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Abstract Low-altitude high-resolution aerial photographs

allow for the reconstruction of structural properties of

shallow coral reefs and the quantification of their topo-

graphic complexity. This study shows the scope and limi-

tations of two-media (air/water) Structure from Motion—

Multi-View Stereo reconstruction method using drone

aerial photographs to reconstruct coral height. We apply

this method in nine different sites covering a total area of

about 7000 m2, and we examine the suitability of the

method to obtain topographic complexity estimates (i.e.,

seafloor rugosity). A simple refraction correction and sur-

vey design allowed reaching a root mean square error of

0.1 m for the generated digital models of the seafloor

(without the refraction correction the root mean square

error was 0.2 m). We find that the complexity of the sea-

floor extracted from the drone digital models is slightly

underestimated compared to the one measured with a tra-

ditional in situ survey method.

Keywords UAS � Drone � SfM-MVS � Shallow coral reef �
Structural complexity � Chain and tape

Introduction

Centimeter-resolution 3D (or 2.5D) mapping of very

shallow (\ 3 m depth) coral reefs is a challenge. Large

corals reach up to mean sea level, thus preventing the

navigation of vessels carrying ship-borne echo sounders

and limiting divers’ access to continuous top-view data.

Airborne bathymetric active light detection and ranging

(LiDAR) can overcome these limitations and provide

continuous sub-meter resolution data with a vertical accu-

racy in the range of 1–2 dm for shallow-water coral reefs

(Collin et al. 2018). However, LIDAR surveys are costly

and likely unjustified for small areas, and they allow for

minimal flexibility in the survey design.

In the last years, Unoccupied Aircraft System (UAS,

also called drones) started to be regarded as a third-gen-

eration source of remote sensing data (Simic Milas et al.

2018), providing scientists new and accessible tools to

explore the Earth surface (e.g., Casella et al. 2020; Dugdale

et al. 2019; Castellanos-Galindo et al. 2019; Mlambo et al.

2017) and allowing significant scientific advancement (e.g.,

Ramanathan et al. 2007). UAS regulation that has hindered

early scientific uses of UASs (Coops et al. 2019) is now

moving forward. The European Union represents an

example where the different UAS regulations of each EU

country are now unified under a common and simplified

regulation (EU 2018/1139 and implementing acts). A

review of worldwide UAS regulations is presented by

Stöcker et al. (2017). Concurrently, advances in computer

vision algorithms (Anderson et al. 2019) and hardware

(e.g., GPU) facilitated the use of photogrammetry through

Structure from Motion (SfM) (Ullman 1979) and Multi-

View Stereo reconstruction (MVS) methods (Scharstein

and Szeliski 2002). Today, SfM-MVS methods represent a

core data capture and analysis approach widely used by
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earth and environmental scientists (Anderson et al. 2019;

James et al. 2019).

These technological and scientific advances facilitate

the collection of centimeter-resolution continuous top-view

data of shallow reefs at relatively low cost with more

flexibility in the survey plan or experimental design (e.g.,

Casella et al., 2017). Although these are clear advantages

for coral reef mapping and research, few studies surveying

coral reefs with UASs and SfM-MVS exist compared to

studies on terrestrial ecosystems (David et al. 2021; Fallati

et al. 2020; Levy et al. 2018; Casella et al. 2017). The

refraction of light by water, which causes features on the

seafloor to appear shallower than they are may have led to

this discrepancy because it introduces more significant

errors than on-land environments. In addition, turbidity,

water surface roughness, and the maximum depth for light

penetration represent additional error sources (Joyce et al.

2018; Woodget et al. 2015). Some possible solutions to

reduce the effect of the refraction of light on UAS SfM-

MVS derived data exist or are being developed (Agrafiotis

et al. 2020; Shintani and Fonstad 2017; Dietrich 2017; Ye

et al. 2016; Woodget et al. 2015; Maas 2015).

This study aims to investigate the relative accuracy of

coral height reconstruction of two-media (air/water) SfM-

MVS datasets derived from low-altitude UAS flights on

shallow coral reefs (\ 3 m depth). Rather then focusing on

the geographic accuracy, our goal is to answer the ques-

tion: ‘‘how accurately (relative accuracy) can we recon-

struct coral height?’’. Working on a selected area in Palau

(western Micronesia), we assess the relative accuracy of

selected coral heights in the reconstructed Digital Surface

Models (DSMs) using 51 independent measurements

(IMs), and we calculate 2D and 3D seafloor rugosity,

comparing it with the results of the traditional ‘‘chain and

tape’’ in situ method (Risk 1972; McCormick 1994).

Methods

Field surveys were conducted in the Palau Archipelago,

western Micronesia (Fig. 1a), between November 2019 and

February 2020. We focused on nine shallow reefs located

in Nikko Bay (7�20013.100N 134�29007.400E) (Fig. 1a), a

semi-enclosed bay characterized by a maze of shallow-

water channels, separated by shallow sills emerging during

spring low tides (Golbuu et al. 2016). These reefs are of

particular ecological value and scientific interest because of

their unusually warm and acidic waters and counter-intu-

itively high coral coverage and diversity (Golbuu et al.

2016; Kurihara et al. 2021). They are also particularly

amenable to UAS surveys because they are sheltered from

the wind by steep rocky cliffs and have low hydrodynamic

influence from the adjacent ocean (Golbuu et al. 2016).

Therefore, study sites have periods of low hydrodynamic

and wave motion and relatively low suspended sediment

concentration. The surveys were carried out with calm

winds (less than 2 km h-1).

A consumer-grade UAS (DJI Phantom-4 Pro) was used

to collect 980 near nadir photographs, covering a total area

of 6830 m2 across all reef sites. The Phantom-4 Pro has an

integrated RGB sensor 1’’ CMOS (effective pixel: 20 M),

a focal length of 9 mm, and a resolution of 5472 9 3648

pixels (as per technical specifications: dji.com/phantom-

4pro). Nine different flights were programmed to survey

the sites at an altitude of 10 m (see Supplementary Table).

The DJI Ground Station Pro app (dji.com/de/ground-sta-

tion-pro) was used to program the UAS flights so that each

flight resulted in a 90% forward and lateral overlap. Two

types of markers were placed on the seafloor of each site

before the flights (Fig. 1c, d): ground control points (GCPs)

and scale bars (SBs). A total of 45 30 9 30 cm bright-

colored towels and 29 50 cm-long steel bars covered by

bright-colored tape were used as GCPs and SBs, respec-

tively. The geographic position of GCPs was collected

using a handheld GNSS receiver (Garmin eTrex� 10) with

a horizontal accuracy in the order of meters, and their

vertical position (local depth) was measured with a hand-

held Hondex PS-7 dive sonar with reference to the local

water level at the time of measurement. The position of

GCPs and the length of SBs were used to scale the point

cloud generated during the SfM-MVS process. The posi-

tion of GCPs was also used to georeference the point cloud,

optimize the image alignment, and minimize the sum of the

re-projection error and the georeferencing error of the

estimated internal camera parameters and point cloud in the

SfM-MVS method.

The acquired photographs, GCPs, and scale bars were

used as inputs in the SfM-MVS method through Agisoft

Metashape 1.6.2 (agisoft.com) to reconstruct a 3D model of

the scene captured by aerial photographs. Specifically,

DSMs and orthomosaics of each reef were reconstructed

(Fig. 1d, e). For a comprehensive description of the SfM-

MVS method, the reader is referred to Westoby et al.

(2012) and Carrivick et al. (2016).

To validate the DSMs, IMs were collected at each site.

Over the entire study area, the height of 51 corals was

measured with a meter rod in situ to the nearest centimeter.

The IMs are represented mostly by conspicuous massive

corals with one side almost perpendicular to the seafloor,

ending on a sand patch, and were easily recognized and

measured in the orthomosaics. The approximate geo-

graphic location of the 51 corals was recorded with the

same GNSS receiver used for GCPs. In case the corals used

as IM were not entirely conspicuous within the reef land-

scape in the proximity of the collected GNSS point,
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markers were placed near the corals to help their identifi-

cation on the orthomosaics.

Due to the refraction of light at the interface air–water,

depths appear shallower than they are. This effect should

be accounted for, given that the original DSMs calculated

by Agisoft Metashape are not corrected for refraction. To

account for this effect, we used a simple correction

(Dietrich 2017; Woodget et al. 2015; Westaway et al.

2000) based upon Snell’s Law, which governs the refrac-

tion of light between two media and is expressed as:

n1sinðiÞ ¼ n2sinðrÞ ð1Þ

Fig. 1 a Location of the survey sites in the Palau Archipelago. The

insets show the location of Palau in the Pacific Ocean and the location

of Nikko Bay in Palau; b 3D rendering of DSM and Orthomosaic

from one of the sites made with the R package ‘‘Rayshader’’
(github.com/tylermorganwall/rayshader/); c Detail of one original

aerial photograph; d and e Orthomosaic and digital surface model (of

the same area as c) obtained from the SfM-MVS workflow,

respectively. Examples of ground control point and scale bar are

also shown in the insets
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where n1 is the refractive index of seawater in Palau, n2 is

the refractive index of air (1.0), i is the angle of incident

light rays originating below the water surface, r is the angle

of refracted light rays above the water surface (Fig. 2a).

The simplified version of Snell’s Law uses the small-

angle approximation, with which, for angles less than ca.

15� (ca. 0.25 rad):

sin ið Þ � tan ið Þ � x

h
sin rð Þ � tan rð Þ � x

ha
; ð2Þ

where h is the real depth, ha is the apparent depth, and x is

the distance between the intersection of the light ray with

the sea surface and the point (Fig. 2a). This simplifies

Eq. 1 to:

h ¼ n1ha: ð3Þ

Since photos were acquired near nadir, the effect of

refraction introduced by oblique viewing angles (off-nadir

camera) is minimized. The refractive index is remarkably

constant (Westaway et al. 2001). Minor variations depend

on salinity, temperature, pressure, and wavelength (Austin

and Halikas 1976). Based on the ranges of sea surface

temperature and salinity in Palau (i.e., from 27 to 30.5 �C
and 33.6 ± 0.5 psu, as per Conroy et al. 2017, Colin 2018),

the refractive index for the study area has a value between

1.341 and 1.342 (Austin and Halikas 1976).

Topographic complexity was measured in situ along ten

20 m line transects using the traditional ‘‘chain and tape’’

method (Risk 1972; McCormick 1994) (Fig. 3a).

A * 0.2 cm bead ball chain was used. Given that each of

these transects’ starting and ending points were marked

in situ and are visible in the orthomosaics, it was possible

to identify the position of almost the same transects (digital

transects) on the refraction-corrected DSMs. Using Quan-

tum GIS (version 3.16, QGIS.org, 2022), we quantified the

linear rugosity (hereafter referred to as 2D rugosity) and

the area rugosity (hereafter referred to as 3D rugosity) on

the digital transects. Both in situ and 2D rugosity were

calculated by dividing the length obtained following the

shape of the terrain (i.e., bottom profile) with the linear

distance (for our case, it is 20 m for each transect) between

starting and ending points of the transect (Fig. 3a). The 3D

rugosity was calculated using the same method but

buffering the digital transect line 0.5 m on each side. In this

case, the 3D surface (DSM) was divided by 20 m2 (as the

transect swath is 20 m long and 1 m wide). The closer the

rugosity is to zero, the flatter is the terrain.

Results and discussion

The average resolution of the reconstructed orthomosaics

and DSMs is 0.3 cm pix-1 and 0.6 cm pix-1, respectively.

The average XY and Z errors on GCPs are 120 and 7 cm,

respectively (see Supplementary Table and Report).

Comparing the coral heights measured in situ (IMs) with

those estimated using corrected and uncorrected DSMs, we

find that using refraction-corrected DSMs reduces the root-

mean-square error (RMSE) from 21 to 10 cm (Fig. 2b).

The variation across sites is reported in the Supplementary

Table. It is noteworthy that coral height is still underesti-

mated in the corrected DSMs, albeit slightly. Compared to

Fig. 2 a Incident (i) and refracted (r) angles of the light ray (modified

and adapted from Dietrich 2017; Woodget et al. 2015; Westaway

et al. 2001); b Comparison between coral heights measured in situ and

derived from refraction-corrected and uncorrected DSMs, for the 51

IMs in the study area. The dotted line on panel b shows a 1:1

correlation for reference
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uncorrected DSMs, which underestimate coral heights by

35% (this is due to the current limits of the method and the

propagation of DSM errors, James et al. 2017), corrected

DSMs underestimate them by 13%. We argue that such

correction is effective when flying at a low altitude (e.g.

10 m) and collecting near-nadir images on very shallow

areas. The incident and refracted angles of the light ray

should be very small (\ 15�) for the correction equations to
hold true. Surveys conducted under different settings are

unlikely to benefit from this simple refraction correction.

Yet, very promising methods to correct the refraction of

light on SfM-MVS derived data are being implemented and

will hopefully become widely available (e.g., Agrafiotis

et al. 2020).

The UAS-derived 2D rugosity was always lower than

the in situ rugosity (Fig. 3b). This can be explained by:

(i) the underestimation of digital coral heights, (ii) the

different resolution of the chain and the digital transects

(* 0.2 cm and * 0.6 cm respectively), (iii) the fact that

the chain goes in small interstices that are not solved in the

3D model (e.g. those characterizing branching corals).

Also, the UAS-derived 3D rugosity which includes a larger

area has slightly lower values than the in situ rugosity

(Fig. 3b, c).

In this study, rather than concentrating on the absolute

depth of the reconstructed seascapes, we focus on the

reconstruction of selected coral heights within the scene,

which in turn defines reef topographic complexity.

Reconstructing shallow-water seascapes from UAS pho-

tographs is challenging and is subject to higher uncertain-

ties in the final products than those usually attained with

SfM-MVS topographic reconstructions of terrestrial habi-

tats. This is mainly because light rays travel through two

media (air–water), and many conditions need to be met

(e.g., atmospheric conditions, sea state, light penetration,

and water depth, nadir data collection) to achieve accura-

cies in the order of centimeters. Within this study, the

conditions of all nine sites on different dates allowed for

Fig. 3 a Difference between in situ vs 2D rugosity; b Histograms

representing reef rugosity as calculated in situ and from the DSMs

(2D and 3D rugosity, see text); c linear relationships (fitted lines and

confidence intervals) between the in situ rugosity and the DSM-

derived rugosity (both 2D and 3D). The dotted line shows the 1:1

relationship for reference
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their 3D reconstruction. Such conditions are not unique, as

shown in Fallati et al. (2020) who successfully monitored

biannual changes in substrate type and reef complexity in

the Maldives at a maximum water depth of 1.5 m using a

DJI Phantom 4 and SfM-MVS methods analogous to the

ones used here, albeit without the refraction correction

applied in this study.

Topographic complexity is one of the most striking

features of coral-dominated reefs. Complex topographies

offer ample space for reef-associated organisms to settle,

feed, and shelter from predators and water motion, thus

typically supporting higher levels of biodiversity (Graham

and Nash 2013). Central to maintaining complex topogra-

phies are processes that sustain net accretion and cemen-

tation of the reefs’ carbonate framework, which underpins

the functionality of reefs as barriers protecting shorelines

from wave-driven erosion (Perry et al. 2008). Measuring

topographic complexity on reefs provides information on

their capacity to support biodiversity and ecosystem ser-

vices. With increasingly common and prolonged marine

heatwaves causing severe coral mortality and leading to the

reduction of architectural complexity (Oliver et al. 2018), it

is urgent to optimize methods to quantify topographic

complexity accurately. The simple method proposed here

provides information on topographic complexity with a

vertical accuracy of 0.1 m using a 3D model of the seafloor

derived from UAS data. Further refinements and

improvements will be possible once corrections of refrac-

tion of light and additional error sources (e.g., water sur-

face roughness, light penetration) are developed and

integrated into the SfM-MVS method.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00338-

022-02244-9.
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