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• Estimates in Stevens’ power laws often display sensitivities to experimental design.
• These so-called ‘contextual effects’ concern range, location and averaging.
• This paper links them with the separable representation model of Luce and Narens.
• Theoretical results are illustrated using data from papers of R. Duncan Luce.
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a b s t r a c t

Estimates of the Stevens’ power law model are often based on the averaging over individuals of
experiments conducted at the individual level. In this paper we suppose that each individual generates
responses to stimuli on the basis of a model proposed by Luce and Narens, sometimes called separable
representation model, featuring two distinct perturbations, called psychophysical and subjective
weighting function, thatmaydiffer across individuals. Exploiting the formof the estimator of the exponent
of Stevens’ power law, we obtain an expression for this parameter as a function of the original two
functions. The results presented in the paper help clarifying several well-known paradoxes arising with
Stevens’ power laws, including the range effect, i.e. the fact that the estimated exponent seems to depend
on the range of the stimuli, the location effect, i.e. the fact that it depends on the position of the standard
within the range, and the averaging effect, i.e. the fact that power laws seem to fit better data aggregated
over individuals. Theoretical results are illustrated using data from papers of R. Duncan Luce.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A large part of the success of modern psychophysics is certainly
due to the versatility and simplicity of Stevens’ psychophysical
law (Stevens, 1946, 1951, 1957): namely, the notion that sensation
magnitude can be described as a power function of stimulus
intensity. This idea has in particular been popularized by Stevens
through the application of different directmeasuringmethods able
to reveal the law and to provide estimates of the exponent of the
power model in several sensory domains (see the posthumous
book by Stevens, 1975, for a comprehensive survey).

In possibly the simplest of Stevens’ direct measuring tech-
niques, known as ratio magnitude estimation, a subject is asked
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to compare two stimuli, a comparison stimulus d1 and a reference
standard d2, and to state in what proportion p the stimuli are with
respect to each other. According to the power law, the following
ratio scale of subjective intensities holds:


d1
d2

β
= p. (1)

Hence, the exponent β of the law can be easily estimated from
a series of trials, in which d1 varies between trials while the
standard d2 can both be kept constant or let vary as well (see
below). Magnitude estimation and the complementary approach
of magnitude production, in which the standard d2 is given and
the subject is asked to adjust d1 to a prescribed ratio p, are still
widely used (recent surveys, examples, discussions in several fields
of psychophysics in Fagot, 2011; Lawless & Heymann, 2010; Lim,
2011; Masin, 2014; Shofner & Selas, 2002).
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Notwithstanding the ample and enduring success, it is however
also well-known that Stevens’ power law suffers from both
empirical and theoretical shortcomings.

Under the empirical perspective, an ever growing experimental
literature has documented several inconsistencies and puzzles
of the law (Luce & Krumhansl, 1988, provide a classical survey;
Zwislocki, 2009, Chapter 2, a recent one). Among them, a list of
studies conducted since the early development of the approach
documented that the exponent β of Stevens’ law is sensitive to
the experimental parameters and design of the investigations. In
Section 2 we provide an account of the above earlier evidence.

Under the theoretical perspective, Stevens never provided a for-
malized theory of measurement. Successive scholars have worked
in the tradition of the representational theory of measurement (in
the three classic volumes of Foundations of Measurement, Vol. I by
Krantz, Luce, Suppes, & Tversky, 1971, Vol. II by Suppes, Krantz,
Luce, & Tversky, 1989, and Vol. III by Luce, Krantz, Suppes, & Tver-
sky, 1990) to give more proper mathematical and philosophical
foundations to the notion of psychophysical measurement (earlier
works in Krantz, 1972, Luce, 1959, 1990, Shepard, 1981, and sev-
eral others quoted in Luce, 1996, and Luce & Krumhansl, 1988).

Mainly, a recurrent criticism of mathematical psychologists
was that neither the power law nor Stevens’ method of direct
estimation were derived from primitive behavioral conditions,
or axioms, which could be independently expressed and tested.
The development of the representational theory of measurement
drawn in the three volumes of the Foundations represented in
such a respect a revolution (see, e.g., Steingrimsson, this issue, in
particular the Introduction).

An important more recent achievement developed in this
stream of literature includes the axiomatization of various novel
theories which comprehend Stevens’ model as a special case
(Augustin, 2006, 2010; Luce, 2002, 2004, 2008; Narens, 1996, 2002,
2006). Following a terminology introduced by Luce (2002), we say
formally that a psychological scale of subjective intensities can
be represented in a separable form if there exist a psychophysical
function ψ and a subjective weighting function W such that p is in
the following relation with d1 and d2:

ψ (d1)
ψ (d2)

= W (p) . (2)

Eq. (2) incorporates the notion that various and independent
distortions may occur both in the assessment of subjective
intensities and in the determination of subjective ratios. Stevens’
power model in Eq. (1) is obviously a particular case of separable
representation, holdingwhenW can be represented as the identity
function and ψ is a power function.

Several experiments have given substantial support to sepa-
rable representations, but not to the restrictions implied by the
power law (Augustin & Maier, 2008; Bernasconi, Choirat, & Seri,
2008; Ellermeier & Faulhammer, 2000; Steingrimsson, 2009; Ste-
ingrimsson and Luce, 2005a, 2007; Zimmer, 2005).

Narens (1996) has obtained Eq. (2) in an article in which he
formalized Stevens’ magnitude methods in terms of axiomatic
measurement theory.1 Luce (2002, 2004, 2008) has axiomatized
Eq. (2) as a special case of a global psychophysical theory of
intensity perception. The theory has been shown to be general
enough to be extended theoretically in many directions (Luce,
2012a, 2012b, 2013; Luce, Steingrimsson, & Narens, 2010). In
the course of the paper we will give some accounts of the
properties predicted and of the results obtained. We will also refer

1 Therein he also asserts something that is slightly more general than our Eq. (1),
namely W (p) = pk with k > 0, and W (1) = 1 (more detail in Section 3 below and
in Steingrimsson & Luce, 2007, in particular their Section 2.1.1).

to some earlier nonaxiomatic approaches that have considered
forms similar to separable representations providing experimental
results in their support (as in, e.g., Birnbaum, 1980; Birnbaum &
Elmasian, 1977 and Birnbaum & Mellers, 1978).

Given the inconsistencies against Stevens’ power law antici-
pated above anddescribed in detail below, a natural question arises
about what are the many people that keep fitting the power law
actually estimating.2 This is what we clarify in this paper. In order
to conduct the analysis we use an empirical working model devel-
oped from Bernasconi et al. (2008). In that previous paper, we esti-
mated several variants of separable representation models and we
saw which one performed best. In order to do so, we rewrote the
model in Eq. (2) using a log–log transformation, we added a Fech-
nerian error term, and then expanded the log-transformed func-
tions in polynomials of the various separable models. In this pa-
per we develop a similar model, but do not use polynomial expan-
sions. This allows for greater flexibility,whichweuse to reinterpret
the parameters associatedwith the power law. In particular, by ex-
ploiting the form of the estimator of β , we obtain an expression for
this parameter that we use to predict several facts, documented in
the earlier literature, on the sensitivity of β to the experimental
design, including the so called ‘range effect’, ‘location effect’ and
‘averaging effect’, which we illustrate with data digitized from two
classical experiments of Green and Luce (1974) and Luce and Mo
(1965).

We start in Section 2 with a review of the earlier evidence on
Stevens’ power law. In Section 3 we present the empirical working
model and its relations to the literature. Results are in Sections 4
and 5. In Section 4 we apply the model to the study of ratio
magnitude estimation with a standard for a single individual and
we provide a theoretical account of range and location effects. In
Section 5we showhowconducting the analysiswith data averaged
across individuals, rather than at the individual level, leads to the
averaging effect. Section 6 concludes with a summary of the main
findings and a discussion of extensions and implications of the
approach. The proofs are gathered in the Appendix.

2. Contextual effects

In the following we are going to present a series of phenomena
arising in magnitude estimation, as well as in related forms of
scaling, that describe some deviations with respect to Stevens’
power law that are often observed in the data. These are sometimes
called ‘context’ or ‘contextual effects’ in the literature.

One of the most commonly observed contextual effects is
the so-called ‘range effect’, i.e. the fact that for larger ranges
of δ1 (here and in the following δi = ln di) we expect β to
be smaller. Early evidence on the effect was observed by Engen
(1956), Engen and Levy (1958) andKünnapas (1960, 1961). Various
experiments conducted in the following years confirmed the same
conclusion (surveys and examples in, e.g., Bonnet, 1969a, 1969b;
Teghtsoonian, 1971, 1973; Vincent, Brown, Markley, & Arnoult,
1968). Poulton (1968) reviews the literature up to that date and
states that the range of stimuli ‘‘alone accounts for about 1

3 of
the variance in S. S. Stevens’ table of exponents’’ (p. 1). It should
also be noted that most of the previous evidence is based on data
grouped over individuals, while for individuals the situation is less
clear. The individual-level results in Pradhan and Hoffman (1963)
do not seem to support this contextual effect (see, however, below
for more discussion). On the other hand, always at the individual

2 For example, in addition to the surveys quoted above, in a systematic literature
search Kornbrot (2014) identifies 193 items with ‘‘magnitude estimation’’ in the
title published between 2000 and 2013 and remarks that just two studies have
estimated psychophysical functions more general than Stevens’ power law.
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level, Green, Luce, and Smith (1980, p. 485) observe ‘‘a slight, but
systematic, decrease of the slope with range’’. In any case, the
fact that individual-level studies yield no overwhelming support
for the range effect should not be taken as evidence that this is
stronger for averaged than for individual data, but only as a clue
that the literature reporting individual data is quite limited.

Another contextual effect is what is sometimes called ‘location
effect’. The exponent tends to be larger when the standard is
in the center of the range of δ1, near to or immediately above
the expectation Eδ1,3 than when it moves toward either extreme
of the range. Engen and Levy (1955) considered the case of
ratio magnitude estimation with a standard (and also without a
standard, but we will not address that case here) and reported
median values across a sample of 60 individuals for three choices
of the standard (low, middle and high) and two different continua
(weight and brightness). They found that the exponent is higher
for a middle value of the standard. The individual-level results
in Pradhan and Hoffman (1963) also confirm the effect. Further
evidence on grouped data is reported by Macmillan, Moschetto,
Bialostozky, and Engel (1974), which show that when Eδ1 = δ2
(their case MS) the exponent is larger than when either Eδ1 ≪ δ2
(their case LS) or Eδ1 ≫ δ2 (their case SS). The effect has also been
observed inMarks (1988, p. 522), Ahlström and Baird (1989), Fagot
and Pokorny (1989) and Kowal (1993, p. 558). The last reference
draws an unprecedented connection between the location and the
range effects, and suggests that the former may be more robust
than the latter (Kowal, 1993, p. 561) and may even have a role in
determining it (p. 555).

Another contextual effect concerns the behavior of the re-
sponses for extreme values of the stimulus δ1, i.e. values near the
threshold of detection or in a saturation area. We will not con-
sider this effect in the following because, on the one hand, Stevens
widely acknowledged its importance, in some cases incorporating
it in the law itself, and, on the other hand, this phenomenon gener-
ally becomes evident only for stimuli outside the ranges considered
inmost applications. Nevertheless,wediscuss it as it represents yet
another case of lack of fit of Stevens’ power law that separable rep-
resentations automatically take into account. The distortion in the
lower portion of the power law due to the presence of a thresh-
old of detectability (see Laming, 1997, Section 3.1) was acknowl-
edged by Stevens himself as a relevant phenomenon (see Stevens,
1958; Stevens & Stevens, 1960). If the threshold is d10, the law is
described by the equation p = k (d1 − d10)θ , where k depends on
the standard d2. The formulawas proposed in Ekman (1958, p. 288)
(see also Bonnet, 1969b, p. 248, MacKay, 1963, p. 1213). Piéron
(1963, p. 46) traces back the origin of this formula to Helmholtz.
Poulton (1968) reviews the literature up to that date and remarks
that d10 can be larger than the threshold if the power law needs
to be corrected for nonlinearity. This shows that, while d10 was in-
troduced to take into account the threshold of detectability, it has
since been used to correct a general lack of fit of Stevens’ power
law model on the lower part of the range of δ1.

We now move to the discussion of the so-called ‘averaging
effect’, namely the tendency of data averaged over individuals to
provide a better fit to Stevens’ power laws. Despite the paucity of
individual data, this is a quite recurrent trait of the evidence on the
power law. Indeed, averaging over individuals has always been a
distinctive feature of the original Stevens’ method. Stevens (1975,
pp. 23–24) describes the procedure through which he arrived, in
the summer of 1953, to consider averaging across individuals: ‘‘I
had no assurance that it would be proper to average the data from

3 Here and in the following,E denotes the expectation of a random variable. Even
though δ1 is not a random variable, it is still possible to take its expectation through
the argument explained at the beginning of the Appendix.

different observers. The general agreement among the responses of
the first few observers persuadedme that I had probably hit upon a
promising method’’. As a result of this finding, he started to devote
his attention tomeasures of central tendency (Stevens, 1955, 1956,
1957).

After these early years, several authors tried to apply Stevens’
model to individual data, with mixed results. Ekman, Hosman,
Lindman, Ljungberg, and Akesson (1968) attribute to Künnapas
(1958a,1958b) the first confirmation of the power law at the
level of the individual, but acknowledge that the power law had
been refuted at the same level by others, including Luce and
Mo (1965) and Pradhan and Hoffman (1963). Gulliksen (1959, p.
189) proposed a test of the hypothesis that data collected from a
sample of individuals obey the power law. Jones andMarcus (1961)
tested through ANOVA the hypothesis that the same power law
holds for a sample of individuals and rejected it. Analyses fitting
individual data were also conducted for models obtained as a two-
stage version of Stevens’ power law, where the subjective number
system is itself treated as a psychophysical power function of
arithmetic numbers (Curtis, Attneave, &Harrington, 1968; Ramsay,
1979; Rule and Curtis, 1973, 1977). The studies provided further
evidence of large differences between the functions fitted for the
individuals. Nevertheless, Teghtsoonian (1973, p. 3) affirmed that
‘‘there is nowconsiderable evidence that [the power relation] is not
an artifact of pooling data overmany observers but is evident in the
behavior of individual observers’’. More recently, Steingrimsson
and Luce (2006) have shown that the power form may not be the
best description for all individuals.

Stevens limited his analysis to the average of the group and
did not devote the same attention to measures of variability
around this central tendency (see Piéron, 1963, p. 46). Moreover,
he did not consider whether averaging across individuals is an
appropriate operation when individuals are heterogeneous. One
of the first papers to consider the latter question explicitly is
Sidman (1952). This line of research was pursued by Estes (1956)
(see, more recently, Estes & Maddox, 2005) who, after analyzing
several categories of functions, ended up justifying aggregation
even for functions that are modified in form by the operation of
averaging. What seems to lack from this stream of research is the
acknowledgment that the individual functions could be affected by
deviations, with respect to power laws, of such an intra-individual
complexity and an inter-individual variety that averaging hides
both of them.

The latter point is explicitly recognized in Green and Luce
(1974, p. 291), who argue against aggregation (see also Luce,
1995, p. 4): ‘‘one should not average over observers unless one
is quite sure of the functional form of the data, so that the true
form will not be distorted in the averaging process’’.4 As we will
show below theoretically and using the experimental evidence
from Green and Luce (1974) and Luce and Mo (1965), whether
individual data conform or not to Stevens’ model, there are good
mathematical reasons for which the fit improves after averaging
across individuals.

3. The working model

Stevens’ power model is a special case of a so-called separable
representation shown in Eq. (2). As indicated above, the separa-
ble representation has arisen in several modeling efforts. Narens
(1996) presented an axiomatization of Stevens’s ratio magnitude

4 In reference to learning curves, Skinner (1958, p. 99) makes a similar point:
‘‘The curves we get cannot be averaged or otherwise smoothed without destroying
properties which we know to be of first importance’’. Further discussions which
criticize aggregation are in, e.g., Laming (1997, p. viii) and Yost (1981, p. 212).
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production. He showed that a strong property, calledmultiplicativ-
ity, is implied by Stevens’ implicit assumptions that themethodde-
livers directly the psychophysical function of interest. He also de-
veloped a commutative property and showed that if neither it nor
the multiplicative property held, then magnitude production does
not provide ratio-scale measurements. However, if multiplicativ-
ity failed, but the commutativity property held, then the measure-
mentwas on a sub-scale of a ratio scale. Commutativity asserts that
the result of, say, first doubling (p = 2) a stimulus and then tripling
(p = 3) should be equivalent to first tripling and then doubling.
Multiplicativity asserts the stronger requirement that the result
should be equivalent to a single magnitude production instruction
of six times (2 × 3 = 6) the reference stimulus.

Luce (2002, 2004, 2008) derived separable representations as a
special case of a theory of global psychophysics originally devel-
oped from empirically testable assumptions for three psychophys-
ical primitives: joint presentations of pairs of stimuli, a respon-
dent’s ordering of such pairs, and judgments about two pairs of
stimuli intervals being related as some proportion. Steingrimsson
(this issue) provides a thorough summary of Luce’s model of global
psychophysics, including the more recent topics covered by the
theory.

A part of the research concentrated on the form of the
psychophysical function ψ and the subjective weighting function
W . Clearly, Stevens’ model in Eq. (1) holds when ψ is a power
function andW is the identity or it takes the slightly more general
power specification W (p) = pk, with k > 0 and W (1) = 1. In
particular, for Eq. (1) to hold, multiplicativity must hold and this
assumption impliesW (1) = 1 becauseW (1) ·W (q) = W (1 · q) =

W (q) iff W (1) = 1. However, Luce (2005) pointed out, initially
as a subtlety, that when multiplicativity fails, W (p) may still be a
power function with W (1) ≠ 1. In fact, removing the condition
W (1) = 1 leads to show that commutativity is all that is needed to
obtain ratio scalability. Steingrimsson and Luce (2007) presented
a careful analysis of the various conditions, providing behavioral
equivalents forW (p) being a power function or a so-called Prelec’s
(1998) exponential representation, in both cases with and without
the restriction W (1) = 1. The experimental evidence reported in
the same paper rejected the latter restriction, showing that most
respondents either satisfied the general power form (withW (1) ≠

1) or the general Prelec’s form (also with W (1) ≠ 1). Therefore,
as multiplicativity has been rejected in every domain in which it
has been evaluated (loudness, brightness, contrast, perception of
time, size of circles, and more), also W (1) = 1 has been rejected
(as a general rule) empirically. Augustin (2006, 2010) presented
theoretical extensions of Narens (2006) giving support to the fact
thatW (p) is either a power or a logarithmic function.

All the above approaches were developed for stimuli varying
on a single attribute. Luce et al. (2010) further expanded the
theory to stimuli varying in more than one attribute and called
the underlying axiom cross-dimensional commutativity. In the
same paper they tested the property with favorable results for
perception of loudness–pitch pairs. A subsequent paper of the
same authors also found support for the property in the case of
luminance–hue pairs (Steingrimsson, Luce, & Narens, 2012).

Experiments have also been conducted to evaluate the form of
ψ . Steingrimsson and Luce (2006) develop an analysis of Luce’s
global psychophysical theory for inherently binary stimuli (e.g., to
the two ears or to the two eyes). They evaluated the theory for
binaural loudness providing evidence supporting the notion that
ψ is a power function. Luce (2012a) expands the theory to unary
sensory intensities, that is for sensations which are inherently
one dimensional, like taste, vibration, shock, force, preference for
money, etc. He in particular observed that his original theory,
formulated in terms of joint presentation of two sensory organs,
had to be reformulated in the case of unary sensations because

the matching operation does not work in the same way in the
two situations. So, in some sense, his original theory did not cover
the unary case. He also found that an exponential form could
offer an improvement over the power law as a description of
psychophysical data for some unary domains, including some of
the data reported in Stevens (1975).

Separable forms have also similarities with earlier approaches
developed without axiomatic foundations, but nevertheless based
on the similar idea that two mathematical transformations affect
subjective measurements. One approach is the two-stage version
of Stevens’ power law quoted above (Attneave, 1962; Curtis et al.,
1968; Rule and Curtis, 1973, 1977). A more general model is a
theory of judgment functions (e.g., Birnbaum, 1980; Birnbaum &
Elmasian, 1977 and Birnbaum&Mellers, 1978). There,W (or better
its inverseW−1, see below) is replaced by a function JR introduced
directly as amonotonic judgmental transformation. Themodel has
been used to conduct several analyses, including one of the first
tests of a well-known implication of Stevens’ power law, stronger
than the power law itself, that if the physical ratios are constant
then the ratio judgments should be constant.5 The property was
systematically violated (Birnbaum & Elmasian, 1977).6

A characteristic of the approach is that it considers the bias
due to the judgment functions in the perspective of various
scaling methods and related psychophysical scales. Indeed, in the
approach the ratio model was often connected to a subtractive
model for category scaling, relating overt rated differences to
subjective differences. Various analyses comparing the twomodels
demonstrated that while magnitude estimations and category
ratings of the same stimuli are not linearly related, nevertheless
they were monotonically related for a number of continua (e.g.,
Birnbaum, 1980, 1982; Birnbaum, Anderson, & Hynan, 1989;
Birnbaum & Elmasian, 1977 and Birnbaum & Veit, 1974). This is
quite interesting also from the perspective of axiomatic separable
representations: on the one hand, it further shows the relevance of
the behavioral properties underlying separable representations to
address issues which go beyond Stevens’ power law;7 on the other
hand, it suggests that the machinery used below for the empirical
analysis of a ratio model may in principle be also applied to a
subtractive model. This is left for future research.

Given the uncertainty about the forms of ψ and W , we now
propose an analysis of Eq. (2) which does not impose any specific
form for the two functions. We only assume that W is monotonic,
so that it is invertible and we can write:

p = W−1

ψ(d1)
ψ(d2)


. (3)

We allow the function W to differ for p > 1 and p < 1; and we do
not restrict W (1) = 1. More importantly, our approach includes

5 This follows because, under the power law, d′
1

d′
2

=
d1
d2

⇐⇒ p′
= p. The latter

equivalence holds more generally, applying also to any model like, e.g., W (p) =
d1
d2

β
. This is called Stevens’ generalized model or STG in Bernasconi et al. (2008).

6 Analyses also showed that JR is not invariant, but ratio judgments (in addition
to the contextual effects described in Section 2) may change depending on
responding procedures and other details of the experiments (including the range
and distribution of the examples used in the instructions of ratio judgment tasks;
Hardin & Birnbaum, 1990).
7 Indeed, undertaking from the axiomatic point of view a question somehow

similar to the earlier literature, Luce (2012b) shows that the separable form for
magnitude production, when applied to fractionations and equisection scaling, is
inconsistent with Torgerson’s (1961) conjecture, namely the ides that respondents
fail to distinguish subjective differences from subjective ratios. This because the
conjecture implies that W is the identity function (which, as indicated above, is
however firmly rejected by data).
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an explicit error term in a stochastic version of Eq. (2). In order to
illustrate the approach, we define:

π = ln p
δi = ln di

lnW [exp (·)] = w (·)

lnψ [exp (·)] = Ψ (·) .

The constraints W (1) = 1 and ψ (1) = 1,8 when satisfied,
become respectively w (0) = 0 and Ψ (0) = 0. In this new
parameterization, we can write the representation as:

π = w−1 [Ψ (δ1)− Ψ (δ2)] . (4)
Following Bernasconi et al. (2008) andBernasconi, Choirat, and Seri
(2010, 2011), we now add a Fechnerian error term ε to the model:

π = w−1 [Ψ (δ1)− Ψ (δ2)] + ε. (5)
Even if δ1 = ln d1 is not a random variable, wewill nevertheless

take expectations and variances with respect to δ1. A justification
for this is at the beginning of the Appendix. On the other hand,
the error term ε is supposed to be a random variable and we
will repeatedly need its expectation E (ε) and variance V (ε)
as well as its conditional expectation E (ε |· ) and conditional
variance V (ε |· ). Therefore, from a mathematical point of view,
we require that E (ε |δ1 ) = 0. This is much weaker than, but
implied by, the requirement that the error term ε is independent
of δ1. As an example, E (ε |δ1 ) = 0 is still compatible with
heteroskedasticity, i.e. the situation in which V (ε |δ1 ) is not
constant, while independence is not.

The error term is justified in various ways. In fact, we recall
that Eq. (2) ‘‘[is] about idealized situations and [does] not involve
considerations of error’’ (Narens, 1996, p. 109). Rarely, however,
have there been discussions about how to properly integrate a
theory of errors in measurement theory (Luce, 1997, p. 81).9 The
Fechnerian model, while perhaps very direct and simple,10 is
nevertheless able to account for several sources of random noise
that may affect subjective measurement data, including those due
to lapses of reason or concentration, states of mind, trembling,
rounding effects, and computational mistakes. Moreover it is
somehow consistent with the notion that there is a well-defined
structure underlying separable representations, which however
people apply in actual experimental tasks with errors. This
introduces naturally some variability in the responses even when
the same stimuli are given (an issue about which we will say
something below).

Conversely, it is important to remark that while the exact form
of Eq. (2) (or Eq. (4)) applies equally to experiments of magnitude
estimation or magnitude production, the stochastic version in Eq.
(5) implies that p = exp (π) is in fact the subject’s answer of a ratio
magnitude estimation task to which a multiplicative error term
(additive in the log–log transformation) is appended.11

8 Eq. (2) suffers from an identification problem, namely if ψ satisfies it, so does
k · ψ . Therefore, if W (1) = 1, it is always possible to choose ψ in such a way that
ψ (1) = 1. However, we will not impose these constraints in the following.
9 A general approach, alternative to the introduction of an error term, which

mathematically represents judgments and preferences with randomness is that
of probabilizing directly deterministic measurement structures (Regenwetter &
Marley, 2001, and references therein). Marley (1972) is an early model in such a
spirit within the magnitude estimation literature.
10 In particular, the Fechnerian model of errors assumes that people have well-
defined systems of values, preferences, judgments, that they apply in actual choices
with errors. The model has for example been recently criticized by an approach
which treat people systems as inherently stochastic and leads to models in which
noise and inconsistencies arise because of the imprecision of people to use the same
specification of the theory every time it is used (discussions and references in, e.g.,
Loomes, 2005 and Myung, Karabatsos, & Iverson, 2005).
11 Obviously, a similar approach could nevertheless be used to add a Fechnerian
error term to the respondent’s chosen stimulus and obtain a stochastic version of

4. Ratio magnitude estimation with a standard for a single
individual

Suppose that the stimulus δ1 and the response π are linked by
the following model:

π = f (δ1)+ ε,

where f (δ1) := E (π |δ1 ). This is equivalent to E (ε |δ1 ) = 0. We
do not yet suppose that f comes from a separable representation,
but if this is the case, f (·) := w−1 [Ψ (·)− Ψ (δ2)]. The function
f can be estimated in a quite precise way using the data digitized
from Luce’s papers (see below). Moreover, the exponent estimated
in a Stevens’ power law, β , can be linked to the function f through
the formulas contained in our theorems below. As a result, we
create a correspondence between the contextual effects in β and
the form of the function f as estimated on data from Luce’s papers.
The support for separable representations comes from the fact
that the function f has features that are coherent with separable
representations (the inflection point around the standard, the
approximate linearity over short ranges, etc.).

We suppose that Stevens’ power law model is fitted instead:

π = α + βδ1 + u.

This model is obtained from Eq. (1) by taking a log–log
transformation as in Eq. (4), letting α = −βδ2 and adding an error
term u.

Then the following proposition holds.

Proposition 1. The parameters of Stevens’ power law are defined by
the moment equalities α = Eπ − β · Eδ1 and:

β ≃ cor (f (δ1) , δ1) · f ′ (Eδ1) ·


1 +

f ′′(Eδ1)
f ′(Eδ1)

·
E(δ1−Eδ1)3

V(δ1)

+
f ′′′(Eδ1)
3f ′(Eδ1)

·
E(δ1−Eδ1)4

V(δ1)
+

f ′′2(Eδ1)
4f ′2(Eδ1)

·
E(δ1−Eδ1)4−V(δ1)2

V(δ1)

 1
2

(6)

where f (·) := E (π |· ). Moreover, the following equality holds:

cor (π, δ1) = cor (f (δ1) , δ1) · cor (π, f (δ1)) . (7)

Eq. (6) allows one to say something about the value ofβ . In order
to interpret it correctly, it is wise to use as a guideline Figs. 1 and 2
in Luce and Mo (1965) and Fig. 1 in Green and Luce (1974).12

Figs. 1 and 2 in Luce and Mo (1965) display the results of
two experiments, respectively concerning weights and sound
intensities, in which subjects are asked to compare a stimulus
with a fixed standard. Fig. 1 in Green and Luce (1974) displays
the results of their Experiment 1, qualified in their paper as
a ‘‘magnitude estimation with a standard (MES)’’ task.13 These
figures show a strong variability across subjects, but the picture
that comes out is quite clear. Below the standard δ2, the function
δ1 → w−1 [Ψ (δ1)− Ψ (δ2)] appears generally concave. Above the
standard δ2, there seems to be more variability in the form of the
curve: for most subjects the curve is first convex for values of δ1
not too far from δ2, and for some of them it becomes eventually
concave for large δ1. Around the standard δ2, the curves often
display an inflection point whose salience depends on the strength
of the convexity immediately above the standard.

the model for magnitude production. The analysis of such an alternative model is
left for future work.
12 We signal here that Teghtsoonian, Teghtsoonian, and Baird (1995) have
provided an alternative explanation of the data in both papers.
13 Note that the same paper also contains a ‘‘ratio estimation (RE)’’ experiment in
which the standard varies across different administrations of each pair of stimuli.
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Fig. 1. Function f estimated through local polynomial regression for Experiments 1 and 2 in Luce and Mo (1965); the dots are the points in the original paper, the vertical
line is the standard.

In order to ease the interpretation we have digitized Figs.
1 and 2 in Luce and Mo (1965) and, on the basis of the data,
we have estimated the functions f , f ′ and f ′′ through local
polynomial regression (see, e.g., Wand & Jones, 1995, Sections
5.2 and 5.7), using a normal kernel and a bandwidth selected by
visual inspection. When looking at Figs. 1–3, the reader should
take into account that the estimated functions suffer from bias
near the extremes of the range. Despite the huge inter-individual
variability, the graphs show that f ′ is generally decreasing below
δ2 and concave upwards above it, while f ′′ is increasing below δ2
and concave downwards above it.

Now, let us return to Eq. (6), starting from the first term, i.e. the
correlation between δ1 and w−1 [Ψ (δ1)− Ψ (δ2)]. This measures
the linearity of w−1 [Ψ (δ1)− Ψ (δ2)]. Therefore, we expect β to
be higher when δ1 varies in an interval in which the function
w−1 [Ψ (δ1)− Ψ (δ2)] is roughly linear in δ1. This holds when both
w−1 andΨ are almost linear, butmay be true alsowhenw−1 andΨ
offset each other, thus yielding an almost linear f . As to the second
term, it shows that the exponent depends on the slope of the true
curve in a neighborhood of Eδ1; this implies that if the mean of δ1
changes, also β may change. The third term depends on the higher
moments of δ1:
• If the distribution of δ1 is not symmetric, then E (δ1 − Eδ1)3 ≠

0 and the sign of f ′′ (Eδ1) determines whether the fourth term
decreases or not.

• If the distribution of δ1 is symmetric, then E (δ1 − Eδ1)3 =

0. This happens when, say, the values of δ1 are in arithmetic

progression. Then, the fourth term may decrease or increase:
note that f ′′2(Eδ1)

4f ′2(Eδ1)
·

E(δ1−Eδ1)4−V(δ1)2

V(δ1)
≥ 0, while f ′′′(Eδ1)

3f ′(Eδ1)
·

E(δ1−Eδ1)4

V(δ1)
R 0 according to the behavior of f ′′′ (Eδ1) R 0.

This formula can help explain the range and location effects. First,
as concerns the range effect, the linear term δ1 maybe able to better
adapt to the function f , i.e. cor (f (δ1) , δ1) may be higher, when
the range is small. The nonlinearity tests in Pradhan and Hoffman
(1963, Table 1) show that linearity is never rejected for shorter
ranges (condition VI) while it is often at longer ranges (conditions
I–V). Using the data digitized from Figs. 1 and 2 in Luce and Mo
(1965), we have performed regression analyses at the individual
level selecting pairs of stimuli and responses corresponding to
subsets of the whole range of stimuli. This confirms the previous
conclusion (i.e. that increasing the range leads to a decrease in the
correlation coefficient), but the effect is far from being equal for all
the individuals.

Second, as concerns the location effect, the formula predicts
that β should be higher when f ′ (Eδ1) is higher. This leads us to
investigate the behavior of f ′. As an example, Pradhan andHoffman
(1963, pp. 536–537) state that for three subjects out of six the
lower section is steeper than the upper one; this is also apparent
from their Fig. 2. This is confirmed by Figs. 1 and 2 in Luce and Mo
(1965), whose estimated derivatives are reported in our Fig. 3, and
Fig. 1 in Green and Luce (1974), from which it is apparent that the
slope is higher in a range under the standard. This implies that,
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Fig. 2. Function f ′ estimated through local polynomial regression for Experiments 1 and 2 in Luce and Mo (1965); the vertical line is the standard.

when the expectation Eδ1 is under the standard δ2, we may expect
f ′ (Eδ1) and β to be higher.

Third, the formula accounts for what Bonnet (1969b, pp.
251–252) calls ‘‘[l]a variabilité de la valeur de l’exposant pour les
échelles moyennes en fonction des modifications de la situation
expérimentale’’. This happens because there seems to be an
inflection point near the standard and the curve appears to be
less regular in that neighborhood: Pradhan and Hoffman (1963,
p. 537) state something similar for the case of several individuals.
When the range is not too large, changing the range of δ1 or the
standard δ2 may lead to haphazard results. It is interesting to
remark, indeed, that the figures in Luce and Mo (1965) show a
great variability in linearity around δ2: in Fig. 1, the curve δ1 →

w−1 [Ψ (δ1)− Ψ (δ2)] is reasonably linear for most subjects in a
neighborhood of the standard δ2, while the opposite is true in Fig.
2 of the same source (see also Figs. 1, 2 and 3 in Bernyer, 1962, Fig.
1 in Green & Luce, 1974).

As to Eq. (7), it is probably better to consider the squares of its
terms. Here, cor2 (π, f (δ1)) = 1−

V(ε)
V(π) is the R2 associated with a

separable representation, namely the percentage of the variance
of π explained by the variation in f (δ1) (see Eq. (5)). Instead,
cor2 (π, δ1) = β2

·
V(δ1)
V(π) is the R2 associated with a Stevens’ power

law, namely the part of the variance of π explained by the linear
variation in δ1. The relation:

cor2 (π, δ1) = cor2 (f (δ1) , δ1) · cor2 (π, f (δ1))

means that the fit of Stevens’ power law is better (i.e. cor2 (π, δ1)
is higher) whenever the fit of the separable representation is better

(i.e. cor2 (π, f (δ1)) is higher) and whenever the function f is
more easily approximated by a straight line (i.e. cor2 (f (δ1) , δ1)
is higher). In line with the statistical literature quoted in Weiss
(1981, pp. 432–433), asserting that power laws are quite good
at fitting monotonic (Weiss has ‘‘monotone’’) relations (see, e.g.,
Good, 1972, 1987), cor2 (f (δ1) , δ1) is expected to be quite near
to one but, as also the other terms are quite near to one, it can
make the difference. An order of magnitude of these correlations
can be obtained from the analysis of Figs. 1 and 2 in Luce and Mo
(1965); remark that in this case each value of π is obtained as the
logarithm of the arithmetic mean of 100 measurements,14 so that
this correlation more accurately measures cor (f (δ1) , δ1) (and not
cor (π, δ1)). The correlation coefficient varies between 0.95 and
1.00 with 10 values out of 12 between 0.985 and 0.995.

5. Ratio magnitude estimation with a standard for several
individuals

We suppose that the same stimuli are proposed to J different
individuals.15 We will introduce an index j, as in fj, wj, Ψj, fj, πj,
to indicate that the corresponding quantity is relative to the jth
individual. Then the following proposition holds.

14 Themost natural choicewould have been to take the logarithmof the geometric
mean or the arithmeticmean of the logarithmof the values, but this should not alter
the results.
15 A related but different problem, namely aggregation of individual judgments in
the context of pairwise comparison matrices, has been considered in Bernasconi,
Choirat, and Seri (2014).



8 M. Bernasconi, R. Seri / Journal of Mathematical Psychology ( ) –

Fig. 3. Function f ′′ estimated through local polynomial regression for Experiments 1 and 2 in Luce and Mo (1965); the vertical line is the standard.

Proposition 2. In the case of several individuals and a unique
standard, β is given by (6) where f (x) :=

1
J

J
j=1 fj (x) and fj (x) :=

E

πj |δ1


.

If we define π :=
1
J

J
j=1 πj, the following formulas hold:

cor (f (δ1) , δ1) =
1
J

J
j=1

cor

fj (δ1) , δ1



·

 J2V(fj(δ1))
J

i=1
V(fi(δ1))+2


1≤i<ℓ≤J

Cov(fi(δ1),fℓ(δ1))


1
2

,

cor (π, δ1) =
1
J

J
j=1

cor

πj, δ1



·

 J2V(fj(δ1))+J2V(εj)
J

i=1
V(fi(δ1))+

J
i=1

V(εi)+2


1≤i<ℓ≤J
Cov(fi(δ1),fℓ(δ1))


1
2

,

and:

cor (π, δ1) = cor (f (δ1) , δ1) ·

1 +

J
j=1

V(εj)

J2V(f (δ1))


−

1
2

.

Suppose to estimate the model:
π = α + βδ1 + β(2)δ21 + u.

Then β =
1
J

J
j=1 βj and β(2) =

1
J

J
j=1 β

(2)
j , where βj and β

(2)
j are

the corresponding coefficients on the data obtained for individual j.

Remark 1. Consider the simplified situation inwhich V

εj


≡ σ 2
ε ,

V

fj (δ1)


≡ σ 2

f for any j and Cov (fi (δ1) , fℓ (δ1)) ≡ ρf σ
2
f for any i

and ℓ. In this case:

cor (f (δ1) , δ1) =


J

1+(J−1)ρf

 1
2

·
1
J

J
j=1

cor

fj (δ1) , δ1


≥

1
J

J
j=1

cor

fj (δ1) , δ1


,

cor (π, δ1) =


J

1+(J−1)ρf
·

σ 2
f +σ 2

ε

σ 2
f +

σ2ε
1+(J−1)ρf

 1
2

·
1
J

J
j=1

cor

πj, δ1


≥

1
J

J
j=1

cor

πj, δ1


,

as both J
1+(J−1)ρf

≥ 1 and
σ 2
f +σ 2

ε

σ 2
f +

σ2ε
1+(J−1)ρf

≥ 1. As concerns

cor (f (δ1) , δ1), note that ρf , being the correlation between two
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similar functions, will generally be quite near to 1. Moreover,
note that cor (π, δ1) ≤ cor (f (δ1) , δ1) but, if J is large enough,
cor (π, δ1) ≃ cor (f (δ1) , δ1). The result just stated shows that in
general one can use cor (π, δ1) to approximate cor (f (δ1) , δ1) and
that, if the variances are not too different, cor (f (δ1) , δ1) is higher
than the average of the correlations 1

J

J
j=1 cor


fj (δ1) , δ1


.

The previous proposition shows that the same result in Proposi-
tion 1 still holds true in the present case when the function f is
intended as an average over several individuals. As the new func-
tion is an average of individual functions, it is interesting to stress
the effects of averaging.

Two different phenomena are at work here. The first one,
highlighted in Remark 1, is the fact that, if the variances of
the answers are not too different between individuals (i.e. in
a neighborhood of V


fj (δ1)


≡ σ 2

f ), the correlation of the
mean function f with δ1 is higher than the mean correlation of
the individual functions fj with δ1. Therefore grouping increases
linearity: this holds even if all individuals are sufficiently similar.
The second phenomenon is the fact that, if one considers β(2) as a
measure of nonlinearity, the fact that this coefficient is obtained
as an average of the individual coefficients β(2)j implies that
coefficients with different signs tend to average out. This requires
a certain degree of heterogeneity across individuals. As a result,
even if the individuals functions fj (x) := w−1

j


Ψj (x)− Ψj (δ2)


are sufficiently nonlinear, the aggregate f is often linear. Pradhan
and Hoffman (1963, pp. 537–538) lucidly state that the curve
based on data aggregated over individuals ‘‘is straighter than every
significantly nonlinear individual [. . . ] curve and is not significantly
different from linearity. This tendency toward linearity [. . . ]
suggests that the power function is an adequate psychophysical
function on the data averaged over a group of individuals and,
hence, is an artifact of grouping’’. A similar fact is remarked in
Macmillan et al. (1974, p. 344) when they say that at the individual
level ‘‘[t]he correlation between log stimulus and log response [. . . ]
averaged 0.972; all correlations based on grouped data exceeded
0.99’’.

Now, we turn to evaluate the accuracy of the main formula
of Proposition 2 through the data in Green and Luce (1974). In
order to do so, we digitized the data from their Fig. 1. The 20
values of the stimulus δ1 submitted to each of the six individuals
are given by the equispaced sequence from 32.5 to 80 dB with
separation between adjacent stimuli equal to 2.5 dB. The standard
δ2 is equal to 50 dB. This implies that we have 120 observations,
i.e. 20 responses to 20 stimuli for 6 individuals.16 Fig. 4 represents
the 120 observations on the same δ1 scale, with different symbols
representing different individuals. Values of π can be read on
the vertical axis, that appears different from the one in Green
and Luce (1974) because the latter represents the original value
p in logarithmic coordinates. The 20 black solid points are the
averages over the responses that the 6 subjects gave to each
stimulus. The solid black line is the function f estimated through
local polynomial regression. The correlations between π and δ1
for each of the subjects (in our notation cor


πj, δ1


, for j ∈

{1, 2, . . . , 6}) are 0.993, 0.997, 0.993, 0.981, 0.981, 0.989; the
correlation between all the responses and the stimuli is 0.844,
the average correlation (in our notation 1

J

J
j=1 cor


πj, δ1


) is

0.989. The correlation between the average responses π and the
stimuli (in our notation cor (π, δ1)) is 0.998, that is higher than the
previous one and than any individual correlation. This shows that
averaging increases linearity.

16 Strangely enough, Fig. 1 in Green and Luce (1974) contains 124 observations.
We have removed the observations that do not fit with the description of the text,
i.e. that seem to correspond with a value of δ1 equal to 82.5 dB. Even the standard
varies between the caption of Fig. 1 (in which it is 50 dB) and the text (in which it
is 55 dB). However, this will not affect our analysis.

Fig. 4. Individual responses (smaller points; each symbol corresponds to a different
individual), averages of the responses across individuals (larger black points),
standard δ2 (vertical black line) and function f estimated through local polynomial
regression (black solid curve) for Experiment 1 in Green and Luce (1974).

Fig. 5. Function f ′ estimated through local polynomial regression (black solid
curve) and value of the Stevens’ exponent in an interval of length 12.5 around the
point (black dotted curve) for Experiment 1 in Green and Luce (1974).

Now we come to the illustration of Proposition 2. In Fig. 5, we
represent as a solid black line the value of the function f ′ estimated
through local polynomial regression from the observations of
Fig. 4. Then for each group of 6 adjacent stimuli in the interval
[32.5, 80], we estimate the exponent of Stevens’ power law based
on the 36 observations (6 responses from 6 individuals) and we
plot the value of the exponent against the average value of the 6
stimuli as a black dotted curve. In practice, the latter represents the
couples (Eδ1, β), where each value ofβ is computed on a restricted
range of length 12.5 centered in Eδ1, while the former represents
the curve


Eδ1, f ′ (Eδ1)


. The very good agreement between β and

f ′ (Eδ1) is due to the fact that, on each subinterval of these data,
cor (f (δ1) , δ1) ≃ cor (π, δ1) is quite near to 1 (as cor (π, δ1) varies
between 0.990 and 0.999) and E (δ1 − Eδ1)3 = 0. This provides a
graphical check of our formula. From a statistical point of view, this
result is reasonable, because local polynomial regression estimates
the derivative of the function in a given point using the slope of a
linear regression fitted in a neighborhood of the point.
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Despite averaging increases linearity, some salient facts con-
cerning the individual functions fj can still be found in f . As an
example, the fact that most individuals have a decreasing f ′

j over
most of the range implies that also f ′ will have this property. This
explains why the evidence on the location effect is so overwhelm-
ing in grouped data, namely because averaging across individuals
reduces the impact of those that do not conform to the more com-
mon behavior in the sample. This can be seen in Fig. 4 where the
only individual showing a different curvature of fj does not succeed
in changing the fact that f ′ is decreasing as the other f ′

j are.

6. Conclusion

It is by now well-known in mathematical psychology that the
application of Stevens’ methods to measure sensation requires
the fulfillment of specific axioms. In particular, the axiomatization
of magnitude methods is about what scale of measurement
they produce. The axiomatization of Narens (1996) included the
multiplicative axiom, largely found to fail empirically. However,
Luce’s (2002, 2004, 2008) model of global psychophysics (see also
Steingrimsson & Luce, 2007) later showed that, by abandoning the
requirement W (1) = 1, the commutativity axiom is equivalent
to obtaining ratio-scale measures. This axiom has been favorably
evaluated in many experiments. The conclusion, currently, is
that magnitude methods do produce ratio-scale measures (e.g.,
Steingrimsson, this issue, in particular Section 3.1).

The recent literature has devoted more attention to testing
the axioms than to linking precisely the well-known empirical
inconsistencies of Stevens’ power law to the newer theories
of psychological measurement. This article has used separable
representations in the spirit of Narens and Luce to examine several
contextual effects involving Stevens’ power law.

We have focussed on ratio estimation and have developed
an approach to analyze how the parameter β of Stevens’ power
law in Eq. (1) depends on the distribution of the stimuli and
on a function f which links δ1 to π and involves the subjective
weighting function W and the psychophysical function ψ of
separable representations.We have obtained several results which
explain and predict the sensitivity of Stevens’ power law to the
experimental parameters and conditions. We have illustrated the
results referring to various classical papers originating in the
sixties and seventies around Stevens’ model, including earlier
experiments performed byGreen and Luce (1974) and Luce andMo
(1965).Wehavemainly focused on the contextual effects knownas
‘range effect’, attributable to the varying linearity of f over different
ranges, ‘location effect’, depending on the derivative of f at the
standard, and ‘averaging’, or ‘grouping effect’, explained by the
linearization properties of aggregation over individuals.

Despite the references to the earlier literature, themain interest
of the paper is not historical. Stevens’ power law is still applied
in several fields of psychophysics. Separable representations
represent a special case of the more global psychophysical theory
of intensity perception developed by Luce (2002, 2004, 2008)
which is receiving substantial empirical support. So it is quite
important to establish precisely how the power exponent of
Stevens’ law depends on the actual psychophysical functions.
Our approach could give even more precise predictions on the
behavior of Stevens’ exponent with more knowledge about the
shape and forms of both ψ and W . This could come pursuing the
line of research drawn in several recent experiments by Luce and
Steingrimsson (Steingrimsson and Luce, 2005a, 2005b, 2006, 2007,
2012).

Finally, we remark that while our approach has focussed
on ratio magnitude estimation, the method can be extended to
analyze also magnitude production. Among other things, this
would offer the opportunity to consider also the so-called Stevens’

‘regression’ effect, which Luce (2013) considered in his last single-
author paper, with a related but distinct approach: in it, following a
suggestion by Ragnar Steingrimsson, hemade an explicit reference
to the role of the estimation method in the regression effect.
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Appendix. Proofs

The values of δ1 are generally chosen in a deterministic way
but, nevertheless, we will take expectations with respect to the
distributions of the stimuli (unless they are fixed, as is the case
of δ2 for ratio magnitude estimation with a standard). This can be
justified by the following reasoning. Consider, as an example, the
case inwhich δ1 takes the values {δ1i, i = 1, . . . , I}. It is possible to
define a design probabilityP(I) (A) , 1

I ·
I

i=1 1

δ1,i ∈ A


.Whether

I is supposed to diverge or not, P(I) can be considered ‘‘near’’ to
an asymptotic design measure P (see Cox, 1988). Therefore, in the
following expectations and other moments should be considered
as computed according to the design or the asymptotic design
measure.

Proof of Proposition 1. In the following we will repeatedly use
the facts that Cov (ε, f (δ1)) = E (ε · f (δ1)) = 0 and Cov (ε, δ1) =

E (ε · δ1) = 0. Both derive, through the Law of Iterated
Expectations, from E (ε |δ1 ) = 0, and lead, respectively, to
Cov (π, f (δ1)) = V (f (δ1)) and Cov (π, δ1) = Cov (f (δ1) , δ1).

The formula of the OLS slope parameter in a linear regression
yields:

β =
Cov (π, δ1)

V (δ1)
=

Cov (f (δ1) , δ1)
V (δ1)

= cor (f (δ1) , δ1) ·


V(f (δ1))

V(δ1)

 1
2
.

Then, we use the delta method for moments to get:

V (f (δ1)) ≃ f ′2 (Eδ1) · V (δ1)+ f ′ (Eδ1) f ′′ (Eδ1) · E (δ1 − Eδ1)3

+
f ′ (Eδ1) f ′′′ (Eδ1)

3
· E (δ1 − Eδ1)4

+


f ′′ (Eδ1)

2
4

·

E (δ1 − Eδ1)4 − V (δ1)2


.

Now we turn to the correlation. We have:

cor (π, δ1)
cor (π, f (δ1))

=
Cov (π, δ1)

√
V (f (δ1))

Cov (π, f (δ1))
√

V (δ1)

=
Cov (f (δ1) , δ1)

√
V (f (δ1))V (δ1)

= cor (f (δ1) , δ1) .

Proof of Proposition 2. The two models considered in the state-
ment, namelyπ = α+βδ1+u andπ = α+βδ1+β

(2)δ21 +u, must
also hold averaging over individuals. Therefore, they respectively
becomeπ = α+βδ1+u andπ = α+βδ1+β

(2)δ21+u.Wewill also
use repeatedly the facts that Cov (ε, δ1) =

1
J

J
j=1 Cov


εj, δ1


=

0, because Cov

εj, δ1


= E


εj |δ1


= 0, and that Cov (π, δ1) =

Cov (f (δ1) , δ1).
The formula of β in the first model is β =

Cov(π,δ1)
V(δ1)

=

Cov(f (δ1),δ1)
V(δ1)

. Therefore, the proof of Proposition 1 still holdswith the
new definition of f .



M. Bernasconi, R. Seri / Journal of Mathematical Psychology ( ) – 11

As concerns the correlation cor (f (δ1) , δ1), we have:

cor (f (δ1) , δ1) =
Cov(f (δ1),δ1)√
V(f (δ1))V(δ1)

=
1
J

J
j=1

Cov(fj(δ1),δ1)√
V(fj(δ1))V(δ1)

·


V(fj(δ1))
V(f (δ1))

 1
2

=
1
J

J
j=1

cor

fj (δ1) , δ1



·

 J2V(fj(δ1))
J

i=1
V(fi(δ1))+2


1≤i<ℓ≤J

Cov(fi(δ1),fℓ(δ1))


1
2

.

A similar equality holds for cor (π, δ1):

cor (π, δ1) =
Cov(π,δ1)√
V(π)V(δ1)

=
Cov(f (δ1),δ1)V


f (δ1)+

1
J

J
j=1

εj


V(δ1)

=
1
J

J
j=1

cor

πj, δ1


·

 V(fj(δ1))+V(εj)

V(f (δ1))+V


1
J

J
i=1

εi




1
2

=
1
J

J
j=1

cor

πj, δ1



·

 J2V(fj(δ1))+J2V(εj)
J

i=1
V(fi(δ1))+

J
i=1

V(εi)+2


1≤i<ℓ≤J
Cov(fi(δ1),fℓ(δ1))


1
2

.

Remark that:

cor (π, δ1) =
Cov(π,δ1)√
V(π)V(δ1)

= cor (f (δ1) , δ1) ·

1 +

J
j=1

V(εj)

J2V(f (δ1))


−

1
2

.

As concerns the coefficient β(2), from π = α + βδ1 + β(2)δ21 + u,
it is easy to see that β(2) is defined by the formula:

β(2) =
Eδ21 ·E


δ21π


−Eδ31 ·E(δ1π)

Eδ21 ·Eδ41−


Eδ31

2 =
1
J

J
j=1

Eδ21 ·E

δ21πj


−Eδ31 ·E(δ1πj)

Eδ21 ·Eδ41−


Eδ31

2

=
1
J

J
j=1

β
(2)
j .
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