP from Chainlink).
Cross-chain interactions are important, but clearly out of scope
for our comparison of smart contract languages. That said, a
special mention is in order for native cross-chain architectures,
as they may be seen as an alternative to smart contracts in the
DApps paradigm. In fact, such architectures are designed to
host multiple, application-specific blockchains, each tailored
for a given use case, and communicating through specific proto-
cols. In other words, having multiple blockchains each running
a single contract is as an alternative to deploying multiple con-
tracts on a single blockchain.

Notable cases of native cross-chain architectures include
Cosmos and Polkadot. In Cosmos, application-specific block-
chains are called Appchains, and the interaction among differ-
ent contracts is rendered as inter-chain communication over the
IBC protocol. The protocol manages specific operations such
as the transfer of tokens both between accounts in the same Ap-
pchain and across accounts operating on different Appchains.
Appchains may be programmed in GoLang (a general-purpose
programming language), and CosmWasm (a Rust derivative).
Communication with blockchains external to Cosmos relies on
bridges that support IBC (such as Gravity). In Polkadot, the

contract UTXO_Bet { // Stateful UTXO - based
expect [op ,p1 ,p2 ,oracle , winner ]= rtx.in [0]. wit
if op ==" join ":

// rtx must be signed by p1 ,p2 to redeem 1:T
require rtx. signed ==[p1 ,p2]
require value ==0:T
expect [ri0 ,ri1 ,ri2 ]= rtx.in
require ri0 == ctxo // Tjoin .in [0]= Tinit .out [0]
require ri1. value ==1:T // p1 ’s bet
require ri2. value ==1:T // p2 ’s bet
expect [ro0 ]= rtx.out // Tjoin has 1 output
require ro0. script == script // preserve script
require ro0. value ==2:T
require ro0.data.p1 == p1 // set p1
require ro0.data.p2 == p2 // set p2
require ro0.data. oracle == oracle // set oracle
require ro0.data. deadline == blockH +1000

elif op ==" win ":
require rtx. signed ==[ data. oracle ]
require len rtx.in ==1 // Twin has 1 input
require winner in [data.p1 ,data.p2]
expect [ro0 ]= rtx.out
require ro0. script =="{ winner } in rtx. signed "
require ro0. value ==2:T

elif op ==" timeout ":
require blockH >data. deadline
require len rtx.in ==1 // Ttimeout has 1 input
expect [ro0 ,ro1 ]= rtx.out // ... and 2 outputs
require ro0. script =="{ data.p1} in rtx. signed "
require ro0. value ==1:T
require ro1. script =="{ data.p2} in rtx. signed "
require ro1. value ==1:T

else require false
}

Figure 5: Pseudocode of a stateful UTXO-based bet contract. The spending
condition is a switch between three cases, corresponding to the transactions
Tjoin, Twin and Ttimeout. Note that only the first case requires the script to
be preserved, while the others define the scripts of the redeeming transactions
as simple a signature verification, terminating the contract and transferring the
funds to the players (2:T to the winner for Twin, and 1:T each for Ttimeout).

application-specific blockchains are called parachains, imple-
mented through the Substrate framework with its native smart
contract language ink! (again a Rust derivative). Parachains
communicate via the Cross-Consensus Messaging (XCM) lan-
guage over the transport layer provided by the Polkadot net-
work. XCM is designed to be used outside of Polkadot as well,
but requires the implementation of a dedicated bridge.

3. A tour of smart contract languages

We overview in this section the main features of our selec-
tion of smart contracts languages.

3.1. Solidity / Ethereum

Solidity is one of the first contract languages, dating back to
2014, and it is currently the main high-level contract language
for the blockchains that support the Ethereum Virtual Machine
(EVM), i.e. Ethereum, Avalanche C-Chain, and Hedera among
the others. Solidity contracts must be compiled to EVM byte-
code in order to be executed by the consensus nodes of these
blockchains.
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Solidity adheres to the account-based stateful model out-
lined in Section 2.2.1. Accounts are partitioned into user ac-
counts (a.k.a. Externally Owned Accounts, or EOAs) and con-
tract accounts, and are uniquely identified by an address. Con-
tracts, akin to classes in object-oriented languages, have meth-
ods to access and update the storage, which consists of the
contract balance and variables. Contract variables can record
fixed-size data as well as dynamic data structures like arrays
and key-value maps. Transactions are signed by a single EOA
and trigger contract calls, possibly transferring units of the na-
tive cryptocurrency (ETH) from the caller EOA to the contract.
The called contract, in turns, can trigger calls to other con-
tracts. Transactions can deploy new contracts; the same con-
tract code can be deployed multiple times, each instance hav-
ing its own address and storage. Control structures include un-
bounded loops and recursion, but in practice all computations
are bounded by the fee mechanism (see Section 4.8).

Solidity is statically typed, with types of variables and meth-
ods specified explicitly by the programmer. It features subtype
polymorphism and ad-hoc polymorphism. Some types support
type-safe implicit conversions; type-unsafe explicit conversions
lead to compile errors. The language has some type-unsafe
primitives (e.g., external function calls and inline assembly),
which require special care from the programmer [14, 15, 16].
Solidity supports multiple inheritance between contracts. Each
source file can define multiple contracts and import code from
external files. This allows the reuse of code components (li-
braries, interfaces, and contracts).

Because of its familiar JavaScript-like syntax and its proce-
dural programming style, Solidity is usually considered an easy
language to learn. However, it has a few design quirks that,
together with the inherent complexity of current DApps, have
deep implications on the security of smart contracts. We will
discuss some of them later in Section 4.

3.2. Rust / Solana
Rust is a general-purpose programming language, which

was adopted as the main smart contract language for Solana.
As for Solidity on Ethereum, also Rust must be compiled to
bytecode in order to be executed by Solana nodes.

Solana follows a stateless account-based model: contracts
take the form of procedures, without an associated state. There-
fore, any data these procedures interact with is stored within
separate accounts, supplied as parameters. Accounts are parti-
tioned into EOAs and contract accounts, but unlike Ethereum,
in Solana any EOA is owned by a contract account and can
store data associated to that contract account, which instead
only stores executable code and it is the only one with write
permission. In general, state updates are regulated by the prin-
ciples of ownership and holdership: the entity who knows the
private key is considered as the holder of the account, while
the owner (always a contract account) is the only one that can
modify the account data. Special pre-defined contract accounts
manage the creation of accounts, the transfer of native currency,
and the minting of custom tokens. While this design mandates
supplementary checks in the contract to ensure security, it also
enables the parallel processing of transactions. To this purpose,

transactions specify all the accounts whose data will be read
or written throughout their execution: in this way, the runtime
environment can detect when two transactions can be executed
concurrently: namely, if no transaction reads or writes parts
of the state that are written by the other transaction, then the
two transactions are parallelizable [17]. Whereas in Ethereum
a transaction represents a single contract call, in Solana a trans-
action can contain several calls, each of which may be related to
a distinct contract. These calls are carried out sequentially, and
the failure of any one of them results in discarding the changes
of the entire transaction. The maximum size of transactions is
limited to ∼1KB in order to bound the amount of calls.

Rust is statically typed: notably, its type system can stat-
ically detect bugs such as null-pointer dereference, which in-
stead lead to run-time errors in other programming languages
like C++. To do that, the type system rigorously tracks data
possession throughout the program, enabling it to operate with-
out a garbage collector by detecting memory allocations and
deallocations at compile time. The type system ensures that ref-
erences do not outlive the data they point to causing dangling
pointers and that data is not mutated unexpectedly.

Writing contracts directly in Rust poses several challenges
to developers, e.g.: (i) contracts must be encapsulated into a
single procedure, which must switch to the right part of code
depending on the parameters; (ii) the data structures exchanged
between the contract and its clients must be manually serial-
ized/deserialized; (iii) contracts must check that the accounts
passed as parameters carry the authorizations of the legitimate
holders and owners (see Section 4.4). To partially relieve de-
velopers from this bureaucracy, the Anchor framework offers
higher-level abstractions atop the raw Rust layer [18]. Anchor
allows developers to write contracts as sets of methods, and it
eliminates the need to manually encode data structures, specify-
ing the contract interface through an Interface Definition Lan-
guage. Additionally, Anchor automatically performs some of
the above-mentioned security checks, based on the types asso-
ciated with the accounts. A downside is a doubling of deploy-
ment fees compared to pure-Rust.

3.3. Aiken / Cardano
Cardano is currently the main smart contract platform fol-

lowing the UTXO model. Cardano extends the UTXO model
of Bitcoin in two directions [19]: it follows a stateful stor-
age model, allowing users to include arbitrary data in transac-
tion outputs, and it features a Turing-complete script language,
which overcomes the expressiveness limitations of Bitcoin con-
tracts [20]. Cardano consensus nodes execute scripts written in
Plutus Core, a low-level untyped lambda-calculus. Although
this language is Turing-complete, in practice computations are
bounded by the fee mechanism. There are a few high-level lan-
guages that compile into Plutus Core, both general-purpose and
DSLs. The first high-level contract language for Cardano was
Plutus Tx, a general-purpose typed functional language that is
a subset of Haskell. This allows Cardano developers to use
Haskell to code both the on-chain and off-chain parts of a de-
centralized application. A main advantage of this approach is
the guarantee of consistency between the two parts, e.g. a client
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will never pass values with the wrong type to the contract. A
disadvantage is that, when one is only interested in the on-chain
part, using this general framework may be unnecessarily com-
plex. Other languages supported by Cardano are focussed just
on the on-chain part: they include Marlowe (a domain-specific
language for financial contracts), Opshin, and Aiken.

Aiken, in particular, is a high-level language with a minimal
set of features for programming the on-chain part [21], Simi-
larly to Plutus Tx, Aiken is a functional language compiling to
Plutus Core. Aiken is used to write the spending conditions of
UTXO transactions, akin to the pseudo-code in Figure 5. This
involves checking all the parts of the transaction output that is
being spent, and parts of the spending transaction, including
its outputs, to ensure that the spending transaction represents a
valid update of the contract state. Consequently, programming
in Aiken (or any other Cardano languages) requires a paradigm
shift w.r.t. the other languages in our selection, which instead
support the procedural style. This has repercussions on code
readability and security (see Sections 4.2 to 4.4). Said that, the
language is strongly typed, featuring algebraic types and pat-
tern matching, parametric polymorphism, and recursive types.
Aiken features recursion, so preserving the (theoretical) Turing-
completeness of the underlying Plutus Core language. Aiken
also supports anonymous and higher-order functions.

3.4. (Py)TEAL / Algorand
Algorand is a blockchain platform launched in 2019, which

over the years has updated its smart contract capabilities sev-
eral times, passing from a simple model of stateless contracts
to Turing-powerful stateful contracts.

Algorand follows the stateful account-based model. Every
account (both user and contract) holds a balance of the native
cryptocurrency and of custom tokens, as well as data associated
to contracts. Unlike Ethereum, where the contract state is en-
tirely stored in a contract account, in Algorand it is distributed
across different components: a key-value storage associated to
the contract account, a key-value storage associated to user ac-
counts, and further keyed storage segments (called boxes), used
to overcome the strict size limits of the contract storage (just
8KB shared among a maximum of 64 key-value pairs).

The Algorand nodes execute a custom bytecode, which is
the compilation target of higher-level contract languages, using
TEAL as an intermediate assembly-like language. The TEAL
instruction set is similar to that of a stack-based machine, with
only a few abstractions over low-level details. E.g., function in-
vocations are performed via a call instruction rather than a plain
jump, and a separate call stack is used to store function argu-
ments and return values. Although this requires some stack ma-
nipulation to move arguments from the call stack to the operand
stack whenever needed, one can easily recover function argu-
ments at constant offsets in the call stack, rather than having
them buried deep in the operand stack. TEAL types are limited
to byte arrays and unsigned integers. The contract itself is also
able, when called, to generate so-called “inner” transactions,
which can transfer assets, call other contracts, and more.

To reduce the burden of directly writing TEAL bytecode,
a few higher-level languages and frameworks have been pro-

posed, e.g. PyTeal, Beaker, Tealish, TealScript, and PuyaPy.
Among them, the most widespread is the pairing PyTeal/Beaker,
a library of Python bindings through which one can write Python
code that produces TEAL bytecode at run-time. In this way,
programmers can use familiar higher-level constructs, like logi-
cal/arithmetic expressions, control flow, variables and key-value
maps, and functions. Overall, the resulting code is not too dis-
similar from the procedural-style code one could obtain e.g. in
Solidity. Still, some quirks remain about the handling of storage
and of inner transactions (see Section 4.2).

3.5. Move / Aptos

Move is a smart contract language inspired by Rust that has
been embedded into multiple blockchain platforms, including
Libra/Diem, Starcoin, Aptos and Sui. One of Move’s highlights
is its static type system based on linear types. Linear types en-
force the so-called must-move semantics, ensuring that tokens
(and resources in general) are never replicated or lost. This is
a major constraint when writing programs and has a number
of implications on the safety properties of the compiled code.
Even though linear typing does not prevent a programmer from
writing a wrong program in one way or another, it surely helps
in crafting correct implementations where illicit replication or
deletion of tokens is statically rejected.

Another highlight of Move is allegedly being chain-agnostic.
This is not entirely true though: each embedding must deliver a
porting of the language tailored to the platform’s peculiarities,
providing a custom framework and a standard library, as well as
applying a few tweaks to the language. In this section we delve
into Aptos, a direct successor of Libra/Diem (now dismissed).

The Move/Aptos programming model revolves around a few
key principles. Contracts take the form of modules, contain-
ing struct definitions and functions. Structs are the basis for
representing data structures, while functions establish the only
interface for module clients to create, access, or modify such
data structures. Struct fields can be accessed only from within
the module code, granting information hiding and comprehen-
sive control over the operations involving the datatypes therein
defined. Once created by a module function, the type system
treats structs as first-class resources that cannot be copied or
implicitly discarded, only permitting either movement between
program storage locations or passing around between function
calls. This discipline takes place fully at compile time and is en-
forced by linear types. Linearity checks can be disabled through
abilities: tagging a struct with the copy ability renders it a value
open to duplication, while the drop ability enables destruction
at the end of the scope.

Different Move variants offer distinct persistent storage rep-
resentations, aligning with the peculiarities of the underlying
platform. Aptos defines the global storage as a map from ac-
count addresses to resources encoded by a struct datatype. The
creation of a resource in the global storage is exclusive to the
contract signer, performed through a special language primi-
tive. Accessing and modifying resources is less restrictive: any-
one can request (borrow) a reference to a resource via the ac-
count address under which the resource is stored.
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Move/Aptos follow a stateless account-based model. Global
variables are not allowed unless constant, which implies that
modules are stateless at the language level. This affects how
contracts are implemented: all the relevant data, say the con-
tract state, must be stored using user-defined datatypes and even-
tually retrieved from the global storage.

Each time a contract is run, the address of the invoking user
account (the signer account) is passed as an argument with a
special type signer that guarantees that it is non-copiable and
it cannot be put into a user-defined struct datatype or saved on
the global storage. This design prevents a contract from per-
forming actions on behalf of other users than the current signer.
Such security measures have some drawbacks: for the same rea-
son why only the signer can write a new record on the global
storage, any contract involving multiple participants (e.g., auc-
tions, bets, games, etc.) must rely on explicit opt-in, implying
a voluntary choice to engage in a specific activity. This means
that each participant has to perform the first write operation;
then any participant can access data stored by other accounts
through reference borrowing.

3.6. SmartPy / Tezos
The Tezos blockchain features a few high-level contract lan-

guages, including Liquidity, Archetype, LIGO, and SmartPy.
Among them, the last two seem the most actively supported:
here we consider SmartPy, since its Python-like style lends it-
self to a more direct comparison with Algorand’s PyTeal.

Tezos follows the account-based stateful model. Its con-
sensus nodes execute low-level code written in Michelson, a
statically-typed, stack-based and Turing-complete bytecode lan-
guage. SmartPy, as the other Tezos high-level languages, must
be compiled into Michelson in order to be executed.

SmartPy exploits meta-programming on top of Python: i.e.,
SmartPy contracts are just (decorated) Python programs, which
are transformed into Michelson code by the SmartPy compiler.
Meta-programming allows developers to use the syntax and con-
trol structures of SmartPy match Python’s, as well as to use
Python libraries. The language is fully typed, with type in-
ference performed after a transformation into an intermediate
OCaml code (see Section 4.5). When unable to infer a datatype,
the SmartPy compiler generates an error and requires an ex-
plicit cast. Meta-programming decorators are used to specify
the contract interface, i.e. the set of its public functions, the
contract storage, and testing scenarios. Datatypes of the con-
tract storage do not correspond to the native Python datatypes,
but are defined through the SmartPy library. The deployment of
a SmartPy contract specifies the initial contract storage, which
is set via the contract constructor. Unlike Ethereuum, this ini-
tial storage is statically incorporated in the Michelson code, and
the contract cannot use external data (e.g., the caller’s address)
to initialize its storage. Contract code cannot contain externally
defined data, such as externally-defined contracts.

4. Comparative analysis

In this section we perform a comparative analysis of the
smart contract languages presented in Section 3. We outline

below the key elements of our comparison. A first, high-level
view is in Table 1, which classifies languages/platforms accord-
ing to the architectural aspects discussed in Section 2. A more
in-depth comparison is based on our hands-on experience on
developing a common benchmark of use cases. We describe
our benchmark in Section 4.1, and then in Sections 4.2 to 4.4
we exploit it to compare the programming styles of contract lan-
guages, their verbosity and readability, and the security impli-
cations of their design. Then, in Sections 4.5 and 4.6 we discuss
the role of the tool chain (compiler and static analyzers) in pre-
venting vulnerabilities and other loopholes. In Section 4.7 we
analyse the support for the integration of on-chain and off-chain
components. In Section 4.8 we compare the fee models of the
blockchain platforms. Finally, in Section 4.9 we reflect on our
experience in developing the benchmark, by discussing how the
availability of platform functionalities affects the development
of smart contracts. Table 5 summarises our assessment.

4.1. Smart contracts benchmark

The “Rosetta Smart Contracts” benchmark [1] is a special-
ization of Rosetta Code to the realm of smart contracts. It show-
cases the contract languages discussed in Section 3, using them
to implement a diversified class of use cases. Two main drivers
have influenced our choice of the use cases: first, to provide
a representative selection of common DApp use cases, such
as those in the Openzeppelin library for Ethereum; secondly,
to serve as an adequate test-bed for a comparative analysis of
the functionalities supported by the different smart contract lan-
guages and platforms.

The benchmark currently includes 21 use cases, whose im-
plementations are distributed across 151 source code files, with
a cumulative size of ∼900KB and ∼18K LoC. Table 2 enumer-
ates the use cases and the functionalities required to implement
them. These functionalities represent the basic features that are
provided by smart contract languages, possibly exploiting the
low-level primigtives made available by the underlying block-
chain platforms where the smart contracts are executed. To il-
lustrate, the Bet use case described in Section 4 requires the
following functionalities: (i) “native tokens”: the contract in-
volves transfers of native cryptocurrency (from the players to
the contract for the join action, and for the contract to the play-
ers for the win and timeout actions); (ii) “multisig transactions”:
the join action must be simultaneously authorized by both play-
ers; (iii) “time constraints”: the timeout action must be enabled
after a given deadline; (iv) “transaction revert”: some transac-
tions must be reverted when some conditions are not satisfied
(e.g., when the win action is not authorized by the oracle). As
shown later in Table 4, not all languages/platforms provide na-
tive support for all the functionalities listed in Table 2. When
that is the case, we resort to workarounds, possibly adapting
the specification of the use case (e.g., if multisig transactions
are not available, in the Bet contract we can split the join ac-
tion in two actions, one for each player). See Section 4.9 for
more details about these workarounds.
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Table 1: Features of the contract layer of some of the main smart contract platforms.

Platform Accounting model Contract storage Fees depend on . . . Main contract languages Programming style
Ethereum Account-based Stateful Tx computation Solidity Procedural

Solana Account-based Stateless Num. signers, Data size Rust Procedural
Cardano UTXO Stateful Tx size, Tx computation Plutus, Aiken Approval
Aptos Account-based Stateless Tx computation, Data size Move Procedural

Algorand Account-based Stateful Constant PyTeal Procedural
Tezos Account-based Stateful Tx computation, Data size SmartPy, Ligo Procedural

Table 2: Functionalities required by the use cases in the benchmark. Entries marked with 2 i denote functionalities that can be used to implement workarounds in
case the functionality marked with ✓i is not natively available in the given language/platform.
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Bet ✓ ✓ ✓ ✓
Simple transfer ✓ ✓
Token transfer ✓1 2 1 ✓ 2 1

HTLC ✓ ✓ ✓ ✓
Escrow ✓ ✓
Auction ✓ ✓ ✓ ✓
Crowdfund ✓ ✓ ✓ ✓
Vault ✓ ✓ ✓
Vesting ✓ ✓ ✓
Storage ✓
Simple wallet ✓ ✓
Price bet ✓ ✓ ✓
Payment splitter ✓ ✓ ✓ ✓
Lottery ✓ ✓ ✓ ✓1 ✓ 2 1 2 1

Const. prod. AMM ✓1 2 1 ✓ 2 1 ✓ ✓
Upgradeable proxy ✓1 ✓ 2 1 2 1

Factory ✓ ✓ ✓ ✓
Decentralized identity ✓ ✓ ✓
Editable NFT ✓1 2 1 ✓ 2 1

Anonymous data ✓ ✓ ✓
Atomic transactions ✓1 2 1 2 1 2 1 2 1 2 1

4.2. Comparison overview

Roughly, we can partition the smart contract languages pre-
sented in Section 3 into two classes, according to the program-
ming style they induce: the procedural style and the approval
style. The former class includes languages where the contract
reacts to transactions by updating its state and/or the ledger state
(possibly distributed across multiple accounts): Solidity, Rust,
Move and SmartPy all belong to this class. The latter includes
languages where the contract is expected to approve or discard
a single transaction or a group of transactions: Aiken belongs
to this class. TEAL/PyTeal follows a hybrid approach, support-
ing both styles. As we will see in Section 4.4, the programming
style is one of the factors that contribute to the security of con-
tracts, and it is strictly related to the level of abstraction pro-
vided by the language over the underlying blockchain platform.

Solidity and SmartPy are those that most closely follow
the procedural style: contracts have code (a set of procedures)
and a state that can be updated in reaction to procedure calls.
Despite the strong similarity between these two languages, im-

portant differences exist. A notable one lies in the interaction
with other contracts. In Solidity, a method f can call another
contract’s method g at any point, interrupting the execution of
f to start that of g. In SmartPy, instead, the execution of g takes
place only after the caller f has completed. This design choice
has repercussions on the programming style and on the secu-
rity: on the one hand, Solidity’s design leads to more natural
implementations (e.g., f calls an oracle g to get some value,
and then uses that value in its continuation), but on the other
hand it is a cause of attacks (see Section 4.4). Programming the
same behaviour in SmartPy requires g to callback the contract
of f after it has finished its execution, and store the return value
in the caller’s storage (which is somehow less natural).

Rust, either raw or using Anchor, while still adhering to
the procedural style, substantially departs from Solidity and
SmartPy. This is only in part explained by the stateless nature of
Solana, and by the additional checks on the accounts passed as
parameters that this model requires. Programming in raw Rust,
as discussed in Section 3.2, requires a careful and often verbose
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approach, increasing error-proneness due to the extensive use of
boilerplate code. Although these issues are partially mitigated
by the Anchor framework, Solana contracts are more verbose
than those in other account-based platforms (see Section 4.3).

Move, although still based on the stateless account-based
model, induces a unique procedural programming style, cen-
tered around linear types. Defining data types requires some
care: assets cannot be mixed with ordinary data within the same
struct, since a different treatment is needed. While integer val-
ues can be modified and updated like in common programming
languages, assets and resources in general cannot be modified,
copied or dropped and must be put into a non-copiable and non-
droppable wrapper type in order to be manipulated. Accord-
ing to our experience, making a Move program compile and
work properly can require a substantial effort, all the more so
when dealing with asset transfers: its strict type system puts the
developer on rigid rails; escaping such rails would likely lead
to compile-time errors. Similarly to Move, Rust also supports
ownership types (so enforcing the same strict discipline over the
copiability of datatypes). However the programming model im-
posed by Solana does not fully exploit the Rust’s complex type
system, sticking to a more conventional programming practice.
In particular, currency and assets are not represented by uncopi-
able/undroppable datatypes in Rust/Solana, and so their linear-
ity is not statically guaranteed by Rust’s type system, but by
run-time checks.

Cardano substantially differs from all the other platforms
discussed in this paper, being the only representative of the
UTXO model. First, the current contract state is recorded in
the current unspent transactions that encode the contract. Then,
performing a contract action means spending that transaction
with a new one that sets the new contract state: therefore, the
contract does not compute the new state (as in account-based
platforms), but it just verifies that the state in the redeeming
transaction is a correct update of the old one. This motivates
the paradigm switch from the procedural style to the approval
style. Aiken brings a purely functional flavour to the table,
making code overall robust thanks to strong types and data im-
mutability, albeit verbose and difficult to write for developers
trained in procedural programming paradigms. As noted in the
pseudo-code of the UTXO Bet contract in Figure 5, the con-
tract script must check several transaction fields, e.g. the data
fields where the contract state is stored. For instance, transfer-
ring a token from the contract to some address requires check-
ing that the spending transaction has some outputs with suitable
signature verification scripts. This workflow is more complex
and verbose than in the account-based model, where an explicit
call to some transfer primitive achieves the same goal. Ad-
mittedly, Aiken features the typical arsenal of constructs pro-
vided by functional languages, including the record update syn-
tax, which somewhat reduces possible errors when updating the
state. However, when the contract logic is complex, correct
state management turns out to be a cumbersome task and pro-
grammers may still introduce errors despite the robust and type-
safe design of Aiken. Unlike in account-based models, where
interactions between contracts can be rendered directly as con-
tract calls, in the UTXO model contract calls are not mean-

ingful. Indeed, calling a contract would require the caller to
perform a sort of “internal” transaction to trigger a computa-
tion step of the callee. Although these internal transactions are
not featured by Cardano, some forms of composability between
contracts are possible, e.g. by multi-input transactions that force
dependencies between the scripts of the spent outputs. More so-
phisticated interactions can be obtained by resorting to layer-2
implementations of asynchronous message-passing [22].

Algorand, being the platform whose contract layer and lan-
guages have changed the most during its lifespan, is also the
one for which it is most difficult to bring a definitive assess-
ment. Originally, Algorand only supported smart signatures,
i.e. simple stateless contracts whose primary purpose was that
of deciding whether to approve the transactions coming from
the smart signature’s address [23]. According to our rough tax-
onomy, smart signatures follow the approval style. After a num-
ber of updates, the contract layer was enriched with so-called
applications, a basic form of stateful smart contracts, but still
leveraging smart signatures for handling assets transfers. This
contract model was a hybrid between the approval style (needed
to write the smart signature part of the contract) and procedu-
ral style (needed for the application, which handles the contract
state). The introduction of inner transactions and application
accounts (see Section 3.4) to the contract layer has made it pos-
sible to eliminate the need for smart signatures in stateful con-
tracts, allowing them to construct and submit their own transac-
tions. Effectively, this makes the current programming practice
of Algorand adhere to the procedural style.

4.3. Code verbosity and readability
As a rough comparison between contract languages, we mea-

sure in Table 3 the LoC of the implementations in our bench-
mark (restricting to the use cases where all the implementations
are available). As expected after Section 2.3, the UTXO-based
model, here represented by Aiken, leads to more verbose im-
plementations than account-based models. Among the latter,
Anchor for Rust is definitely the more verbose. This is due in
part to the language bureaucracy and in part due to the need
to handle data in multiple accounts, which is a consequence of
how Solana renders the stateless model. However, statelessness
alone does not cause verbosity: e.g., Move contracts are more
concise than Solana’s, which is penalized by the additional ac-
count validation checks. The other languages in the account-
based model have, on average, similar verbosity: we just note
that the slightly higher LoCs of Move are counter-balanced by
the increased robustness due to static typing (cf. Section 4.5).

Regarding readability, in the absence of a widely accepted
metric we resort to a qualitative evaluation. In general, we have
a poor readability when understanding the behaviour of a con-
tract requires a low-level knowledge of the structure of block-
chain transactions. This is the case e.g. of Aiken and PyTeal:
in the first case the problem seems inherent to the closeness of
Aiken to the UTXO model, while in the second case it seems
related to the handling of storage and of inner transactions.
PyTeal is also a witness of the fact that a good readability is
not always implied by a low verbosity. The readability of Move
contracts is strictly related to the understanding of linear types:
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Table 3: Lines of code (LoC), excluding comments and empty lines, of a selec-
tion of use cases implementations. For Solana we show LoC of Anchor code,
since it is more succinct than pure Rust.
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Bet 39 137 158 110 62 53
Simple transfer 18 91 120 49 30 21
HTLC 25 123 115 60 49 31
Escrow 41 176 120 94 45 28
Auction 51 152 221 129 40 45
Crowdfund 31 182 129 103 49 33
Vault 40 166 171 103 57 38
Vesting 39 149 125 105 48 28
Storage 11 82 75 32 23 18
Simple wallet 47 183 169 87 108 47
Average 34 144 140 88 51 34

developers unfamiliar with these concepts will find it quite diffi-
cult to make some sense of a Move contract. In Anchor/Solana,
poor readability is caused by a combination of factors: unfamil-
iarity with the Rust ownership model and the distribution of the
state across multiple accounts.

4.4. Security implications of language design

The design of a smart contract language and of the underly-
ing contract layer has deep implications on the security of the
applications built on them. A paradigmatic example is the fa-
mous reentrancy issue of Ethereum, which has been the basis
of several real-world attacks [24, 25]. The issue arises from the
combination of a few unfortunate design choices at the EVM
level: (i) called methods always have a reference to the caller;
(ii) any method can call any other method; (iii) there are no
bounds on the depth of nested calls; (iv) the most critical con-
tract field, the ETH balance, is implicitly updated as a side
effect of method calls. Putting it all together, it may happen
that when a contract calls another contract, the callee might
call back its caller in such a way as to modify its state vari-
ables, bringing it into an inconsistent state where it performs
unwanted actions (e.g., double-sending tokens to the adversary)
that would not be possible in consistent states [26]. Reentrancy
attacks can be countered by using design patterns ensuring that
state updates are applied before potential reentrant calls, or by
making contract calls mutually exclusive. However, systemati-
cally taking care of every call in a contract (including the pure
transfers of currency) is quite demanding and error-prone.

Reentrancy attacks are dealt with in various ways by the
other platforms considered in this survey. In Solana, reentrancy
attacks are still possible but limited by the fact that re-entry is
possible only as self-recursion. In Cardano, reentrancy is ruled
out by the absence of contract calls. The same goes with Ap-
tos: invoking another contract is not possible unless its module
is known at compile-time, and mutual recursive calls between
modules are forbidden at compile-time. Combined with the ab-
sence of callbacks or delegate calls, this rules out reentrancy
by design. Algorand is not vulnerable to reentrancy attacks,

because, even though contract-to-contract calls are possible, a
contract cannot call itself, even indirectly. In Tezos, as already
mentioned in Section 4.2, reentrancy attacks are mitigated by
the fact that the caller function must complete, committing to
its state, before performing other calls.

Besides reentrancy, different smart contract languages/plat-
forms suffer from different security concerns. Solana, in partic-
ular, is prone to weaknesses related to its stateless model, which
requires contract callers to provide the account containing the
data to be read/written by the contract. Omitting some proper
validations on accounts passed as input is a source of attacks:
a notable example was the wormhole attack, which caused a
loss of more than $320 million [27]. A specific vulnerability of
this kind is the absence of signer verification. Besides check-
ing that the provided account is valid for a specific operation,
the contract must ensure that the transaction is signed by the
holder of that account. Omitting this check can lead to vul-
nerabilities. For instance, if the developer omits this check in
the win method of the Bet contract in Figure 3, then a mali-
cious player could provide the oracle address without the corre-
sponding signature, and set itself as the winner (bypassing the
oracle altogether). A related weakness is the absence of own-
ership verification. For example, assume that the ownership
check is omitted in the timeout method of the stateless Bet
contract in Figure 3. Then, an adversary could call timeout
with a specially-crafted account that allows him to withdraw the
whole pot. By confirming that only the contract itself can mod-
ify the stored information, the data integrity remains protected.
Finally, the ability to invoke malicious or counterfeit contracts
inside another contract invocation stems from the user’s capa-
bility to supply any contract account, prompting the need for
measures to verify the authenticity of the invoked contracts.

Aiken follows the approval style, in that the contract must
check the transaction fields to decide whether to approve an in-
coming transaction or not. Forgetting even a single check may
give rise to security vulnerabilities, possibly allowing an adver-
sary to set a data field of the new state to an arbitrary value. The
same concerns apply to PyTeal, when used to write (approval-
style) smart signatures.

Most of Algorand weaknesses revolve around its peculiar
treatment of memory. In order to disincentivise the abuse of on-
chain storage, every account must maintain a minimum balance
that varies depending on how much memory it is using in the
blockchain (which, in turn, depends on the number of distinct
assets owned, contract data stored, etc.). Managing this balance
constraint is tricky: developers must make sure that accounts
the contract interacts with (and the contract account itself) al-
ways satisfy the minimum balance. This can create problems as
transactions may unexpectedly fail, as they may lead the con-
tract (or another account) to hold a balance lower than the al-
lowed minimum. In particular, when emptying a contract ac-
count, it is essential to distinguish the case in which assets are
sent from the case in which the contract account is closed.

Further security implications of the fee mechanism design
are discussed later in Section 4.8.
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4.5. Compile-time checks
With the exception of PyTeal/Algorand, all the languages

considered in this paper feature strong typing. Solidity supports
subtype polymorphism, allowing programmers to implement
contracts by inheriting other contracts in an object-oriented fash-
ion. It also features static visibility modifiers for functions and
state variables, and dynamic (programmable) modifiers to re-
strict access to functions depending on run-time parameters.
Extra static checks performed by the compiler detect potential
overflows/underflows and division by zero, stack size limit vul-
nerabilities, and unwanted variable shadowing caused by inher-
itance. Rust supports object-orientation, subtyping and para-
metric polymorphism. Its compiler also tracks references and
data ownership, ensuring memory safety and preventing data
races. While Rust is a safe language, Solana does not pro-
vide an interface of the same quality, imposing several weakly
typed programming patterns for writing contracts. This ren-
ders the powerful checks performed by the Rust compiler irrel-
evant to some extent. Move’s resource-oriented programming
model is inspired by Rust: ownership of data is explicitly de-
fined and enforced by the type system, and a borrow checker
similar to Rust’s prevents multiple mutable references to the
same resource. Linear types further add to the number of static
checks by preventing code from replicating or losing currency
and assets in general, ultimately mitigating double spending
through typing. Such features are similar to Rust’s in princi-
ple, though in Move they are more integrated with the language
syntax and straightforward for the programmer. That is actually
due to the fact that Move is a special-purpose language specifi-
cally tailored for asset management in smart contract program-
ming. Aiken too is a special-purpose language that stands out
of the pack, as it delivers a purely functional style, with static
typing and type inference. Although this is fundamental to the
safety of the validator script, static typing alone is not sufficient
to rule out logic errors, as discussed in Section 4.4.

SmartPy and PyTeal, although both based on Python, are
substantially different when it comes to static checks. PyTeal
contracts are just Python programs that produce TEAL byte-
code when executed. Instead, SmartPy contracts are compiled
into Michelson, a typed bytecode language. The static typing
and type inference supported by SmartPy are preserved by the
compilation through type reconstruction. Furthermore, SmartPy
contracts can carry type annotations, accessible as structured
values through an API. These are actually runtime entities for
Python but are converted into type annotations in Michelson at
translation time. Such a hybrid approach improves the safety
of SmartPy while retaining the simplicity of the Python syntax.
At the time of writing, Algorand lacks a compelling high-level
language with static typing. Programming in TEAL is equiva-
lent to coding in assembly, thus with little to no static checks on
the code. Although PyTeal features a rudimentary type system,
type errors are still possible when encoding or decoding stored
data, possibly leading to unpredictable errors and mishandling
of the required datatypes.

Overall, with the notable exception of Move linear types,
which can prevent double-spending, the type systems of the
other languages can mostly prevent bad coding practices rather

than some forms of vulnerability. As noted in Section 4.4,
language design, when specifically tailored to rule out certain
kinds of attacks in the first place, is more effective than most
common forms of typing.

4.6. Contract analysis and verification
While compile-time checks are useful to rule out vulnera-

bilities due to common programming errors, they cannot guar-
antee that a contract respects some ideal behaviour in the pres-
ence of adversaries. Several tools have been developed to de-
tect potential vulnerabilities in contracts. This is especially true
for Ethereum, where dozens of bug detection tools with vary-
ing detection capabilities exist [28, 29, 30]. In Solana, current
security tools include VRust [18] and FuzzDelSol [27]. Both
tools can detect Solana-specific vulnerabilities, like e.g. the ab-
sence of signer checks and owner checks discussed in Sec-
tion 4.4, using different techniques (inter-procedural data flow
analysis for VRust, coverage-guided fuzzing for FuzzDelSol).
In Algorand, current tooling includes Panda [31], which is
based on symbolic execution of TEAL code, and Tealer, which
searches suspicious patterns in the control-flow graph extracted
from the TEAL code.

More sophisticated tools enable the verification of contract
implementations against an ideal, abstract description of their
behaviour. For Solidity, this kind of analysis is partially sup-
ported by the assertion checker incorporated in the compiler,
and by a few external analysis tools [32, 33]. However, due
to the intricacies of the Solidity/EVM semantics, these tools
have several limitations in their precision and expressiveness of
target properties [32]. Move features a property specification
language that can be used by programmers to annotate function
invariants. Such invariants are verified at compile time through
by the Move Prover, which is bundled with the Aptos toolchain.
A bytecode verifier validates compiled contracts at deploy-time,
preventing maliciously crafted code from being uploaded to the
blockchain. Notably, the bytecode verifier enforces the same
type-safety properties (including linearity) that are enforced by
the Move compiler over the original source code. The work [34]
applies the Move Prover to the formal verification of relevant
functional requirements of modules of the Aptos Framework.

Verification tools for Tezos include MiChoCoq and Con-
Cert, which verify the functional correctness of contracts against
a specification based on pre- and post-conditions in the Coq
proof assistant [35, 36]. Other static analyzers exist, based on
refinement types [37] and on abstract interpretation [38, 39].

4.7. On-chain / off-chain interactions
Off-chain systems are essential to extend blockchain fea-

tures (e.g. layer 2 and blockchain interoperability protocols)
and provide users with Web3 services and decentralized ap-
plications. Blockchain features (both at the consensus and at
the contract layers), contract languages, and off-chain libraries
all impact the development of off-chain systems. In particu-
lar, the interaction between off-chain and on-chain systems de-
pends on how data flows to/from contracts. In account-based
platforms, data can be fed to contracts through method invo-
cations. Some systems (Rust/Solana and Algorand) only allow
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base types as parameters in calls to contract entry-point func-
tions, whereas Solidity, Anchor/Solana and Beaker/Algorand
also support structured data. Outputting data from contracts is
usually done through return values of method calls. In the plat-
forms where return values are not supported, contract outputs
can be either written in other accounts (Solana) or embedded in
transaction data (e.g., Algorand, Tezos, Cardano).

Depending on where contract outputs are written, off-chain
components use different techniques to retrieve them. In Move
and SmartPy, the off-chain component can directly call meth-
ods because the blockchain preserves the interface and types.
In the other systems, the off-chain components must first code
the contract public interface before calling a method. The other
output retrieval technique is based on listening to events (or
logs) emitted by the contract. This is fully supported in Solid-
ity, Move, and SmartPy. Contracts in PyTeal do not emit events
but, as mentioned, rely mainly on the log to output results. The
other languages considered in this survey do not support events
emissions. In Anchor and Aiken, low-level transaction logs can
be exploited instead.

Programming off-chain systems is facilitated by official or
third-party supported SDKs and libraries (namely Web3). So-
lidity has stable support in a wide range of programming lan-
guages (including those for embedded devices). There are dif-
ferent versions of web3-like libraries and SDKs available for
all of the other platforms examined. In particular, JavaScript li-
braries exist for Rust, Aiken (in two independent projects: Lu-
cid and Mesh), Move, and SmartPy. Python libraries provide
support for Aiken, PyTeal, Move and SmartPy (Taquito). Rust
libraries are available for Rust and Algorand.

4.8. Fees
The fee model established by the contract layer has non-

negligible repercussions on the programming of smart contracts:
developers must have a good understanding of the fee model in
order to avoid paying more fees than strictly needed or incur-
ring in potentially insecure programming patterns.

In Ethereum, fees depend on the sequence of EVM instruc-
tions needed for executing a transaction, and are paid by its
sender. Each EVM instruction has a cost, specified in terms of
gas units. The fee is the total amount of gas units consumed to
execute the transaction times the price for gas unit. The num-
ber of gas units per transaction is bounded: transactions ex-
ceeding such limit pay the fee, but have no other effects on the
blockchain state. So, although contracts can have unbounded
loops and recursion, in practice all computations are bounded.
The gas limit also bounds the contracts size, making it neces-
sary to downsize the contract code or distribute its logic across
multiple contracts. The gas mechanism is a notorious source
of attacks. At the network level, DoS attacks [40] exploit the
discrepancy between the gas units associated to EVM instruc-
tions and the actual computational resources needed for their
execution [41]. Dealing with these attacks caused several revi-
sions of the gas costs (e.g., EIP150, EIP1559, EIP2929), possi-
bly breaking existing contracts that depend on gas costs. Fees
can also be the basis for attacks to contracts. E.g., a contract
with a method that iterates over a dynamic data structure, such

as a key-value map, can be attacked by making the structure
grow until the iteration exceeds the maximum gas limit: in this
way, the contract gets stuck, and its funds frozen. By combin-
ing the fee mechanism with transaction-ordering dependence,
attacks based on the unpredictability of fees are possible: e.g.,
an adversary might front-run a transaction to change the con-
tract state so to cause the transaction to be reverted or pay more
fees than expected. The gas mechanism adopted by Tezos is
conceptually similar to that of Ethereum, and therefore suffers
from similar issues.

These attacks are not possible in the platforms where fees
are predictable, as in Solana, Cardano and Algorand. In Solana,
transaction fees are determined solely by the number of re-
quired signatures for a transaction, rather than the amount of
resources used. Besides transaction fees, Solana imposes fees
on the data stored in accounts, to incentivize users not to waste
on-chain space. If an account has not enough balance to cover
the rent, it faces removal. Accounts can be exempted from pay-
ing fees by holding a balance that is at least equivalent to two
years’ worth of rent. Taking rent fees into account influences
contract development in Solana. E.g., in the stateless Bet con-
tract (Figure 3), upon the completion of a final action the devel-
oper should close the storage account s and return the remain-
ing value, used for rent, back to the initializer. This requires an
explicit coding of additional operations into the contract.

In Cardano, transaction fees depend on the transaction size
and on the number of CPU steps and memory needed for its
execution. All these data are predictable before sending the
transaction, since Cardano is not subject to transaction-ordering
dependencies, being based on the UTXO model.

In Algorand, although contracts are executed after compi-
lation to low-level code as in Ethereum and Tezos, transaction
fees are calculated differently. Namely, while in Ethereum and
Tezos the fees depend on the sequence of executed low-level
instructions, in Algorand they are determined only by the trans-
action size, with a lower bound set by the platform.

The fee model in Aptos incorporates elements from the
models proposed by EVM, Algorand, and Solana, featuring a
base minimum fee along with computation costs (referred to as
I/O costs) and “storage rent” fees. Aptos transactions require a
two-component fee structure that includes execution I/O costs
and storage fees. The computation costs are measured in gas
units, with the price fluctuating based on the network’s load.
The storage component is priced at a fixed rate in the platform’s
principal cryptocurrency. The storage fee can be refunded when
the allocated space is deleted (as in Solana).

4.9. Native vs. programmable functionalities

Developing our smart contracts benchmark was instrumen-
tal in understanding how different patterns are rendered in dif-
ferent languages/platforms. We detail in our repository [1] the
workarounds we adopted to implement the use cases in the var-
ious languages, and summarize below our main findings. For
a quick reference, Table 4 depicts a comprehensive recap of
the functionalities discussed below, plus a number of additional
minor ones, for each language/platform explored in this paper.
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Table 4: Functionalities supported by smart contract languages/platforms. The first group refers to the functionalities described in Section 4.9. Checkmarks ✓
denote functionalities that are available natively in the language or via the blockchain APIs. The symbol 2 denotes functionalities that can be implemented in a
smart contract with some practical workaround (e.g., ERC20/ERC721 interfaces for custom tokens in Ethereum). An empty cell indicates that the functionality is
not supported by the platform. Further workarounds are implemented in our benchmark [1].
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Native tokens ✓ ✓ ✓ ✓ ✓ ✓
Custom tokens 2 ✓ ✓ ✓ ✓ ✓
Multisig transactions 2 ✓ ✓ ✓ ✓ 2
Contract updates 2 ✓ ✓ 2
Transaction batches 2 2 ✓ ✓ 2 2
Time constraints ✓ ✓ ✓ ✓ ✓ ✓
Key-value maps & Dynamic arrays ✓ ✓ ✓ ✓ ✓ ✓
Bounded loops ✓ ✓ ✓ 2 ✓ ✓
Randomness 2 2 2 ✓ ✓ 2

Transaction revert ✓ ✓ ✓ ✓ ✓ ✓
Contract-to-contract calls ✓ ✓ ✓ ✓
In-contract deployment ✓ ✓ ✓ ✓
Delegate contract calls ✓ ✓
Hash on arbitrary messages ✓ ✓ ✓ ✓ 2 ✓
Versig on arbitrary messages ✓ ✓ ✓ ✓ ✓
Bitstring operations ✓ ✓ ✓ ✓ ✓
Arbitrary-precision arithmetic ✓ ✓
Rational arithmetic 2 2 ✓ 2 2 ✓

Custom tokens All blockchain platforms come with a princi-
pal cryptocurrency (e.g., ETH for Ethereum), which is minted
under the control of the consensus protocol and is exchange-
able among users via direct transfers or programmatically via
smart contracts. Many real-world contracts use tokens to rep-
resent custom assets (in our benchmark, the Token transfer use
case). Unlike the principal currency, the minting of these cus-
tom tokens is not regulated by the consensus protocol, but rather
by a user-defined policy. Solana, Cardano, Algorand, Tezos
and Aptos support tokens natively, and allow contracts to de-
fine their transfers similarly to the native cryptocurrency. In
Move, which supports parametric polymorphism, custom assets
are implemented via the generic type Coin, whose type param-
eter CoinType specifies the fungible asset type. Programmers
can ensure that only assets of the same type are exchanged: this
is achieved through the combined action of static typing and a
dynamic lookup mechanism of resources driven by types. In
Ethereum, instead, tokens are not supported natively, and so
they must be programmed as contracts, by implementing stan-
dard interfaces (e.g. ERC20/ERC721 for fungible/non-fungible
assets). This comes at a cost for developers, as it is their duty to
prevent asset duplication, unintended losses and other mishan-
dling. Furthermore, malicious token implementations could be
an attacks vector to smart contracts [42].

Multisig transactions Another discriminating feature is given
by multisig transactions, i.e. transactions that can carry the sig-
nature of multiple users. They are required e.g. in the Bet
use case, where two players must simultaneously deposit 1 to-
ken to join the game. The Cardano and Solana implementa-

tions fully respect the specification, since the underlying plat-
forms support multisig transactions. Platforms such as Tezos
and Ethereum do not provide native support for this feature, but
a workaround exists, as illustrated in the implementation of the
Bet contract, where the effect of multisig transactions is cap-
tured by a specific pattern that splits the join action into two
steps. An alternative workaround is to implement a multisig
contract, which performs some given actions only if authorized
by at least a given number of users. In Tezos, multisig con-
tracts can be crafted by exploiting lambdas and the ability to
verify signatures on arbitrary messages (furthermore, they are
natively supported by the official client). Algorand supports
multisig through multi-signature accounts, that is special sender
addresses that have to be created by off-chain code and require
a set of signatures to be authorized to perform the transaction.
Aptos offers a similar mechanism based on off-chain code.

Contract updates Among the platforms considered in this pa-
per, only Solana and Algorand allow to update contracts once
deployed. In the other platforms, this feature can be simu-
lated through an UpgradeableProxy contract, which interme-
diates the interactions between callers and a callee, allowing
the owner to update the callee address (and so, the contract
that processes function calls). The Solidity implementation ex-
ploits delegate calls to ensure that the caller and callee interact
as there were no proxy intermediation. In Solana, although con-
tract updates are supported (at the cost of transferring account
ownership to the new contract to remedy mutating restrictions),
implementing the proxy does not seem possible. Cardano does
not support contract calls, therefore the proxy cannot be im-
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plemented. Still, contract updates are possible by making the
validating script accept any transaction signed by the owner, al-
lowing them to effectively replace the old script with the new
one. Aptos does not support contract calls or contract updates
either. SmartPy allows for contracts updates through lambda
functions. Namely, the contract is represented as a mapping,
whose values are lambdas. A method call is then translated into
calling the corresponding lambda, while updating the contract
is performed by updating the mapping.

Transaction batches In some use cases (e.g., circular trades
and group payments) it is useful to batch transactions to en-
sure that either all or none of the transactions in a batch are
executed. Among the platforms considered here, transaction
batching is supported natively only by Algorand (both client-
side and contract-side) and by Solana (only client-side). In the
absence of native support, a similar effect can be obtained by
deploying a contract with a function that performs a specific
sequence of function calls. The atomic transactions use case
in our benchmark generalizes this by using a single contract
that can process arbitrary transaction batches. Our Solidity im-
plementation exploits delegate calls to ensure transparency of
the caller contract. In Cardano, batching is not rendered in the
strict sense of the term, but it is implicitly implemented by the
UTXO mechanism. For instance, if we want two payments, say
1:T from A to B and 1:T′ from B to C, to happen atomically,
we can obtain the same effect by a single transaction with two
inputs (one redeeming 1:T with A’s signature and the other re-
deeming 1:T′ with B’s) and two outputs, controlling 1:T and
1:T′ with B’s and C’s signatures, respectively. Although Aptos
does not support transaction batches natively, programmers can
pack multiple actions in a single Move script, i.e. a code block
that can invoke functions defined in contract modules and is
executed atomically (similarly to Ethereum’s workaround).

Time constraints Most platforms allow contracts to set time
constraints by making the current block number or transaction
timestamp readable by the contract. This is a common feature
in real-world scenarios: in our benchmark, it occurs e.g. in the
Bet, Auction, Crowdfund, HTLC, Vault and Vesting use cases.
In Cardano, contracts cannot access the global blockchain state
(including the block number), but time constraints can be im-
plemented leveraging the validity interval field of transactions.
Knowing only a time interval rather than the exact time might
introduce some approximations w.r.t. the ideal behaviour. E.g.,
in the Aiken version of the Vesting contract, the beneficiary can
receive slightly less than the amount prescribed by the vesting
function at the exact time the transaction is processed. This dis-
crepancy arises since the amount is determined as a function of
the (lower bound of) the validity interval.

Key-value maps, dynamic arrays, and bounded loops All
the languages considered in this paper support dynamic data
structures such as key-value maps and arrays. In the stateful
account-based models, they are stored in the contract account.
In Solana, instead, values are stored in accounts, whose ad-
dresses serve as keys for key-value maps. For this specific pur-

pose, Solana uses special addresses that are deterministically
generated but lack corresponding private keys and are tailored
to be under the exclusive control of a designated smart contract.
In Aiken/Cardano, dealing with dynamic data structures raises
some efficiency concerns, since updating the contract state re-
quires sending a transaction carrying the whole new state. In
contracts whose state involves arrays or key-value maps that
can grow significantly during execution, these transactions may
become larger and larger. This has two drawbacks, in that the
transaction fees increase with the transaction size, and in that
there is a hard limit (16KB) on this size. These issues could be
potentially mitigated by using cryptographic techniques (e.g.,
Merkle trees) to minimize the amount of data stored on-chain.
Currently, this has to be implemented manually by the pro-
grammer, as Aiken does not feature constructs to automatize
the management of large data structures exploiting these cryp-
tographic primitives. In Algorand, dynamic data structures can
be implemented by using boxes, i.e. pieces of memory that can
be allocated at any time during the lifetime of the contract, at
the cost of an increased minimum balance for the contract ac-
count. These boxes are, however, fairly expensive. When a use
case requires a key-value map indexed on account addresses,
the use of the local storage of these accounts is preferred to
that of boxes. Consider, for instance, a contract that receives
deposits from users, and that needs to record the amounts trans-
ferred by each user (like e.g. in the crowdfund use case in our
benchmark). In Algorand this can be achieved by distributing
the map across the local storage of each account depositing to-
kens to the contract. As a single call can only read the content of
a limited number of boxes (8 per call), it is not possible to iterate
over structures that span a large number of boxes. This means
that iterating over arrays is still feasible provided that the array
is encoded in a single box; instead, iterating over dynamic data
structures such as key-value maps is quite problematic. Further-
more, working with multiple maps is tricky: since box storage
maintains a single key-value store, making it appear as multiple
maps requires the developer to manually handle the partitions.
This issue, together with the varying minimum balance on the
insertion of new key-value pairs, makes the use of key-value
maps in Algorand quite burdensome.

Randomness Some use cases require randomly-generated val-
ues (e.g., in lotteries and other games to choose a winner or to
draw a card). Randomness has also proven effective in mitigat-
ing the threats posed by criminal smart contracts [43]. Although
some centralized randomness beacons are available, their use
is not considered secure, since dishonest providers can bias
their outputs [44, 45]. A secure alternative is given by commit-
reveal-punish schemes, which construct random values by com-
bining values independently provided by users. To ensure that
no one can observe the others’ values to craft their own (which
would easily lead to attacks), these schemes force users to com-
mit the hashes of the chosen values before revealing them and
use collaterals to rule out dishonest users who do not reveal (see
e.g. the HTLC use case). A drawback of these schemes is that
they become quite complex when many users are involved. A
viable alternative is given by Verifiable Random Functions [46],
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a cryptographic primitive that allows users to generate pub-
licly verifiable random values. Among the platforms considered
here, only Algorand offers this feature natively, by combining
a randomness seed beacon and a special opcode to verify the
correct generation of values. We note that the analysis and for-
mal verification of randomized smart contracts is currently an
under-explored research field, with limited tool support [47].

5. Related work

In recent years, there has been a surge in advancements
within decentralized, permissionless blockchain technologies,
with a particular emphasis on smart contracts. However, despite
this remarkable progress, there remains a substantial gap in our
understanding of the fundamental principles and programming
paradigms that underpin smart contracts. While numerous stud-
ies have examined specific applications and challenges associ-
ated with smart contracts, there has been a glaring absence in
the exploration of their programming principles and languages.

Recent literature reviews, such as [48, 49], aimed to pro-
vide systematic overviews of technical challenges in smart con-
tract development. Sharma et al. [48] delved into aspects such
as consensus algorithms, permission policies, Turing complete-
ness, and data models. They identified crucial challenges such
as readability, code correctness, execution efficiency, privacy
concerns, and gas exceptions. Similarly, Zheng et al. [49] per-
formed a comparative analysis of platforms and applications,
examining essential aspects such as creation, readability, execu-
tion efficiency, transaction ordering, deployment, and privacy-
preserving mechanisms. They also categorized applications and
outlined common use cases across diverse domains. In contrast
to [48, 49], which primarily rely on comparing results from ex-
isting literature on smart contract languages, our comparisons
is based on our practical experience developing a benchmark of
use cases, where we contrast different platforms/languages by
implementing a range of smart contracts in each language. This
benchmarking methodology enables us to perform a compre-
hensive comparative analysis, offering insights into program-
ming styles, readability and usability, compile-time checks, on-
chain/off-chain interactions, as well as security considerations
across different platforms/languages.

The impact of smart contracts on industry has spurred a
wealth of research, see, e.g., [50, 51]. Varela-Vaca et al.’ work
[50] categorised smart contract languages from both academic
and industrial perspectives, with an emphasis on improving de-
veloper experiences for creating more human-readable smart
contracts. Similarly, Dhaiouir et al.’ literature review [51]
compared distributed platforms, aiming to assist businesses in
selecting suitable platforms for blockchain-based applications,
thus facilitating informed decision-making. Vacca et al. [52]
reviewed methods, techniques, and tools for improving the de-
sign, construction, testing, maintenance, and overall quality of
smart contracts and DApps. Similarly, Zou et al. [53] per-
formed an empirical study on developers’ challenges and prac-
tices in smart contract development, with a focus on Ethereum.
They collected valuable insights into the current state of the art
through interviews and surveys with industry practitioners.

A few works address smart contract languages for UTXO
blockchains, mainly focussing on Bitcoin and Cardano. Out-
side academic research, Bitcoin is quite unattractive as a layer-1
smart contract platform, because of the expressiveness limita-
tions of its script language, its low throughput and high transac-
tion fees. Still, a small subset of the use cases in our benchmark
can be implemented also on Bitcoin [20], either using Bitcoin
script of higher-level languages such as BitML [54]. In the Car-
dano literature, the work [55] draws an interesting comparison
between the account-based and the UTXO model based on the
implementation of a token use case in Solidity and in Plutus. In
this paper we extend the comparison in [55], by implementing
a large set of use cases in six smart contract languages. The
relation between transaction redeem scripts and structured con-
tracts in Cardano is explored in recent research [56].

Several surveys address the challenges related to security
vulnerabilities. Hu et al. [57] categorized schemes and tools
aimed at improving secure smart contract development. Addi-
tionally, they addressed challenges like privacy breaches, ex-
ecution inefficiencies, and contract complexity by categoriz-
ing extensions and alternative systems for contract execution.
Rouhani et al. [58] conducted an extensive review focusing
on smart contract platforms and domain-specific programming
languages, focussing on security vulnerabilities and performance
optimization. Their study explored methods and tools for mit-
igating vulnerabilities. Hewa et al. [59] undertook a compre-
hensive survey on smart contracts, emphasizing aspects like se-
curity, privacy, gas cost, and concurrency. In particular, they
explored the integration of smart contracts with emerging tech-
nologies such as artificial intelligence and game theory.

The works [60, 61], which compare smart contract languages
in terms of usability and security, are the most closely aligned
with ours. In [60], Voloder et al. conducted a comparative
analysis of five platforms focusing on developers’ perspectives.
Their comparison examines critical features such as documen-
tation availability, ease of installation, automated testing capa-
bilities, implementation efforts, and the required level of exper-
tise for specific use cases and chains. Parizi et al. [61] anal-
ysed the usability and security aspects of three smart contract
languages: Solidity, the Pact language for Kadena (which is
Turing-incomplete), and Liquidity for Tezos (a typed functional
language). The paper offers a comparative analysis of these
languages, demonstrating sample contract implementations and
evaluating them in terms of usability and security. In contrast
to [61], we opt to exclude Pact and Liquidity from our selection
of smart contract language. This choice is based on our paper’s
emphasis on Turing-complete languages (which is also the rea-
son why we neglect contract languages on Bitcoin), as well as
the recognition that Liquidity is no longer actively maintained.

Differing from prior research, this paper offers a unique per-
spective by providing a detailed technical comparison of smart
contract languages from the standpoint of programming lan-
guage theory. We delve into programming styles, language con-
structs, and typing considerations, complemented by a qualita-
tive assessment derived from hands-on experience in crafting
a standardized benchmark for smart contracts. Marking a pi-
oneering effort, this work provides the first extensive hands-on
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Table 5: Strengths and weaknesses of smart contract languages.

Language Strengths Weaknesses

Solidity
Ethereum

Familiar procedural programming style
Extensive documentation
Rich ecosystem of analysis tools third-party libraries

EVM design induces vulnerabilities (e.g. reentrancy)
Low-level interferences with the semantics (e.g., fees)
Transaction-ordering dependencies

Rust/Anchor
Solana

Powerful strongly typed language
Good parallelization / transaction throughput
Rich ecosystem and community

Rust ownership system not really used
Verbose programming model
Need to serialize/deserialize data manually

Aiken
Cardano

Strongly-typed functional paradigm
No transaction-ordering dependencies (UTXO)
Arbitrary-precision arithmetic

Requires reasoning about the structure of transactions
No contract calls
Transactions must specify the whole contract state

TEAL/PyTeal
Algorand

Rich set of functionalities (transaction batches,
Verifiable Random Functions, contract updates)
Predictable transaction fees

Cumbersome handling of memory (local, global, boxes)
Cumbersome constraint on minimum accounts balance
Weaker typing guarantees w.r.t. other languages

Move
Aptos

Linear types prevent errors (e.g. double spending)
Static prover enforces semantic properties
Extensive stdlib and framework

Requires good understanding of linear types
Lack of community and third-party libraries

SmartPy
Tezos

Strong typing and type inference on top of Python
Queued method call to avoid reentrancy attacks
Allows Python meta-code

A strongly typed Python is a little awkward
Lack of dedicated third-party libraries and tools

evaluation, facilitating both comparison between smart contract
languages and analysis of development and execution costs.

6. Conclusions

We have compared the smart contract languages of some of
the most widespread blockchains. The comparison, which was
performed along different axes, is based both on the literature
and on hands-on knowledge derived from the construction of a
common benchmark of smart contracts. Table 5 summarises the
main findings of our comparison: we conclude by discussing
the lessons learned in our work.

Lesson learned #1: language abstractions Our analysis high-
lights the need for high-level abstractions over the low-level
details of the underlying blockchain. Clean abstractions are
crucial to simplifying reasoning about the correctness and se-
curity of contracts. Not all languages considered in this paper
have such clean abstractions. For instance, the lack of good
abstractions for tokens and contract-to-contract interactions is
one of the main causes of vulnerabilities in Solidity/Ethereum
contracts (see Section 4.4). The lack of good abstractions over
the transactions level in Aiken/Cardano induces a burdensome
programming style for contracts in these languages, with poten-
tially harmful consequences on their security (see Sections 4.2
and 4.4). Furthermore, the interference between the low-level
fee mechanisms and the contract semantics is not always hid-
den from programmers, who must have a good understanding
of these mechanisms to avoid writing inefficient or vulnerable
contracts (see Section 4.8).

Lesson learned #2: typing assets Assets deserve special treat-
ment at the type level in order to prevent programmers from
making financial mishaps when manipulating crypto-assets. This

can be enforced to varying degrees. The loosest form is to rep-
resent assets by means of a custom datatype (distinct from the
plain integer type), which prevents programmers from perform-
ing unwanted arithmetic operations on assets. By limiting the
number of possible operations for the asset datatype, and pro-
viding only a minimal set of primitives for transferring assets,
account-based platforms can reduce error-proneness when han-
dling valuable tokens. Disciplining assets and transactions in
UTXO platforms is not as straightforward, though. In Aiken,
for instance, asset transfers are implemented as record field up-
dates where arithmetic operations are required to manipulate
amounts. A special asset datatype with its own set of functions
would make things harder and verbose for the programmer. The
strictest form of control among the languages reviewed in this
paper is Move’s linear types, which push the envelope by for-
bidding duplication and loss of assets at compile-time (see Sec-
tions 4.2 and 4.5). Although such a strict type discipline is hard
to digest for a casual programmer, from our experience it does
not come without its own merits. Move contracts seem less sus-
ceptible to asset-related issues (e.g. double spending and finan-
cial loss) compared to other platforms, underlining that smart
contract languages ought to dare more than general-purpose
languages when it comes to the discipline imposed on types,
especially on the type representing assets.

Lesson learned #3: native vs. programmable functionalities
The smart contract languages considered are characterised by
different sets of native functionalities, as displayed in Table 4.
The absence of some functionality could be detrimental to the
implementation of certain use cases, making it either impossi-
ble, or possible only through complex workarounds and adap-
tations of the requirements. We have directly experienced the
lack of native functionalities in our benchmark, where some
implementations required such adaptations and workarounds.
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Although in principle all the languages considered in this pa-
per are Turing-powerful (up-to computation bounds due e.g. to
transaction fees), some workarounds could be extremely im-
practical due to the high costs of on-chain computation and stor-
age, besides the computation bounds. For instance, implement-
ing arbitrary-precision arithmetic via Church encodings would
make little sense. Improper workarounds could affect security
and decentralization. This is the case, e.g., of generating ran-
domness via block timestamps or external oracles. In general,
the availability of specific native functionalities could be an im-
portant factor in the decision-making process to choose a block-
chain platform, among others [62].

Lesson learned #4: procedural vs. approval style As we
have seen in Section 4.2, smart contract languages can be par-
titioned into two classes based on the programming style they
support: the procedural style, where contracts react to transac-
tions by updating their state and triggering effects (e.g., token
transfers), and the approval style, where transactions already
contain their effect, and the contract reacts by deciding whether
to approve a transaction or not, depending on its state and by
the environment. In Sections 4.3 and 4.4 we have seen that
the programming style has deep implications on the readability
of contracts and on their security: roughly, the approval style
is less readable and more error-prone, since the programmer
must ensure that the new state is a correct update of the old one,
which might involve multiple checks on the transactions fields.
Based on the implementation of our benchmark, we argue that
the procedural style is overall the most practical, even though
in some of its incarnations we note that the produced code is
burdened with boilerplate code (e.g., in Rust/Solana), or with
type-based manipulations of resources that may look unfamiliar
to average programmers (e.g., in Move/Aptos). An open ques-
tion is whether it is possible to reconcile the procedural style
with the UTXO-based model, so to program smart contracts à
la Solidity while preserving the key strengths of UTXO block-
chains like Cardano (e.g., the absence of transaction-ordering
dependencies and the parallelizability of transactions).
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