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Abstract. From 1974 to 1986 various scholars independently proposed
a learning algorithm able to determine the values of the weights of the
multi-layer perceptron: the one known as error back-propagation. A cor-
rect and profitable utilization of this learning algorithm - and of its sev-
eral variants - needs the assumption of formal hypotheses and the skilful
usage of some expedients. For example, from a theoretical point of view,
any activation function of a multi-layer perceptron and the related cost
function have to be differentiable with respect to the weights of the multi-
layer perceptron and, from an operative standpoint, the user, on the sub-
jective basis of her experience, has to specify the training-phase dynamics
of some crucial parameters. Now, considering the importance of a suit-
able learning approach for the usability of the multi-layer perceptron, and
given the limitations peculiar to the error back-propagation algorithm,
in this paper we propose a Monte Carlo-based learning algorithm which
is able to run without assuming specific analytical hypotheses and with-
out the need of user’s interventions. In particular, among the features
characterizing our learning approach, the proposed Monte Carlo-based
algorithm allows to associate to the estimator of each weight of the multi-
layer perceptron a probability distribution converging (in distribution)
to the standardized normal one; moreover, our learning algorithm per-
forms a global search in the space of the weights, and because of that the
learning process is not likely to stick in correspondence of local minimum
points of the cost function.
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methods.
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1 Introduction

A possible reconstruction of the initial phase of the scientific history of the
multi-layer perceptron (in the following: MLP) can be summarized as follows:
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— from 1957 to 1961 Frank Rosenblatt realized the one-layer perceptron, the
ancestor of the MLP, an artificial neural network able to separate in a finite
number of training trials any given linearly separable classes;

— in 1969 Marvin Minsky and Seymour Papert published a book ([6]) in which
they proved the incapability of the perceptron to implement some elementary
logical and predicate functions like, for instance, the X OR; this theoretical
result discouraged the research on neurocomputation for several years;

— although since the late sixties it was known that the MLP’s architecture
could have overcame the limitations peculiar to the one-layer perceptron,
only from 1974 ([8]) to 1986 ([7]) various scholars independently proposed
a learning algorithm able to determine in a suitable way the values of the
weights of the MLP: the algorithm known as error back-propagation.

It is undeniable that the introduction of this learning algorithm has strongly
contributed to the definitive take-off of the MLP.

It is also undeniable that a correct and profitable utilization of the error
back-propagation algorithm - and of its several variants - needs the assumption
of formal hypotheses and the skilful usage of some expedients. For example,
from a theoretical point of view, any activation (or gain, or transfer) function
of a MLP and the related cost function have to be differentiable with respect to
the weights of the MLP itself (see, for more details, [4]), and, from an operative
standpoint, the user, on the subjective basis of her experience, has to specify
the training-phase dynamics of some crucial parameters like, for instance, the
learning rate and the momentum parameter (see, for instance, [1]).

Now, considering the importance of a suitable learning approach for the
usability of the MLP, and given the peculiar limitations of the error back-
propagation algorithm, in this paper we propose a Monte Carlo-based learning
algorithm which is able to run without assuming specific analytical hypotheses
and without the need of user’s interventions. In particular, among the various
features characterizing our learning approach, in this section we anticipate the
following ones:

— our learning algorithm allows to associate to the estimator of each weight
of the MLP a probability distribution converging (in distribution) to the
standardized normal;

— as will become clear beginning from the next sections, our Monte Carlo-based
algorithm performs a global search in the space of the weights; because of
that, the learning process is not likely to stick in correspondence of local
minimum points of the cost function.

The remainder of this paper is organized as follows: in the next section we
shall present our learning algorithm and some theoretical results related to it;
in section 3 we shall report the positive features characterizing our learning
approach and some theoretical results related to them; in section 4 we shall
describe the main shortcomings characterizing our learning algorithm; and in
section 5 we shall give some concluding remarks.
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2 The Monte Carlo-based learning algorithm

Before we present our Monte Carlo-based learning algorithm we need a little bit
of notation which will be useful in this section and in the next ones.

Henceforth we take into account a MLP characterized by M weights. In
detail:

— w(i), with ¢ =1,..., M, is a random variable denoting the i-th weight;
- w=(w(l),...,w(i),...,w(M)) is the vector of the weights.

Furthermore, in each of the IV iterations the algorithm has to run:

— w;(), with j = 1,...,N and i = 1,..., M, is the value that the learning
algorithm assigns to the i-th weight at the j-th iteration; in particular, each
w,; (%) can take values in a suitably pre-established real interval [a(3),b(3)],
with a(i) < b(%) (notice that w;(7) is the realization of the random variable
with w(¢) at the j-th iteration);

- w; = (wi(1),...,w(@);,...,w;(M)), with j = 1,...,Nand i = 1,..., M,
is the vector of the realized values the learning algorithm assigns to the M
weights at the j-th iteration; in particular, each w,; can take values in the
weight space W = [a(1),5(1)] x ... x [a(i),b(3)] x ... x [a(M),b(M)].1

Now, we can present our Monte Carlo-based learning algorithm in the fol-
lowing itemized form:

step O: let D :=<(z;,y, ),l =1,...,L; be the input-output data set, where
=b

z, denotes the [-th vector of the inputs, Y, denotes the [-th vector of the out-
puts, and L denotes the number of the input-output patterns; moreover, let

Cly,--- ’QL’QLE’ .. ,QL’-;) be a cost function, where Qz,j’ withl=1,...,L,
denotes the I-th vector of outputs determined by the MLP in correspondence
to the j-th vector of the realized values of the weights wy and to the [-th
vector of inputs z;;

step 1: initialize the iteration counter j to 1;

step 2: determine the values w;(4), with 4 = 1,..., M, by generating a real-
ization of M mutually independent random variables, each of them uniformly
distributed in [a(7), b(7)] respectively;

step 3: determine all MLP’s vectors of outputs Y5 withl =1,...,L, in
correspondence of the vector of the realized values of the weights w; =
(wj(1),...,w(%)j,...,w;j(M)) and of the vector of inputs z;, with{ = 1,. .., L;

step 4: determine the value C; := C <g1, e ’QL’Q-I,J" . ,QL,J.) of the cost
function;

step 5: increase the iteration counter j by 1;
step 6: if j < N then go to step 2, else go to the next step;

! Of course, we assume that the vector of the (unknown) true values of the weights
belongs to W.
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step 7: order the vectors w; = (w;(1), ..., w(i)j, ..., wj(M)), with j =
1,..., N, according to the increasing values C; that the cost function takes
in correspondence of every vector w; itself, and denote the so ordered vectors
by w; = (w;(1), ..., w(5)j, - .-, w;(M));

step 8: consider the first N < N of the vectors w;, with j =1,...,N, ie

Wiy ooy Wiy ooy W ~» Where N is the number of vectors belonging to a suitable
neighbourhood of the vector of the true values of the weights w* = (w*(1),
.., w*(@), ..., w*(M)) which is related to the unique? global minimum

points of the cost function;®

step 9: compute the values of the weights of the MLP as follows: w(i) =
L 50 y(3), with§ = 1,..., M;*
step 10: release the vector @ = (wW(1),...,w(:),...,wW(M)) of the values of

the MLP’s weights and end the learning algorithm.

Before to argue about the meaningfulness of the Monte Carlo-based learning
algorithm we propose (see the next section), we spend some words about the
determination of N. _

Recalling the definition of IV given in step 8, we can determine it as follows:

N = [Np] (1)
where
p is the probability for a vector of realized values of the weights to belong to a
suitable neighbourhood of w*.5
Notice that in such a way we define, though indirectly, the neighbourhood of
w*.
In order to determine p, we give and prove the following proposition.

Proposition 1. Let E; denote the event “w;(i) € (w*(i) — e~ (3),w*(¢) + £ (3)) 7,
where €= (2), et (i) >0, foraj € {1,...,N} and withi=1,... .M. Ifw* € W,
if the values w;(i) are generated by a realization of M mutually independent
random variables, each of them uniformly distributed in [a(i),b(:)] respectively,

and if e~ () < w*(3) — a(i) and €™ (2) < b(3) — w*(7), then

M et (@) + e (i)

p=Pr(EiN...NE;N...NEpy) = b — al)

(2)

=1

and

pe(0,1). (3)

2 The assumption on the uniqueness of the global minimum points of the cost function
will be relaxed in section 4.

% In the continuation of this section we shall explain how to determine N ;

4 By the notation “~ we denote the estimator of the corresponding weight.

® |-] is the maximum integer which does not exceed the value taken by the expression
inside the notation itself.
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Proof. The values w;(i), for a j € {1,...,N} and with 2 =1,..., M, are gener-
ated by a realization of M mutually independent random variables. Due to their
mutual independence,

M
p:Pr(El/\.../\Ei/\.../\EM)=HPI'(E«;)~ (4)

=1

Furthermore, each of these random variables is uniformly distributed in
[a(2), b(3)] respectively, therefore

Pr(E;) = Pr(w;(3) € (w*() — e (3), w*(z) + €T (2))) =
= {[w* (@) +e7 ()] - [w* (@) —e~ (D]} 50 —al) (5)
et (i) +e(9)
~b(i) = a(d)
Now, substituting (5) in (4) one obtains the thesis (2).
With regard to the thesis (3), recalling that by hypothesis e (¢), e (i) > 0

foralli = 1,...,M, and that by construction a(i) < b(i) (see section 2), one
has

,witht=1,..., M.

_et(@i)+e(d)
N RO

from which p > 0. Moreover, by hypothesis e~ (i) < w* (i) — a(¢) and €7 (1) <
b(i) — w*(3), with ¢ = 1,..., M, therefore

>0, withi=1,..., M,

et (i) +e~(3) < [b(3) — w*(i)] + [w* (i) — a(?)] = b(z) — a(é), withi =1,..., M,
from which

et(i) + e (3)

= 0 —an)

<1,withi=1,...,M,

from which p < 1.7

3 The positive features of our learning algorithm

A first positive feature of our Monte Carlo-based learning algorithm is simply
the one we anticipated in section 1: our learning approach does not require the
assumption of specific analytical hypotheses concerning the activation functions
of the MLP and the related cost function, and moreover it does not need any
intervention from the user.

® Notice that if there exists ¢ € {1,..., M} such that e~ (2) =&t (E) =0, then p=0.
" Notice that if €7 (i) = w* (i) —a(i) and € (3) = b(i) —w*(3) for all ¢ = 1,..., M, then
p=1.
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All this contributes to improve the usability of the MLP. In particular, notice
that it gives to the user the possibility to choose the cost function in a way
suitably depending on the specific application to implement.

A second positive feature of our learning algorithm is due to the fact that
the Monte Carlo-based approach we utilize satisfies the hypotheses of the central
limit theorem. Consequently, it is possible to associate to the estimator of each
MLP’s weight - in the asymptotic way which follows - a probability distribution
converging (in distribution) to the standardized normal:

W) —w* (i) aq

s6) [V

N(0,1),withi=1,..., M, (6)

where

~

5(4) is the standard deviation \/31\7 > (w; (%) — @(3))%, with i = 1,..., M (see,

j=1
for instance, [2], [3], and [5]).
From a training-phase point of view, the classical result (6) has an impor-
tant implication.® Recalling from basic inferential statistics that the standard

deviation of the estimator @(¢) is 5(7) / VN, withi=1,...,M, it is possible

to associate the confidence interval which follows to each of the (unknown) true
values of the weights w*(7):

w*(i) € (a(z’)—za/f—@ @(z’)+za/2§@~)  withi=1,...,M, (7)

VN’ VN

where

242 1s the value taken by the standardized normal distributed random variable
z in correspondence of one of the pre-established customary confidence interval
« (for example: if @ = 0.05, then 2925 = 1.96).

Thanks to the determination of the confidence interval reported in (7), our
learning algorithm allows to give some assessment about the meaningfulness of
the estimate of the MLP’s weights.

A third positive feature we emphasize with regard to our Monte Carlo-based
learning approach arises from the fact that the learning approach we propose
performs a global search in the space of the weights W. In order to prove this
assertion, we give the following corollary (deriving from Proposition 1) in which
we state that, at each iteration of our learning algorithm, all the neighbourhoods
contained in W which differ among them only for their respective centers have
the same probability to be “visited” by our Monte Carlo-based approach.

Corollary 1. Let E;; denote the event “w; (i) € (W1 (i) — £~ (3), w1 (3) + €7 (4))”
and let E; o denote the event “w;(i) € (Wa(i) — e (1), Wa(:) + €¥(2))”, where

8 Of course, only for values of N sufficiently large the left-side probability distribution
can be regarded as a standardized normal one.
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{ﬁl(l), ey %1(?:), ceey ﬁl(M)}, {ﬁg(l), ey ﬁz(i), ceey ﬁg(M)} € W and
e~ (%), et (?) > 0, foraj € {1,...,N} and with i = 1,...,M. If the val-
ues w;(t) are generated by a realization of M mutually independent random
variables, each of them uniformly distributed in [a(t),b(z)] respectively, and if
e~ (1) < Wh(1) — a(i) and e (3) < b(i) — Wy (i), with h = 1,2, then

PI‘(E]_,l/\.../\Ei,l/\.../\EMyl)=PI‘(E1,2/\.../\Ei,g/\.../\EM,Q)=

Iy EMUELa(0} ®)

Proof. It is sufficient to mime the proof provided for the thesis (2) substituting
Wn(i) to w*(3), with h=1,2 and withi =1,..., M.

Since our learning algorithm performs a global search in W, the learning
process is not likely to stick in correspondence of local minimum points of the
cost function.

4 Some shortcomings of our learning algorithm

A first shortcoming of our learning approach is closely linked to the nature of the
Monte Carlo-based methods. In detail, in order to reduce the standard deviation

of the estimator w(i) from ﬁj% to %, where ¢ > 1 and with i = 1,..., M
N cVN

(and consequently to reduce the amplitude of the confidence interval reported
in (7), one has to increase N from |N p| to [¢® [Np]] (see, for instance, [2] and
[3]).9:10

Because of it, sometimes profitable applications of our Monte Carlo-based
learning algorithm could be time-consuming. In order to mitigate the undesir-
able effects of this feature, noticing from (1) and Proposition 2 that for given
M, [a(?), b(7)] and N, with i = 1,..., M, the required number of iterations de-
creases as €1 () + €7 (i) increases,!! our learning algorithm could be utilized in
accordance with the two-stage procedure we propose in the following itemized
form:

— at first, perform a rough determination of the values of the weights of the
MLP by using our learning approach with a not-so-particularly-small value
of the width e*(z) + = (3);

® ] is the minimal integer which exceeds the value taken by the expression inside the
notation itself.

10 Alternative approaches are focused on the reduction of 5(4), with i = 1,..., M, but
their application in not always straightforward (see, for more details, (2], [3], and
5).

*! We recall that €™ (3) + €7 (i), with s = 1,..., M, is the width of the real interval to
whom the true value of the weight w(i) belongs.
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— then, refine the determination of the value of the weights of the MLP by using
some suitable post-optimization numerical methods (see, for more details,

[5])-

A second shortcoming of our Monte Carlo-based learning approach arises
when the MLP’s cost function is characterized by more than one global mini-
mum point wi = (wi(1), ..., wi(%),..., wi(M)), ..., wp = (wi(1), ..., wi(9),

, Wi (M ), ..., where k > 1. In such a case, the first /V vectors of the weights
Wiy ovey Wy, - wjvv (see steps 7 and 8) could belong to neighbourhoods cor-
responding to dlﬁerent global minimum points; consequently, the sample mean
w(i), with ¢ = 1,..., M, would be meaningless.

In order to avoid this shortcoming, the learning algorithm presented in section
2 can be improved by inserting the following supplementary steps between step
8 and step 9:

Wi, - - W } perform

step 8.1: given the set of N vectors W = {27)1, C W

some kind of cluster analysis on 1t in order to specify @ > 1 subsets Wl,
, W, ..., Wg, such that U = W;12
step 8. 2 on the basis of some sultable cluster indicator, detect the “best”
subset among the former ) ones, Wq*, with ¢* € {1,...,Q}, and detect its
cardinality;
step 8.3: update W to Wq* and update the value of N to the cardinality of
W
step 8.4: if N < | Np| then go to step 2, else go to step 9.

This improvement of our Monte Carlo-based learning algorithm allows to
determine the sample means w(z), with i = 1,..., M, by using only the vectors
of the weights belonging to the neighbourhood corresponding to the “best” of
the global minimum points of the cost function.

5 Concluding remarks

A first remark we present arises from the (simple) consideration that the Monte
Carlo-based learning algorithm we propose offers evidence for possible exten-
sions. In fact, it could be easily modified in order to be able to perform learning
in a wide variety of inferential approaches.

A second remark we give concerns with the fact that, from a methodological
point of view, our learning algorithm does not require any a priori - both objec-
tive and subjective - probabilistic information about the (unique) process gen-
erating the input-output data set D (like, for instance, it occurs in the Bayesian
approach instead).

12 Of course, the specific kind of cluster analysis to perform has to be chosen in a
manner such that all the vector(s) y; with j € {1,..., N}, belonging to the same
neighbourhood of a given global minimum point of the cost function has to belong
to the same subset Wz, withg € {1,...,Q}.
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A third remark we report is related to the fact that our learning algorithm

could also be utilized as a post-optimization numerical method.
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