## 5,5'(Oxy-bis(methylene)bis-2-furfural (OBMF) from 5-hydroxymethyl-2-furfural (HMF): a systematic study for the synthesis of a new platform molecule from renewable substances

## Mattia ANNATELLI<sup>1\*</sup>, Davide DALLA TORRE<sup>1</sup>, Fabio ARICO<sup>1,</sup>

<sup>1</sup> Department of Environmental Sciences, Informatics and Statistics Ca'Foscari university of Venice, Via Torino 155, 30172 Venezia Mestre, Italy \*E-mail: mattia.annatelli@unive.it

The continued exploitation and depletion of fossil fuels has prompted the scientific community to search for more sustainable and environmentally friendly alternatives. In the last decade, the synthesis of biomass-derived chemicals has become a priority to boost the transition from refinery to biorefinery.<sup>1</sup> Sugars are an extremely abundant bio-resource in nature; even today, one of the most studied reactions is the synthesis of 5-hydroxymethyl-2-furfural (HMF). This compound is considered extremely important for biorefinery because of its wide range of possible applications (pharmaceutical, biofuels, polymer precursors, surfactants).<sup>2</sup> However, it has been observed, during the spontaneous degenerative process of HMF, the formation of a compound that could be equally important 5,5'-[oxybis(methylene)]bis-2-furfural (OBMF).

The synthesis of OBMF is scarcely reported in the literature, only in recent years interest in this dimer of HMF has emerged for its possible applications in industry.<sup>3</sup> Good yield values of OBMF are reported in the literature from HMF (Figure 1) in the presence of an acid catalyst; however, the solvents used are the most common halogenated and/or aromatic solvents, known to be toxic. The objective of this work was to find a viable synthetic route to access OBMF without having to resort to the use of such solvents and, in addition, utilize already commercially available and inexpensive acid catalysts. Through small-scale optimizations, the best solvent was found to be dimethyl carbonate;<sup>4</sup> In addition, two heterogeneous acid catalysts - Purolite 269 and ferric sulfate (Fe2(SO4)3) - showed excellent efficiency in promoting the HMF etherification reaction with quantitative yields (>90%). Subsequently, a scale-up of the reaction was carried out, obtaining OBMF with an isolated yield of 81%. Given the excellent results obtained, this work can be a starting point to undertake the study of new synthetic methodologies for this molecule such as continuous flow reactions of which the literature is lacking.

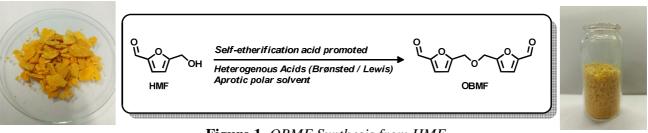



Figure 1. OBMF Synthesis from HMF.

## References

<sup>&</sup>lt;sup>1</sup> a) Y. Zhao et al., Bioresour. Technol., **2012**, 114, 740–744; b) D.B. Bevilaqua et al., J. Clean. Prod., **2013**, 47, 96–101. <sup>2</sup> a) J.J. Bozell et al., Green. Chem., **2010**, 12, 539–554; b) L.V. Romashov et al., Chem. Asian J., **2017**, 12, 2652–2655; c)

A. Bohre *et al.*, *ACS Sustainable Chem. Eng.*, **2015**, *3*, 1263–1277 d) Z. Xu *et al.*, *ChemSusChem*, **2016**, *9*, 1255–1258. <sup>3</sup> a) J.M. Timko *et al.*, *J. Am. Chem. Soc.*, **1974**, *96*, 7159–7160.

<sup>&</sup>lt;sup>4</sup> P. Tundo et al., Green Chem., **2018**, 20, 28–85