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Abstract 
Investment performance evaluation is one of the pillars of finance and its techniques have 
refined throughout the years. This work focuses on the evaluation of the investment 
performance achieved through a top-down investment strategy analyzed using the Brinson 
model: a set of techniques that permits to algebraically examine the performance contributions 
of the investment decisions taken. The model, that originated in 1985, has been constantly 
refined throughout the years to overcome some of its major problems. In particular, this work 
analyzes the improvements that permit to apply the Brinson model to a multi-period 
timeframe and to a risk analysis process. Lastly, this work will present a new approach that 
adapts the Brinson model to a multi-period timeframe. This new approach refines some of the 
tools presented in the literature and analyzes the investment decisions from a risk-return 
perspective rather than a return-only perspective. 
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1 Introduction

Performance attribution is a discipline that allocates the active return of an investment
among the investment decisions taken during the period. This subject consists of many
tools and, in this article, we will focus on the Brinson model: a well-known approach for
the algebraic decomposition of the active return attained through top-down investment
decisions.

The article will encompass: the story of the Brinson model (briefly explained to keep
track of the refinements underwent by this paradigm), the improvements proposed to some
of its tools (increase in preciseness leads to a more correct evaluation) and, in conclusion,
this article will present a new model for performance and risk attribution.

2 History of the model and its refinements

This paragraph is aimed to give a clear presentation of the Brinson model and the modifi-
cations it has underwent during the last 25 years.

In 1985 Gary Brinson and Nimrod Fachler issued a method to decompose the active
return attained through top-down investment decisions1: the Brinson model. The idea
behind it remains compelling: algebraically decompose the arithmetic active return of an
investment into allocation and selection decisions2. In other words, the arithmetic active
return is calculated as an arithmetical difference between the portfolio and the benchmark
return: ARt = Rt−Rt.Then, allocation and selection effects (the decisions that an investor
takes when following a top-down investment strategy) are consequently expressed as3:

Allocation :
∑
i

(wi − wi)(ri −Ri) (1)

Selection :
∑
i

wi(ri − ri) (2)

For ease of visualization, the subscript t has been eliminated.
This model has been a huge success in the finance field mainly because it is simple

(results can be easily reported and explained) and intuitive (the rationale behind it is

1Investment strategies that involve two decisions taken in the following order: allocation (invest in sectors
that are forecasted to outperform the market) and selection (among those sectors, select the stocks to invest
in).

2The interaction effect has been included into the selection effect; for further reference: Laker, Damien.
2000. What is this Thing Called Interaction?. The Journal of Performance Measurement; vol. 5, no. 1,
(Fall), pp. 43-57.

3wi: benchmark weight of asset i;
wi: portfolio weight of asset i;
ri: return attained by asset i in the benchmark;
ri: return attained by asset i in the portfolio;
R: portfolio return (single-period);
R: benchmark return (single-period).
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easy to follow). On the other hand, it has one main drawback: it cannot be effectively
implemented into a multi-period timeframe because both the sum and the compounding of
the single-period arithmetic returns are not equal to the multi-period arithmetic return4.
Specifically:

RT −RT ̸=
T∑
t=1

(Rt −Rt); (6)

or:

RT −RT =
T∑
t=1

(Rt −Rt) + ϵAr . (7)

Where ϵAr is called residual: a variable that can be either positive or negative and it is
the sum of all the cross products that arise in the calculation above5.

The Brinson model decomposes the active returns and, as a consequence, it does not
make sense to decompose an active return that appears to be unusable at a multi-period
level.

4For instance, for a three periods investment the arithmetic multi-period active return is equal to:

RT −RT = (1 +R1)(1 +R2)(1 +R3)− (1 +R1)(1 +R2)(1 +R3). (3)

This is different from the sum of the single-period active returns (the arithmetic active return is based on the
simple interest rationale; as a consequence, it is logical to sum the single-period active returns to calculate
the multi-period active return):

RT −RT ̸= (R1 −R1) + (R2 −R2) + (R3 −R3). (4)

The multi-period active return is also different from the compounding of the single-period active returns
(this is to demonstrate that also under the compounding method the equation does not hold):

RT −RT ̸= (1 +R1 −R1)(1 +R2 −R2)(1 +R3 −R3)− 1. (5)

5For the three-period investment of the preceding footnote:
The multi-period active return is:

RT −RT ̸= (1 +R1)(1 +R2)(1 +R3)− (1 +R1)(1 +R2)(1 +R3). (8)

Performing the calculations:

RT−RT ̸= (R1−R1)+(R2−R2)+(R3−R3)+R1R2+R1R3+R2R3+R1R2R3−R1R2−R1R3−R2R3−R1R2R3.
(9)

Where the residual is:

ϵ = R1R2 +R1R3 +R2R3 +R1R2R3 −R1R2 −R1R3 −R2R3 −R1R2R3. (10)

As it is possible to see:

RT −RT =

T∑
t=1

(Rt −Rt) + ϵAr . (11)

This equation explains the residual under the arithmetic approach. The residual under the geometric ap-
proach will be analyzed later.
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Two paths has been followed to overcome this problem:

1. Continue with the arithmetic decomposition of the active return. The problem to
solve when following this path is to allocate the residual among the single-period
effects. This process is done by means of the so-called arithmetic linking algorithms:
equations that split the residual among single-period effects 6 and that are based on
the rationale of the simple interest rate (rate of returns are summed to and subtracted
from each other to calculate the multi-period rate of return).

2. Shift to a geometric decomposition of the active return and then apply the Brinson
model to the return thus calculated. The geometric active return is calculated as:
GV t = 1+Rt

1+Rt
− 1. This can be effectively implemented into a multi-period context

because the compounding of the single-period active returns equals the multi-period
active return7. Therefore, this approach provides a multi-period active return that
can be effectively decomposed. Nonetheless, the problems arise when the Brinson
model - refined for a geometric use - is applied to this base: simply speaking, if the
geometric active return is decomposed into allocation and selection decisions, it cannot
be effectively recomposed. This problem, that will be deeply analyzed in the following
paragraphs, is solved by the geometric linking algorithms8.

At this point, we have to decide which path is preferable: arithmetic active return or
geometric active return? The literature on the topic is still divided: some authors prefer the
intuitiveness of the arithmetic active return, some others the preciseness of the geometric
active return 9. In our opinion, the question can be summarized by referring to a topic of

6The most common arithmetic linking algorithms are:

• Cariño, David R. 1999. Combining Attribution Effects Over Time. The Journal of Performance
Measurement; vol. 3, no. 4 (Summer), pp. 5-14.

• Frongello, Andrew Scott Bay. 2002. Linking Single-period Attribution Results. The Journal of Perfor-
mance Measurement; vol. 6, no. 3 (Spring), pp. 1022.

• Menchero, Jose. 2004. Multiperiod Arithmetic Attribution. Financial Analysts Journal. vol. 60, no.
4, pp. 76-91.

• Mirabelli, Andre. 2001. The Structure and Visualization of Performance Attribution. The Journal of
Performance Measurement; vol. 5, no. 2 (Winter), pp. 55-80.

7Continuing from the example above, for a three periods investment the geometric multi-period active
return is equal to:

1 +RT

1 +RT

− 1 =
(1 +R1)(1 +R2)(1 +R3)

(1 +R1)(1 +R2)(1 +R3)
− 1. (12)

The compounding of the single-period geometric added values is:

1 +R1

1 +R2

· 1 +R2

1 +R2

· 1 +R3

1 +R3

− 1 =
1 +RT

1 +RT

− 1. (13)

8For a clear presentation of geometric and arithmetic linking algorithms: Mirabelli, Andre. 2001. The
Structure and Visualization of Performance Attribution. The Journal of Performance Measurement; vol. 5,
no. 2 (Winter), pp. 55-80.

9For further reference: Bacon, Carl. 2002. Excess Returns - Arithmetic or Geometric? The Journal of
Performance Measurement; vol. 6, no. 3 (Spring), pp. 23-31.
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the first class of corporate finance taken at the University: real interest rate calculation.
Real interest rate is intuitively calculated as:

real interest rate ∼= nominal interest rate - inflation rate; (14)

but is correctly computed as:

(1+real interest rate)-1 =
(1+nominal interest rate)

(1+inflation rate)
− 1. (15)

As a consequence, we recognize the intuitiveness and the simplicity of the former calcu-
lation (arithmetic active return) but we prefer the preciseness and the correct computation
of the latter one (geometric active return). Preciseness and correct computation are a must
when dealing with portfolios worth many tens of million dollars because a small percentage
difference can lead to a significant misallocation of funds. Therefore, the article will now
focus on the geometric active return: it will briefly explain its rationale and it will develop
“the unified framework for performance and risk attribution”, an approach that is aimed to
solve the problems of the geometric method by looking at it from a different perspective.

3 Geometric performance attribution

This paragraph explains the path that we decided to follow and its problems.
Geometric performance attribution started to become popular during the second half

of the 1990s. This method calculates and decomposes the active return of an investment
differently from the arithmetic approach. As Menchero stated ≪ the relative performance is
defined arithmetically in terms of a difference and geometrically in terms of a ratio ≫10. As
a consequence, if the arithmetic method needs a subtraction to calculate the active return,
the geometric method needs a ratio. This method presents no problem at a multi-period
level: the compounding of the single-period active returns thus calculated correctly equals
the multi-period active return.

The problem, though, arises when the Brinson model is applied to the single-period
active return. In fact, once the performance of the period is decomposed among single-sector
selection and allocation effects, it cannot be effectively recomposed to form the portfolio-
level single-period active return. The problem can be better understood if mathematically
described as follows.

The Brinson model applied to the geometric framework uses two ratios to decompose
the geometric active return of the period. The first one is used to calculate allocation
and selection effects at the portfolio-level (a level that expresses the aggregate of all the
allocation and selection decisions taken during the analyzed period)11:

10Menchero, Jose. 2000. An Optimized Approach to Linking Attribution Effects Over Time. The Journal
of Performance Measurement;. vol. 5. no. 1 (Fall), pp. 36-42.

11For ease of explanation, the subscript t has been eliminated since the calculations are always referred to
a single-period timeframe.
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Allocation portfolio− level :
(1 +

∑
iwiri)(1 +

∑
iwiR)

(1 +
∑

iwiri)(1 +
∑

iwiR)
− 1 = AP

i ; (16)

Selection portfolio− level :
(1 +

∑
iwiri)

(1 +
∑

iwiri)
− 1 = SP

i . (17)

Then, these two ratios are broken down to calculate the allocation and selection decisions
taken for each sector of investment:

Allocation sector − level :
(1 + wiri)(1 + wiR)

(1 + wiri)(1 + wiR)
− 1 = A0

i ; (18)

Selection sector − level :
(1 + wiri)

(1 + wiri)
− 1 = S0

i . (19)

Once the sector-level decisions have been broken down, they need to be re-aggregated
at the fund-level by using the compounding method (geometric approaches are hinged on
the compounded interest rationale). As a consequence, the re-aggregated fund-level figures
are calculated as follows:

Allocation re− aggregated :
∏
i

(1 + wiri)(1 + wiR)

(1 + wiri)(1 + wiR)
− 1 = AP0

i ; (20)

Selection re− aggregated :
∏
i

(1 + wiri)

(1 + wiri)
− 1 = SP0

i . (21)

It is possible to note that the portfolio-level and the re-aggregated figures have a slightly
different expression. Taking for example the selection effect it is possible to see that the
equation does not hold:

(1 +
∑

iwiri)

(1 +
∑

iwiri)
− 1 ̸=

∏
i

(1 + wiri)

(1 + wiri)
− 1; (22)

SP
i ̸= SP0

i . (23)

Rewriting the equation above to make the equality hold:

(1 +
∑

iwiri)

(1 +
∑

iwiri)
− 1 =

∏
i

(1 + wiri)

(1 + wiri)
− 1 + ϵS ; (24)

SP
i = SP0

i + ϵS . (25)
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ϵs is the residual created by the selection effect under the geometric approach12 and, in
order to make the equality hold, it needs to be attributed between the sector-level selection
effects. The same happens for the allocation effect. This process must be performed because
it is not possible to evaluate an investment decision by leaving outside a piece of return
(especially if the portfolio is worth many tens of million dollars). This procedure can be
performed by finding a driver to allocate the residual, a process performed by the geometric
linking algorithms. Mathematically, geometric linking algorithms creates a term13 named
Γim that makes the equality hold by slightly modifying the sector-level effects:(∏

i

(1 + wiri)(1 + wiR)

(1 + wiri)(1 + wiR)
ΓiAllocation

)(∏
i

(1 + wiri)

(1 + wiri)
ΓiSelection

)
=

(1 +
∑

iwiri)

(1 +
∑

iwiri)
(28)

As a result, the difficulty is to appropriately calculate the term Γim since this is the part
that will modify each sector effect. The rationale used to calculate this term is the base
where a linking algorithm is built upon.

There are many geometric linking algorithms in the literature but, in our opinion, the
most prominent one is the “Optimized Geometric Attribution” laid out by Jose Menchero
in 2005. This will be the benchmark used to test our approach. In the construction of this
linking algorithm the author ≪[...] sought to distribute the residual in such a way that the
attribution effects would deviate minimally from their pure form while taking special care
to ensure that small attribution effects were not disproportionately affected≫14. In other
words, the rationale to calculate the variable Γim is based on two criteria:

1. Make this variable as close to 1 as possible, so to not sharply modify the original
attributes;

2. Modify each attribute proportionally to its size (in absolute values, bigger attributes
need to be modified more compared to smaller attributes).

Menchero, by solving a constrained mathematical programming problem, obtained this
solution15:

12Specifically, for a two-sector portfolio the calculations for the selection effect are:

(1 + w1r1 + w2r2)

(1 + w1r1 + w2r2)
− 1 ̸= (1 + w1r1)(1 + w2r2)

(1 + w1r1)(1 + w2r2)
− 1. (26)

As it is possible to note, the right branch of the equation gives rise to cross products that are not present
on the left branch:

(1 + w1r1 + w2r2)

(1 + w1r1 + w2r2)
− 1 ̸= (1 + w1r1 + w2r2 + w1r1w2r2)

(1 + w1r1 + w2r2 + w1r1w2r2)
− 1. (27)

13Where i is the sector and m the effect under consideration.
14Menchero, Jose. 2005. Optimized Geometric Attribution. Financial Analysts Journal; vol. 61, no. 4,

pp. 60-69.
15For any further reference refer to: Menchero, Jose. 2005. Optimized Geometric Attribution. Financial

Analysts Journal; vol. 61, no. 4, pp. 60-69.

6



∏
i

(1 +A0
i )ΓAi(1 + S0

i )ΓSi =
1 +R

1 +R
. (29)

Where:

• ΓAi = eln
2(1+A0

i )Q;

• ΓSi = eln
2(1+S0

i )Q;

• Q =
ln(1+R)−ln(1+R)−

∑
i ln(1+A0

i )(1+S0
i )∑

i ln
2(1+A0

i )+
∑

i ln
2(1+S0

i )

In simple words, this linking algorithm calculates a variable Q that is constant for
every sector effect. Then, the variable Q is multiplied by a term that includes the sector
effect. In our opinion, this linking algorithm has advantages and disadvantages. The biggest
advantage is that it clearly states that the modification of each sector effect is something
undesirable that needs to be kept at its lowest level. We agree with this statement because
when a sector attribute is modified it creates two disadvantages:

1. The sense of mistrust in the fund sponsor16;

2. A potentially flawed result: modifying attributes either by adding or subtracting a
small rate of return can cause the attribute to be even more flawed.

As a consequence, we agree with Menchero’s rationale to least perturb the attributes and
to modify bigger attributes more (the bigger the absolute size of the attribute, the bigger
the modification that this attribute can bear without significantly modifying its meaning).

Nevertheless, we disagree with Menchero’s linking algorithm in two points:

1. It does not take into account the residual created by allocation and selection decisions
considered separately. Specifically, portfolio-level attributes do not create problems:
their compounding correctly adds up to the active return of the period. The problem
arises when these attributes are broken down at the sector-level because the com-
pounding of sector-level effects does not equal the portfolio-level attributes. As a
consequence, there are two residuals that need to be allocated: one for the allocation
effect and the other for the selection effect. Menchero’s does not consider this distinc-
tion: it re-allocates the residual created at a total portfolio level indistinctly among
allocation and selection decisions. As a result, the equality still holds but its residual
distribution could be ameliorated.

2. Return is only one part of the story, risk is absent from this linking algorithm. In
our opinion, risk must be included into the economic driver responsible for allocating
the residual because it is an inseparable part of the investment decision. A big rate
of return can become fragile if it is compared to the risk taken to attain it. As a
consequence, the size of an investment decision should be represented by a risk-return
adjusted measure.

16The people to whom the analysis is meant for.
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By improving these two points it is possible to arrive at a residual allocation that is more
precise and more consistent with the investment process followed (a process that takes into
consideration the expected return as well as the expected risk). The first point could be
resolved with the tools that have been highlighted so far. As to the second point, it needs a
risk-decomposition framework to be solved. A framework that has been recently developed
in the literature and that will be explained in the next paragraph.

4 Risk attribution using the Brinson model

This paragraph investigates the application of the Brinson model for risk analysis purposes.
Usually risk and return are strictly correlated but ≪ a common practice in asset man-
agement today is to use one model for attributing portfolio returns and to use an entirely
different model for attributing risk. For instance, the active return of a portfolio is often
decomposed into the allocation and selection effects by using [the Brinson Model]. The
active risk of that portfolio, however, is typically attributed to a set of factors within a fun-
damental factor model. This inconsistency obscures the intimate link between the sources
of risk and return ≫17. This is the reason why the Brinson model has been adapted for risk
attribution purposes. In this way it is possible to analyze the investment decisions using a
consistent framework.

On the background of this framework there is the Harry Markowitz’s Modern Portfolio
Theory, a widely known and used model that owes its success to the intuitiveness of its
results. We acknowledge that there are more sophisticated techniques for risk analysis but
not all of those can be applied to the Brinson model because this needs risk measures that
can be subdivided among the sectors of investment. In this case variance and covariance
prove to be useful because they can be easily decomposed. Therefore, this paragraph
analyses the X-Sigma-Rho Formula18: an approach that adapts the MPT to the Brinson
model. Nonetheless, this model can be applied only to arithmetic active returns because
variance and covariance are decomposed by means of additions, the same operations that are
used in the arithmetic Brinson model. We will adapt this model to the geometric framework
in the next paragraph where we will issue also some improvements to it.

The X-Sigma-Rho measures the risk of the investment strategy as the standard devia-
tion of the active return. Then, the standard deviation is broken down among allocation
and selection attributes by using the usual relationship between standard deviation of the
sector effect multiplied by the correlation that this effect has with the active return of the
portfolio19:

σ(RA) =
∑
i

(σ(Ai)ρ(Ai, RA) + σ(Si)ρ(Si, RA)). (30)

17Menchero, Jose. Poduri, Vijay. 2008. Custom Factor Attribution. Financial Analysts Journal; vol. 64,
no. 2, pp. 81-92.

18Menchero, Jose. Davis, Ben. 2011. Risk Contribution Is Exposure Times Volatility Times Correlation:
Decomposing Risk Using the X-Sigma-Rho Formula. The Journal of Portfolio Management; Winter, vol. 37,
no. 2, pp. 97-106.

19RA is the active return of the portfolio, σ the standard deviation and ρ the correlation.
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The expression σ(Ai)ρ(Ai, RA) represents the risk faced by the allocation effect and
σ(Si)ρ(Si, RA) is the risk faced by the selection effect.

The formula above has been modified by Menchero and Davis as:

σ(RA) =
∑
i

((wi − wi)σ((ri −R))ρ((ri −R), RA) + (w)iσ((ri − ri))ρ((ri − ri), RA)) (31)

As it is possible to see, the weights of allocation and selection effects have been taken
out from the variance and covariance calculations. By performing this operation, the for-
mula openly highlights the three components of risk: exposure (the weights), volatility and
correlation. On the other hand, mathematically this operation can be performed only if the
weights remain constant throughout the period20. This happens rarely21 because different
securities have different rate of returns and therefore their weights change22 making the
results of this formula are slightly flawed. In conclusion, we prefer the former expression of
the standard deviation decomposition because it is more precise and leads to a more correct
risk evaluation.

Now risk and return must be framed in a unified metric: the information ratio adapted
to the Brinson model analysis.

The information ratio is usually defined as the average active return over the standard
deviation of the active return23:

IR =
RA

σ(RA)
. (32)

Analyzing this formula it is possible to note that standard deviation is always positive
(better, nonnegative) by construction, hence the active return determines the sign of the
IR.

In the case of the Brinson model, the ratio laid out above is modified by changing the
average excess return with the portfolio-level actual excess return at the date of evaluation:

IR =
RA

σ(RA)
. (33)

Now it is possible to decompose the active return RA as a sum of the attribution effects
Qm

24. Consequently, the IR becomes:

IR =

∑
mQm

σ(RA)
. (34)

20Specifically, V ar(aB) = a× V ar(B) only if a is constant. The same happens for covariance.
21Only if the benchmark and the portfolio are rebalanced at the same time of the rate of return measure-

ment.
22For a more detailed explanation of changes in weights see: Laker, Damien. 2003. Benchmark Rebalancing

Calculations. The Journal of Performance Measurement; vol. 7, no. 3 (Spring) pp. 8-23.
23Where RA is the mean average of the active returns for the period under consideration.
24A decomposition firstly performed by Xiang, George. 2006. Risk Decomposition and its Use in Portfolio

Analysis. The Journal of Performance Measurement; vol. 9, no. 2, pp. 26-32.
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As it has been shown before, σ(RA) can be decomposed into: σ(Qm)ρ(Qm, RA). There-
fore the ratio above can be expressed as:

IR =

∑
mQm∑

m σ(Qm)ρ(Qm, RA)
. (35)

Now, this ratio can be broken into the different components of the Brinson model:
allocation and selection effects of each sector. In order to achieve this result, the information
ratio can be split across these different terms as:

IR(Qm) =
Qm

σ(Qm)ρ(Qm, RA)
. (36)

This ratio is the so-called “component information ratio”; Qm is the effect under con-
sideration and σ(Qm)ρ(Qm, RA) is the percentage risk contribution of the effect to the total
risk σ(RA). This ratio has been further subdivided into:

IR(Qm) =
Qm

σ(Qm)

(
1

ρ(Qm, RA)

)
; (37)

where Qm

σ(Qm) is named “stand-alone information ratio”. This distinction will become
useful in the following paragraph.

The component information ratios are summed up to the portfolio information ratio
using a weighted average. In fact, the component information ratios need to be weighted
for a risk contribution parameter named um

25:

um =
σ(Qm)ρ(Qm, RA)

σ(RA)
. (38)

This risk decomposition is then applied to every attribute of the Brinson model. It is
useful in portfolio analysis because it places side by side return achieved and risk faced,
providing a comprehensive summary of how effective a single investment decision has been.

In conclusion, the inclusion of the risk attribution field into the Brinson model gives a
comprehensive indicator of how effective an investment strategy has been. This tool, though,
could be further refined by adapting it to a geometric rate of return and by modifying the
calculation of the information ratio. These steps will be performed in the next paragraph.

5 A unified framework for performance and risk attribution

The previous paragraphs issued all the elements necessary to develop the unified framework
for performance and risk attribution: a geometric approach that allocates the residual using
a risk-return adjusted driver. The outcome of this linking algorithm is a more sincere and
transparent output where residual allocation is performed consistently with the investment
process (where both the risk and the return of an asset are taken into account).

25∑
m um = 1
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In order to develop this approach, we need to: adapt the risk attribution process to a
geometric framework, create a useful driver to attribute the residual and then issue the mod-
ified Brinson attributes. As to the first step, briefly recall that the X-Sigma-Rho framework
decomposes the standard deviation of the active return into a weighted sum of allocation
and selection effects:

σ(RA) =
∑
i

(σ(Ai)ρ(Ai, RA) + σ(Si)ρ(Si, RA)). (39)

This formula can be applied only to an arithmetical active return (RA =
∑

iAi + Si)
because standard deviation is decomposed by means of additions. The geometric approach,
instead, calculates the active return26 through a compounding calculation:

(1 +R0
G) =

∏
i

(1 +A0
i )(1 + S0

i ). (40)

Recall that R0
G (the compounding of unadjusted allocation and selection effects) is

slightly different from GVt (the geometric active return): the difference, called residual,
is what we are trying to attribute.

Therefore, the geometric approach needs to be adapted to an additive form in order
to allow the above-stated risk decomposition. This process can be performed by using
logarithms and, as a consequence, by moving to a continuously compounded rate of return27:

ln(1 +R0
G) =

∑
i

(1 +A0
i )(1 + S0

i ). (41)

In this way attributes can be summed to calculate the total active return of the period.
The continuously compounded returns will be converted into their normal form by means
of the exponential function at the end of the process.

Now that the unadjusted attributes have been converted into an additive form, it is
possible to allocate the residual among them by using the following equation:

ln(1 +GVt) =
∑
i

(ln(1 +Ai)ΓiAllocation + ln(1 + Si)ΓiSelection). (42)

In order to perform this task, we need to find the drivers Γi for allocation and selection
effects. We want to use an economic driver that takes into account the return achieved
as well as the risk taken: the absolute size of the Information Ratio of each decision. The
rationale behind this process is that the residuals created by allocation and selection effects
considered separately need to be allocated proportionally to the size of each decision taken.
Specifically, every time a residual is allocated, it modifies the size of each decision: it slightly
alters the return achieved and its standard deviation. As a consequence, the bigger the size
of an investment decision the more residual it can bear without significantly altering its
meaning. To us, its meaning is given by the Information Ratio of the decision: a metric

26R0
G is the geometric active return calculated as the compounding of unadjusted allocation and selection

effects.
27It is possible to use logarithms because: 1 +R0

G; (1 +A0
i ); (1 +A0

i ) > 0
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that takes into account both its risk and its return. This must be the point of reference
to evaluate an investment decision: attributing the residual by taking into account only
the return achieved is a short-sighted vision of the investment because risk is absent from
this apportionment. Moreover, its size is the absolute value of the IR: the driver used to
allocate the residuals. This because if an IR is extremely high or extremely low it gives
a clear representation of the investment decision taken: profitable or unprofitable. On the
other hand, if an IR is close to zero it does not give an immediate meaning of what the
investment decision has been: this is the case to more deeply investigate that decision. If
a decision needs to be further investigated, it is better to leave it without a big piece of
residual because the residual modifies its meaning. To perform this process we need an
IR that clearly depicts the investment decision. In our opinion, the component IR laid
out in the previous paragraph is not suitable to every market condition. The component
information ratio is expressed as: IR(Qm) = Qm

σ(Qm)ρ(Qm,RA) . Moreover, recall that a positive
IR means a profitable investment decision. This is not always the case with the component
IR because, analyzing the ratio, it is possible to see that the denominator of the function
comprises the standard deviation of the component (that is always positive) multiplied by
the correlation between the component returns with the active returns (a quantity that
can also be negative). If the correlation is negative, the interpretation of the IR becomes
not intuitive because a negative return divided by a negative correlation gives rise to a
positive component information ratio. A positive IR is synonym of a profitable investment
decision. But the decision has not been profitable since it attained a negative return. As a
result, the meaning that the information ratio gives in this situation can be misunderstood.
Consequently, we suggest to use the stand-alone rather than the component IR. In fact,
the stand-alone IR provides a risk evaluation framework that is robust to every market
condition, including a negative correlation. Stand-alone IR28 is the return of the effect
under consideration divided by its standard deviation:

IRS =
Qm

σ(Qm)
. (43)

As it is possible to note, this ratio is coherent with the original IR formula where the
sign of the ratio is given only by the numerator. The portfolio IR is calculated as a weighted
sum of all the stand-alone IR multiplied by the factor29 umS = σ(Qm)

σ(RA) . As it is possible
to note, the equality still holds and the IR interpretation is now coherent with its original
definition.

After these changes it is possible to allocate the residual (recall that we are still using
continuously compounded returns). For example, taking into consideration the allocation
effect, we know that30: ∑

i

ln(1 +A0
i ) + εA = ln(1 +AP

i ). (44)

28Where S stands for stand-alone and m is the investment decision under consideration.
29The factor umS is not a weight anymore because

∑
m umS ̸= 1.

30εA is the residual created by the allocation effect.
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εA will be embedded into the sector effects by means of the variable ΓiAllocation. This
variable, given the process laid out before, is calculated for each effect as 31

ΓiAllocation =
|IRS(All(i))|

|IRS(All(1))|+ |IRS(All(2))|+ ...+ |IRS(All(n))|
(εA). (45)

For ease of visualization, the quantity |IRS(All(i))|
|IRS(All(1))|+|IRS(All(2))|+...+|IRS(All(n))| is named

βAi: the residual bearing percentage for the allocation effect of sector i. The same process
happens for the selection effect 32.

As it is possible to see, it is the absolute size of each stand-alone IR that gives the
residual bearing percentage of each sector. This is coherent with the process laid out
before.

Now that the continuously compounded returns have been modified, it is possible to
move to the percentage returns using the exponential function. Therefore, our final formula
is: ∏

i

(1 +A0
i )ΓAi(1 + S0

i )ΓSi =
1 +R

1 +R
. (46)

Where:

• ΓAi = eβAi(ϵA);

• ΓSi = eβSi(ϵS);

As it is possible to see this approach correctly satisfies its premises by creating a residual
attribution that takes into account the return achieved as well as the risk taken.

This geometric linking algorithm now needs to be compared to Menchero’s optimized
geometric approach that in our opinion is one of the best linking algorithms presented in
the literature and, therefore, a good benchmark to test our approach.

Briefly recall that Menchero’s linking algorithm is:∏
i

(1 +A0
i )ΓAi(1 + S0

i )ΓSi =
1 +R

1 +R
. (47)

Where:

• ΓAi = eln
2(1+A0

i )Q;

• ΓSi = eln
2(1+S0

i )Q;

• Q =
(ln(1+R)−ln(1+R)−

∑
i ln(1+A0

i )(1+S0
i )∑

i ln
2(1+A0

i )+
∑

i ln
2(1+S0

i )
.

31|IRS(All(1))|, for example, is the absolute size of the stand-alone IR of the allocation decision of sector
1.

32βSi is the residual bearing percentage for the selection effect of sector i and ϵS its residual.
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At a first glance, it is possible to note that our linking algorithm has a more simple and
straightforward expression. This is an advantage when the analysis is reported to the fund
sponsor: the simpler the linking algorithm expression, the easier the comprehension of the
rationale behind it and the smaller the sense of mathematical manipulation perceived by the
fund sponsor. Moreover, we find that our approach is more consistent with the investment
theory used. Specifically, the Modern Portfolio Theory uses a return/risk perspective as
a point of reference to evaluate the effectiveness of each investment decision. We view
the investment process from the same angle and, as a consequence, the depiction of the
investment decisions is more coherent with the process followed. Lastly, our approach
correctly distinguishes between the residuals created by allocation and selection decisions
considered separately. Specifically, Menchero attributes the residual created at the fund-
level indistinctively among the sector effects; our linking algorithm distinguishes and keeps
separate the residuals created by the allocation and selection effects.

All these differences stem from the different standpoints used to observe the underlying
phenomenon: Menchero sees it from a return-only perspective; we see it from a return-risk
perspective. Which one is better? Nobody can know it with certainty because both points
of view have a certain level of subjectivity. The implementation of one approach rather than
another one is a decision that strictly correlates with the opinions that the fund sponsor
has with regard to this phenomenon.

Moreover, we found useful also the modification of the component IR into the stand-
alone IR because, in some circumstances, provides a better depiction of the underlying
investment decision.

In conclusion, the development of our approach or Menchero’s is a weighted average
of the differences shown above. The weights placed are a decision that is up to the fund
sponsor only.

6 Conclusion

The unified framework for performance and risk attribution is a comprehensive method
that analyzes the investment decisions by taking into account the return achieved as well
as the risk taken. This perspective provides a more sincere residual allocation that is more
coherent with the investment theory used. Moreover, the modification of some of the risk
tools presented in the literature makes the risk evaluation process robust to every condition.
These improvements benefit the analysis in three aspects: a more clear and easily reportable
analysis, a more sincere output and a more coherent residual allocation. These elements
will benefit both the fund sponsor as well as the investment manager.
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