ELSEVIER

Contents lists available at ScienceDirect

# European Psychiatry

journal homepage: http://www.europsy-journal.com



# Original article

# Altered syntactic abilities in first episode patients: An inner phenomenon characterizing psychosis

Giuseppe Delvecchio<sup>a,1</sup>, Elisabetta Caletti<sup>b,1</sup>, Cinzia Perlini<sup>c</sup>, Francesca Marzia Siri<sup>b</sup>, Angela Andreella<sup>d</sup>, Livio Finos<sup>e</sup>, Marcella Bellani<sup>f</sup>, Franco Fabbro<sup>g</sup>, Antonio Lasalvia<sup>c,f</sup>, Chiara Bonetto<sup>c</sup>, Doriana Cristofalo<sup>c</sup>, Paolo Scocco<sup>h</sup>, Armando D'Agostino<sup>i</sup>, Stefano Torresani<sup>j</sup>, Massimiliano Imbesi<sup>k</sup>, Francesca Bellini<sup>l</sup>, Angela Veronese<sup>h</sup>, Cinzia Bressi<sup>a,b</sup>, Mirella Ruggeri<sup>c,f</sup>, Paolo Brambilla<sup>a,b,\*</sup>, the GET UP Group

### ARTICLE INFO

Article history:
Received 17 April 2019
Received in revised form 1 August 2019
Accepted 2 August 2019
Available online 20 August 2019

Keywords: Language Grammar Syntax First episode psychosis Affective psychosis Non-affective psychosis

### ABSTRACT

Background: Research has consistently shown that language abilities represent a core dimension of psychosis; however, to date, very little is known about syntactic comprehension performance in the early stages of psychosis. This study aims to compare the linguistic abilities involved in syntactic comprehension in a large group of First Episode Psychosis (FEP) patients and healthy controls (HCs). Methods: A multiple choice test of comprehension of syntax was administered to 218 FEP patients (166 non-affective FEP patients [FEP-NA] and 52 affective FEP patients [FEP-A]) and 106 HCs. All participants were asked to match a sentence they listen with one out of four vignettes on a pc screen. Only one vignette represents the stimulus target, while the others are grammatical or non-grammatical (visual) distractors. Both grammatical and non-grammatical errors and performance in different syntactic constructions were considered.

Results: FEP committed greater number of errors in the majority of TCGB language domains compared to HCs. Moreover, FEP-NA patients committed significantly more non-grammatical (z=-3.2, p=0.007), locative (z=-4.7, p<0.001), passive-negative (z=-3.2, p=0.02), and relative (z=-4.6, p<0.001) errors compared to HCs as well as more passive-affirmative errors compared to both HCs (z=-4.3, p<0.001) and FEP-A (z=3.1, p=0.04). Finally, we also found that both FEP-NA and FEP-A committed more grammatical (FEP-NA: z=-9.2, p<0.001 and FEP-A: z=-4.4, p<0.001), total (FEP-NA: z=-8.2, p<0.001 and FEP-A: z=-3.5, p=0.01) errors compared to HCs.

Conclusions: This study shows that the access to syntactic structures is already impaired in FEP patients, especially in those with FEP-NA, ultimately suggesting that language impairments represent a core and inner feature of psychosis even at early stages.

© 2019 Elsevier Masson SAS. All rights reserved.

<sup>&</sup>lt;sup>a</sup> University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy

<sup>&</sup>lt;sup>b</sup> Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, Milan, Italy

<sup>&</sup>lt;sup>c</sup> Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Italy

<sup>&</sup>lt;sup>d</sup> Department of Statistical Sciences, University of Padua, Italy

<sup>&</sup>lt;sup>e</sup> Department of Developmental Psychology and Socialization, University of Padua, Italy

<sup>&</sup>lt;sup>f</sup>UOC of Psychiatry, Azienda Ospedaliera Universitaria Integrata (AOUI) of Verona, Italy

g Department of Medicine, University of Udine, Udine, Italy

h Department of Mental Health, AULSS 6 Euganea, Padua, Italy

<sup>&</sup>lt;sup>i</sup> Department of Health Sciences, San Paolo University Hospital, University of Milan, Milan, Italy

<sup>&</sup>lt;sup>j</sup> Department of Psychiatry, Azienda ULSS, Bolzano, Italy

k Department of Psychiatry, AUSL Emilia, Italy

<sup>&</sup>lt;sup>1</sup>Department of Psychiatry, AUSL Romagna, Italy

<sup>\*</sup> Corresponding author at: Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milan, Italy. E-mail address: paolo.brambilla1@unimi.it (P. Brambilla).

<sup>&</sup>lt;sup>1</sup> The two authors contributed equally to this work.

#### 1. Introduction

Psychosis has been found to be associated with linguistic deficits [1–3] and poorer social and clinical outcomes [4,5]. The central role of language in the development of schizophrenia (SKZ) has been first hypothesized by Crow [6] who correlated the origin of psychotic symptoms with an altered hemispheric lateralization [7]. Furthermore, language comprehension deficits have been observed in the premorbid phase of SKZ [8], further suggesting that linguistic assessment is important for predicting the development of psychosis [5,9–11]. Additionally, syntactic deficits have been found in both First Episode Psychosis (FEP) patients [12] and in individuals at high-risk for psychosis [13].

Moreover, another pressing issue of clinical research is represented by the investigation of similarities and differences between affective and non-affective psychosis in the linguistic domain [14]. Interestingly, although speech deficits have been observed in both affective and non-affective FEP [15,16], syntactic comprehension abilities in these patients have not yet been clearly explored [15]. In general, language is generally divided in comprehension processing and syntactic processing. Comprehension has been described as sufficient vocabulary and knowing the meanings of enough words, while syntax has been described as set of rules, specific for each language, used to combine words in sentences, each word requiring for the generation of well-formed sentences [17].

Although only a few behavioral studies explored linguistic abilities in FEP patients, they have been consistently investigated in both patients with SKZ and BD. Indeed, two previous studies from our group explored the linguistic performance in chronic psychotic patients [18,19]. In particular, Tavano et al. [18] showed that patients with SKZ were significantly less able to produce appropriate interpretations, indicating the presence of abnormal pragmatic inferential abilities.

Also, the presence of pragmatic deficits in SKZ was further confirmed by a more recent study carried out by Bambini et al. [20], which reported altered pragmatic abilities, especially in comprehending discourse and non-literal meanings, in 77% of their patients with SKZ, ultimately suggesting that these abilities might be considered a core feature of SKZ.

Similarly, Perlini et al. [19] suggested that the syntactic receptive verbal abilities were impaired in both chronic SKZ and BD, being, however, more severe and generalized in SKZ than in BD. Also, impairments in syntactic abilities were suggested by Moro et al. [21] in patients with SKZ while processing of an anomaly detection task, which allow to investigate either the syntactic or semantic knowledge. The authors also reported that the syntactic impairments were independent from cognitive abilities and psychopathological measures.

Interestingly, these studies further aligned with the evidence reported by several other independent studies, which showed that patients with SKZ had severe and generalized deficits in terms of language impairments [6,7,22–25].

Therefore, it seems that language abilities are important to be studied in psychosis, especially because language is a complex dynamic cognitive system, which brings to integration of multiple levels of linguistic and cognitive processing [26]. Indeed, psychotic patients showed word-finding difficulties and lexical processing impairments [27] as well as they have the speech usually filled with irrelevant pieces of information and derailments [28].

In this context, this study aims to compare, for the first time, the linguistic abilities involved in syntactic comprehension in a large group of FEP patients and healthy controls (HCs), by considering both affective (FEP-A) and non-affective (FEP-NA) psychosis. In particular, we expected that a) FEP patients would show deficits in linguistic performance compared to HCs and b) FEP-NA patients

would display more severe disturbances compared to both FEP-A and HCs.

#### 2. Methods

# 2.1. Subjects

Patients were recruited in the frame of the 'Genetics' Endophenotypes and Treatment: Understanding early Psychosis' (GET UP) Study (see Ruggeri et al. [29,30] for a detailed description of subjects' enrolment). ICD-10 diagnoses were obtained after 9 months from the first contact with participating psychiatric services using the Item Group Checklist of the Schedule for Clinical Assessment in Neuropsychiatry (IGC-SCAN) [31]. Overall, 218 FEP patients and 106 HCs were evaluated. Among FEP, 166 were diagnosed with non-affective psychosis (FEP-NA) and 52 with affective psychosis (FEP-A). Specifically, for FEP-NA patients the diagnoses were schizophrenia (F20; N = 64), schizotypal disorder (F21; N=4), delusional disorder (F22; N=33), brief psychotic disorder (F23; N = 33), schizoaffective disorder (F25; N = 20), unspecified psychosis not due to a substance or known physiological condition (F29; N = 12). For FEP-A patients the diagnoses were mania with psychotic symptoms (F30.2; N = 13), bipolar affective disorder (F31; N=6), bipolar affective disorder, current manic episode without psychotic symptoms (F31.1; N=1), bipolar affective disorder, current manic episode with psychotic symptoms (F31.2; N = 4), bipolar affective disorder, current episode of severe depression with psychotic symptoms (F31.5; N = 1), bipolar affective disorder, current mixed episode (F31.6: N = 2), bipolar affective disorder, unspecified (F31.9; N = 2), mild depressive episode (F32; N = 1), severe depressive episode with psychotic symptoms (F32.3; N = 22). Symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) [32], which is formed by one total score (PANSS-Total) and three sub-scales evaluating positive symptoms (PANSS-Positive), negative symptoms (PANSS-Negative) and general psychopathology (PANSS-Psychopathology), the Hamilton Depression Rating Scale (HDRS) [33], and the Bech-Rafaelsen Mania Rating Scale (BRMRS) [34]. Also, the Global Assessment of Functioning (GAF) [35] was administered. Finally, the Brief Intelligence Test (TIB) [36] was used to obtain a measure of the Intelligence Quotient (IQ). Patients with other mental and behavioural disorders, alcohol or substance abuse in the six months preceding the assessment, history of traumatic head injury, neurological or medical disease and mental retardation were excluded from the study. Notably, 99 out of 218 FEP patients (27 FEP-A and 72 FEP-NA) were drug-free. In contrast, 116 FEP patients (23 FEP-A and 93 FEP-NA) were taking different antipsychotic medications, either typical or atypical, and 3 FEP patients were taking only antidepressants (2 FEP-A and 1 FEP-NA). Specifically, FEP-A patients were taking haloperidol (N = 1), aripiprazole (N=4), olanzapine (N=8), paliperidone (N=1), quetiapine (N = 5), risperidone (N = 6), and ziprasidone (N = 1). In contrast, FEP-NA were taking: haloperidol (N = 9), aripiprazole (N = 14), clozapine (N = 1), perphenazine (N = 2), olanzapine (N = 28), paliperidone (N = 8), quetiapine (N = 6), risperidone (N = 31) and ziprasidone (N = 1). With regards to antidepressants, three patients were taking only sertraline (N = 2, FEP-A) or paroxetine (N = 1, FEP-NA). Finally, within the groups of FEP-A patients, 11 were taking antidepressants or mood stabilizers in association with antipsychotics. HCs were recruited by word of mouth and leaflets. Subjects with a history of psychiatric symptoms, also in first degree relatives, were excluded from the study. All participants had Italian as native language. The GET UP was approved by the Ethics Committee of the Azienda Ospedaliera of Verona (http://www.ospedaliverona.it/Istituzionale/Comitati-Etici/Sperimentazione) on 6 May 2009 (Prot. N. 20406/CE, Date 14/

05/2009), and by the ethics committee of each participating unit [29]. All participants signed inform consent after having understood all issues involved in the study design.

# 2.2. Syntactic comprehension measures

A multiple choice test of comprehension of syntax was administered to all participants. In particular, an adapted computer based version of the 'Test di Comprensione Grammaticale per Bambini' (TCGB) [37] assessing syntactic comprehension was used. This test has been used in previous research conducted by our group, showing good psychometric properties [18,19]. Shortly, subjects were asked to match a sentence they hear with one out of four vignettes on a PC screen. Only one vignette represents the stimulus target, while the others are grammatical (which have a role of syntactic contrast with respect to the target) or nongrammatical (visual) (which do not have any specific role of syntactic contrast) distractors. The task analyses different grammatical structure such as locative (e.g." The dog is above the chair"), active negative (e.g. "The girl doesn't run"), passivenegative (e.g. "The piano is not played"), passive-affirmative (e.g. "The car is washed by the child"), and relative (e.g. "The vase that the child is painting is on the chair"). For a more detailed description of the test please refer to Perlini et al. [19].

# 2.3. Statistical analyses

All the analyses were conducted using R [38]. For exploring the presence of differences between the groups on clinical and sociodemographic variables we performed a chi-square test ( $\chi^2$ ), for qualitative variables (i.e. gender), and t -tests or Analysis of Variance (ANOVA), for quantitative variables. Then, we employed a hierarchical approach for investigating the differences between the groups in TCGB variables [39]. First, a general Multivariate Analyses of variance (MANOVA) with all TCGB variables as dependent variables as well as group, age, TIB and educational level as covariates were carried out in order to explore whether the variable "group" was significant. The MANOVA was carried out between the two groups (whole group of FEP vs HCs) and between the three groups (FEP-NA, FEP-A and HCs). Second, since the assumption of normality, necessary for a standard linear model, was not satisfied, a gamma generalized linear model with identity link function, corrected for Bonferroni, with group, age, TIB and educational level as covariates, was performed separately after we found that the variable group was significant in the MANOVA. Then, for each significant model, a post-hoc analysis was performed and the Holm correction for multiple comparisons was applied. Finally, ANOVAs based on gamma generalized linear model with identity link function with age, TIB and educational level as covariates, were carried out in order to analyse the relationship between clinical features and TCGB scales. We used Bonferroni to correct for multiple testing. Additionally, Cohen's f was employed for measuring the effect size of the regression in order to provide measures of magnitude of the observed correlations. Cohen's f<sup>2</sup> values can be interpreted as small (0.02), medium (0.15) and large (0.35) [40]. Notably, the regressions were considered significant based on both p-value and effect sizes, as suggested by Sullivan and Feinn [41].

#### 3. Results

#### 3.1. Socio demographic and clinical variables

No statistically significant differences were found in any of the socio-demographic variables between the whole group of FEP patients vs HCs as well as between FEP-NA, FEP-A and HCs, except for the educational level. Specifically, we observed that the whole group of FEP patients had lower educational level compared to HCs (t = 10, df = 227.3, p < 0.001). Similarly, we also found that educational level was different between the FEP-NA, FEP-A and HCs  $(F_{(2.321)} = 46.5, p < 0.001)$ . Specifically, post-hoc tests showed that FEP-A (z = 5.4, p < 0.001) and FEP-NA (z = 8.3, p < 0.001) had lower educational level compared to HCs. Furthermore, significant differences were observed between FEP-NA and FEP-A patients on some clinical variables. Specifically, we found that FEP-NA patients showed higher PANSS-Total (t = 4.3, df = 112.4, p < 0.001), PANSS-Positive (t = 6.1, df = 113.4, p < 0.001) and PANSS-Psychopathology (t = 3.1, df = 111.4, p = 0.03) compared to FEP-A. Also, FEP-NA patients showed lower GAF scores compared to FEP-A (t=-3.4, df = 79.0, p = 0.01). Finally, the two groups did not differ in terms of PANSS-Negative, HDRS and BRMRS scores as well as in terms of dose of antipsychotics. Socio-demographic and clinical data are shown in Tables 1 and 2.

# 3.2. Syntactic comprehension

# 3.2.1. FEP patients vs healthy controls

Table 3 and Fig. 1 showed the significant results emerged from the post-hoc analysis.

Overall, the results showed that FEP patients committed more total errors than HCs in the comprehension of syntactic constructions ( $z=-8.1,\ p<0.001$ ). Specifically, they produced

**Table 1**Socio-demographic and clinical variables in the whole group of first episode psychosis (FEP) patients and healthy controls (HCs).

|                                                          | FEP patients (n = 218)            | HCs (n = 106)                    | Statistics <sup>a</sup> | P-value, Bonferroni corrected |
|----------------------------------------------------------|-----------------------------------|----------------------------------|-------------------------|-------------------------------|
| Age (years), mean $\pm$ SD                               | $30.5 \pm 10.01$                  | $\textbf{31.8} \pm \textbf{9.0}$ | t = 1.1, df = 228.3     | p = 1                         |
| Gender (males/females)                                   | 118/100                           | 48/58                            | $\chi^2 = 1.8$ , df = 1 | p = 1                         |
| Educational level (years), mean $\pm$ SD                 | $11.7 \pm 3.2$                    | $\textbf{15.2} \pm \textbf{2.9}$ | t = 10, $df = 227.3$    | p < 0.001                     |
| Race                                                     | Caucasian                         | Caucasian                        |                         |                               |
| Age on onset (years), mean $\pm$ SD                      | $30.1 \pm 9.9$                    | -                                | -                       | -                             |
| TIB Total, mean $\pm$ SD                                 | $109.9 \pm 6.5$                   | $109.8 \pm 3.7$                  | t = -0.3, $df = 315.6$  | p = 1                         |
| PANSS-Positive, mean $\pm$ SD                            | $15.2 \pm 5.7$                    | -                                | -                       | -                             |
| PANSS-Negative, mean $\pm$ SD                            | $16.4 \pm 6.8$                    | =                                | =                       | -                             |
| PANSS-Psychopathology, mean $\pm$ SD                     | $35.6 \pm 9.2$                    | =                                | =                       | _                             |
| PANSS Total scores, mean $\pm$ SD                        | $67.2 \pm 17.8$                   | =                                | =                       | _                             |
| BRMRS Total scores, mean $\pm$ SD                        | $2.4 \pm 3.7$                     | =                                | =                       | _                             |
| HDRS Total scores, mean $\pm$ SD                         | $15.8 \pm 7.5$                    | =                                | =                       | -                             |
| GAF Total scores, mean $\pm$ SD                          | $\textbf{47.8} \pm \textbf{14.0}$ | _                                | -                       | _                             |
| Dose of antipsychotics (Chlorpromazine equivalent doses) | $245.5 \pm 218.5$                 |                                  |                         |                               |

BRMRS = Bech-Rafaelsen Manic Rating Scale; df = Degree of Freedom; PANSS = Positive and Negative Syndrome Scale; HDRS = Hamilton Depressive Rating Scale; FEP = First Episode Psychosis; GAF = Global Assessment of Functioning; HCs = Healthy controls; SD = Standard Deviation; TIB = Brief Intelligence Test.

<sup>&</sup>lt;sup>a</sup> The statistical tests applied were the chi-square test for qualitative variables and t -tests for quantitative variables.

 Table 2

 Socio-demographic and clinical variables in the three study groups.

|                                                                               | FEP-NA (n = 166)                  | FEP-A (n = 52)                    | HCs (n = 106)                    | Statistics <sup>a</sup> | P-value,<br>Bonferroni<br>corrected | Post-hoc results (after correction for multiple comparisons with Holm method) |
|-------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-------------------------|-------------------------------------|-------------------------------------------------------------------------------|
| Age (years), mean $\pm$ SD                                                    | $30.4 \pm 9.9$                    | 31.1 ± 10.4                       | 31.8 ± 9                         | $F_{(2.321)} = 0.7$     | p=0.5                               |                                                                               |
| Gender (males/females)                                                        | 91/75                             | 27/25                             | 48/58                            | $\chi^2 = 2.4$ , df = 2 | p = 1                               |                                                                               |
| Educational level (years), mean $\pm$ SD                                      | $11.56 \pm 3.1$                   | $11.9 \pm 3.5$                    | $\textbf{15.2} \pm \textbf{2.9}$ | $F_{(2,231)} = 46.6$    | p < 0.001                           | FEP-NA = FEP-A < HCs                                                          |
| Ethnic group                                                                  | Caucasian                         | Caucasian                         | Caucasian                        | -                       | _                                   |                                                                               |
| Age on onset (years), mean $\pm$ SD                                           | $30.1 \pm 9.9$                    | $30.7 \pm 10.5$                   | -                                | t = -0.4, $df = 81.06$  | p = 1                               |                                                                               |
| TIB Total, mean $\pm$ SD                                                      | $109.6 \pm 6.3$                   | $111.1 \pm 6.9$                   | $109.8 \pm 3.7$                  | $F_{(2,321)} = 1.1$     | p = 1                               |                                                                               |
| PANSS-Positive, mean $\pm$ SD                                                 | $16.2 \pm 5.7$                    | $11.78 \pm 4.3$                   | -                                | t = 6.1, $df = 113.4$   | p < 0.001                           | FEP-NA > FEP-A                                                                |
| PANSS-Negative, mean $\pm$ SD                                                 | $16.8 \pm 7.1$                    | $15.0 \pm 5.4$                    | -                                | t = 2.0, $df = 112.8$   | p = 0.5                             |                                                                               |
| PANSS-Psychopathology, mean $\pm$ SD                                          | $\textbf{36.5} \pm \textbf{9.6}$  | $\textbf{32.7} \pm \textbf{7.3}$  | -                                | t = 3.1, df = 111.4     | p = 0.03                            | FEP-NA > FEP-A                                                                |
| PANSS Total scores, mean $\pm$ SD                                             | $69.6 \pm 18.2$                   | $\textbf{59.4} \pm \textbf{13.7}$ |                                  | t = 4.3, $df = 112.4$   | p < 0.001                           | FEP-NA > FEP-A                                                                |
| BRMRS Total scores, mean $\pm$ SD                                             | $2.5 \pm 3.8$                     | $2.2 \pm 3.3$                     | -                                | t = 0.5, $df = 96.8$    | p = 1                               |                                                                               |
| HDRS Total scores, mean $\pm$ SD                                              | $\textbf{16.2} \pm \textbf{7.6}$  | $14.6 \pm 6.8$                    | -                                | t = 1.4, $df = 94.9$    | p = 1                               |                                                                               |
| GAF Total scores, mean $\pm$ SD                                               | $\textbf{45.9} \pm \textbf{13.3}$ | $53.6 \pm 14.7$                   | -                                | t = -3.4, $df = 79.0$   | p = 0.01                            | FEP-A > FEP-NA                                                                |
| Dose of antipsychotics (Chlorpromazine equivalent doses), mean $\pm\text{SD}$ | $252\pm243$                       | $224\pm110$                       | -                                | t = 1.2, df = 188.7     | p = 1                               |                                                                               |

BRMRS = Bech-Rafaelsen Mania Rating Scale; df = Degree of Freedom; PANSS = Positive and Negative Syndrome Scale; HDRS = Hamilton Depressive Rating Scale; GAF = Global Assessment of Functioning; FEP-A = Affective First Episode Psychosis; FEP-NA = Non-Affective First Episode Psychosis; HCs = Healthy Controls; SD = Standard Deviation; TIB = Brief Intelligence Test.

 Table 3

 Differences in syntactic comprehension between first episode psychosis (FEP) patients and healthy controls (HCs).

|                                              | FEP patients (n = 218)          | HCs (n = 106)  | Statistics <sup>a</sup> | P-value, Bonferroni corrected |
|----------------------------------------------|---------------------------------|----------------|-------------------------|-------------------------------|
| TCGB Grammatical Errors, mean $\pm$ SD       | $2.8 \pm 2.7$                   | 1.1 ± 1.4      | z = -9.2                | p < 0.001                     |
| TCGB Non Grammatical Errors, mean $\pm$ SD   | $0.4\pm1.2$                     | $0.06 \pm 0.2$ | z = -3.2                | p = 0.005                     |
| TCGB Total Errors, mean $\pm$ SD             | $\textbf{1.9} \pm \textbf{2.3}$ | $0.6 \pm 0.8$  | z = -8.1                | p < 0.001                     |
| TCGB Locative Item, mean $\pm$ SD            | $0.7\pm1.1$                     | $0.3 \pm 0.6$  | z = -4.4                | p < 0.001                     |
| TCGB Active-Negative Item, mean $\pm$ SD     | $0.9 \pm 1.1$                   | $0.3 \pm 0.5$  | z = -6.1                | p < 0.001                     |
| TCGB Passive-Affirmative Item, mean $\pm$ SD | $0.4 \pm 1.0$                   | $0.1\pm0.4$    | z = -3.5                | p = 0.002                     |
| TCGB Passive-Negative Item, mean $\pm$ SD    | $0.4\pm1.0$                     | $0.2\pm0.6$    | z = -2.6                | p = 0.07                      |
| TCGB Relative Item, mean $\pm$ SD            | $0.5\pm1.1$                     | $0.1 \pm 0.5$  | z = -4.3                | p < 0.001                     |

FEP = First Episode Psychosis; HCs = Healthy Controls; SD = Standard Deviation; TCGB = Test di Comprensione Grammaticale per Bambini.

<sup>&</sup>lt;sup>a</sup> The post-hoc tests were calculated on the coefficient of a generalized linear model with gamma and identity link function corrected for multiple testing with Bonferroni correction.

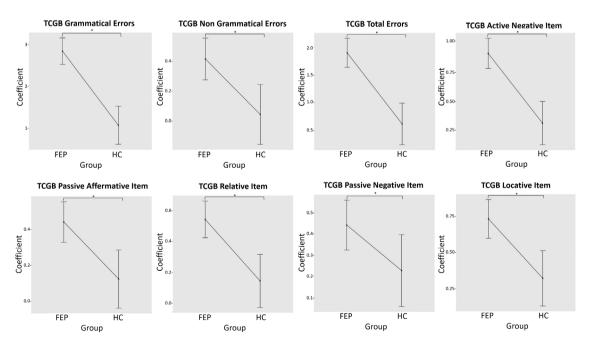



Fig. 1. Significant mean differences in TCGB syntactic comprehension measures between first episode psychosis (FEP) patients and healthy controls (HCs). The post-hoc tests were calculated on the coefficient of a generalized linear model with gamma and identity link function corrected for multiple testing with Bonferroni correction.

<sup>&</sup>lt;sup>a</sup> The statistical tests applied were the chi-square test for qualitative variables and t -tests or Analysis of Variance (ANOVA) for quantitative variables.

**Table 4**Differences in syntactic comprehension among the three study groups.

|                                | FEP-NA<br>(n = 166)             | FEP-A<br>(n = 52)               | HCs<br>(n = 106)                 | Statistics <sup>a</sup>                                                    | P-value, Bonferroni<br>corrected                                                | Post-hoc results (after correction<br>for multiple comparisons<br>with Holm method) |
|--------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| TCGB Grammatical Errors        | $2.9 \pm 2.8$                   | $2.4 \pm 2.2$                   | 1.1 ± 1.4                        | HCsvsFEP-NA; z = -9.2<br>HCsvsFEP-A; z = -4.4<br>FEP-NAvsFEP-A;<br>z = 2.4 | HCsvsFEP-NA; $p < 0.001$<br>HCsvsFEP-A; $p < 0.001$<br>FEP-NAvsFEP-A; $p = 0.2$ | FEP-NA = FEP-A> HCs                                                                 |
| TCGB Non Grammatical<br>Errors | $\textbf{0.5} \pm \textbf{1.4}$ | $0.3\pm 0.5$                    | $\textbf{0.06} \pm \textbf{0.2}$ | HCsvsFEP-NA; $z = -3.2$                                                    | HCsvsFEP-NA; $p = 0.007$                                                        | FEP-NA>HCs                                                                          |
|                                |                                 |                                 |                                  | HCsvsFEP-A; z = -1.6<br>FEP-NAvsFEP-A;<br>z = 1.1                          | HCsvsFEP-A; p = 1<br>FEP-NAvsFEP-A;p = 1                                        |                                                                                     |
| TCGB Total Errors              | $2.0 \pm 2.5$                   | $\textbf{1.5} \pm \textbf{1.5}$ | $0.6 \pm 0.8$                    | HCsvsFEP-NA; z = -8.2<br>HCsvsFEP-A; z = -3.9<br>FEP-NAvsFEP-A;<br>z = 2.3 | HCsvsFEP-NA; $p < 0.001$<br>HCsvsFEP-A; $p = 0.002$<br>FEP-NAvsFEP-A; $p = 0.3$ | FEP-NA = FEP-A> HCs                                                                 |
| TCGB Locative Item             | $0.8 \pm 1.2$                   | $0.60 \pm 0.9$                  | $0.3 \pm 0.6$                    | HCsvsFEP-NA; z = -4.7<br>HCsvsFEP-A; z = -1.8<br>FEP-NAvsFEP-A;<br>z = 1.7 | HCsvsFEP-NA; $p < 0.001$<br>HCsvsFEP-A; $p = 1$<br>FEP-NAvsFEP-A; $p = 1$       | FEP-NA>HCs                                                                          |
| TCGB Active Negative Item      | $0.9 \pm 1.2$                   | $\textbf{0.8} \pm \textbf{0.8}$ | $0.3 \pm 0.6$                    | HCsvsFEP-NA; z = -5.8<br>HCsvsFEP-A; z = -3.5<br>FEP-NAvsFEP-A;<br>z = 0.6 | HCsvsFEP-NA; $p < 0.001$<br>HCsvsFEP-A; $p = 0.01$<br>FEP-NAvsFEP-A; $p = 1$    | FEP-NA = FEP-A > HCs                                                                |
| TCGB Passive Affirmative Item  | $\textbf{0.5} \pm \textbf{1.1}$ | $0.2 \pm 0.4$                   | $\textbf{0.1} \pm \textbf{0.4}$  | HCsvsFEP-NA; $z = -4.3$                                                    | HCsvsFEP-NA; p < 0.001                                                          | FEP-NA > FEP-A and HCs                                                              |
|                                |                                 |                                 |                                  | HCsvsFEP-A; $z = -0.4$<br>FEP-NAvsFEP-A;<br>z = 3.1                        | HCsvsFEP-A; $p = 1$<br>FEP-NAvsFEP-A; $p = 0.04$                                |                                                                                     |
| TCGB Passive Negative Item     | $0.5\pm1.1$                     | $0.2 \pm 0.4$                   | $0.2 \pm 0.6$                    | HCsvsFEP-NA; z = -3.2<br>HCsvsFEP-A; z = 0.07<br>FEP-NAvsFEP-A;<br>z = 2.7 | HCsvsFEP-NA; $p = 0.02$<br>HCsvsFEP-A; $p = 1$<br>FEP-NAvsFEP-A; $p = 0.1$      | FEP-NA>HCs                                                                          |
| TCGB Relative Item             | $0.6\pm1.1$                     | $0.5\pm1$                       | $0.1 \pm 0.5$                    | HCsvsFEP-NA; z = -4.6<br>HCsvsFEP-A; z = -2.0<br>FEP-NAvsFEP-A;<br>z = 1.4 | HCsvsFEP-NA; $p < 0.001$<br>HCsvsFEP-A; $p = 0.7$<br>FEP-NAvsFEP-A; $p = 1$     | FEP-NA>HCs                                                                          |

FEP-A = Affective First Episode psychosis; FEP-NA = Non-affective First Episode Psychosis; HCs = Healthy Controls; TCGB = Test di Comprensione Grammaticale per Bambini.

<sup>a</sup> The post-hoc tests were calculated on the coefficient of a generalized linear model with gamma and identity link function, corrected for multiple comparisons with Holm method and for multiple testing with Bonferroni correction.

significantly greater grammatical (z=-9.2, p<0.001) and non grammatical (z=-3.2, p=0.005) errors as well as locative (z=-4.4, p<0.001), active-negative (z=-6.1, p<0.001), passive-affirmative (z=-3.5, p=0.002) and relative (z=-4.3, p<0.001) errors compared to HCs. No differences were observed in passive-negative sentences (z=-2.6, p=0.07).

3.2.2. Affective FEP patients vs non-affective FEP patients vs healthy controls

Table 4 and Fig. 2 showed the significant results emerged from the post-hoc analysis.

Comparison between the three groups showed that FEP-NA and FEP-A patients committed more grammatical (FEP-NA: z=-9.2, p<0.001; FEP-A: z=-4.4, p<0.001), total (FEP-NA: z=-8.2, p<0.001; FEP-A: z=-3.9, p=0.002) and active-negative (FEP-NA: z=-5.8, p<0.001; FEP-A: z=-3.5, p=0.01) errors compared to HCs. Interestingly, FEP-NA patients also committed more nongrammatical (z=-3.2, p=0.007), locative (z=-4.7, p<0.001), passive negative (z=-3.2, p=0.02) and relative (z=-4.6, p<0.001) errors compared to HCs. Finally, FEP-NA patients produced more passive-affirmative errors compared to HCs (z=-4.3, p<0.001) and FEP-A (z=3.1, z=0.004).

3.3. Correlations between syntactic comprehension and clinical or sociodemographic variables in FEP patients

No statistical significant correlations were observed between TCGB measures and educational level, PANSS-Positive, PANSS-

Psychopathology, HDRS scores, BRMRS scores, GAF scores and dose of antipsychotics in the whole FEP group, except for PANSS-Negative that significantly positively correlated with TCGB grammatical errors (p = 0.04; effect size = 0.06). Additionally, no statistical significant correlations were observed between TCGB measures and educational level, PANNS-Negative, PANSS-Positive, PANSS-Psychopathology, PANSS-Total, HDRS scores, BRMRS scores, GAF scores and dose of antipsychotics in FEP-NA. Similarly, we found no statistical significant correlations between all TCGB measures and these scales also in FEP-A patients, except for TCGB grammatical errors, which were significantly positively correlated with GAF scores (p = 0.049; effect size = 0.04). Finally, with regards to HCs, no statistical significant correlations were observed between TCGB measures and educational level scores.

Please refer to Supplementary Materials for all the tables showing the p-values and effect sizes of the correlations performed between all TCGB measures and clinical or sociodemographic variables in the whole groups of FEP (Table S1), FEP-NA (Table S2), FEP-A (Table S3) and HCs (Table S4).

# 4. Discussion

To the best of our knowledge, this is the first study in the literature that explored syntactic comprehension language abilities in a large sample of FEP patients.

Overall, we found a greater number of errors in performing the syntactic comprehension test in the group of FEP patients as compared to HCs. This finding is consistent with previous research on patients with SKZ both conducted by our [18,19] and other

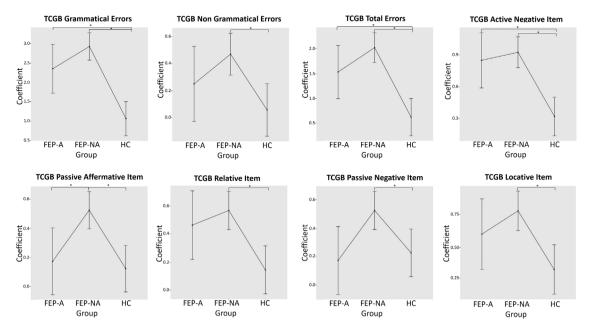



Fig. 2. Significant mean differences in TCGB syntactic comprehension measures between affective first episode psychosis (FEP) patients, non-affective FEP patients and healthy controls (HCs). The post-hoc tests were calculated on the coefficient of a generalized linear model with gamma and identity link function, corrected for multiple comparisons with Holm method and for multiple testing with Bonferroni correction.

[12,15,16] research groups. Indeed, in Tavano et al. [18] patients with SKZ showed significantly poorer syntactic diversity skills, including narrative and conversational speech, than HCs. Similarly. Perlini et al. [19] reported that patients with SKZ had selective impairments in active-negative sentences, as measured by the same TCGB test employed in our study, compared to HCs. Furthermore, the study also showed that patients with longer history of illness had a more generalized deficit in correctly identifying syntactic constructions compared to HCs [19]. Taken together, these findings suggest that syntactic deficits are a core dimension of psychosis, as also hypothesized by Crow et al. [6,7]. Specifically, according to Crow's hypothesis, the nuclear symptoms of psychoses represent a failure in establishing the left hemisphere dominance for language, which is one of the most lateralized dimension (most commonly to the left hemisphere) [7]. Indeed, it has to be noted that in the healthy brain syntactic abilities are anatomically sustained by a distributed fronto-temporal network within the left hemisphere, including the inferior frontal gyrus and the posterior superior temporal sulcus [42–46]. Therefore, altered lateralization, which is defined as an inverse asymmetry or a lack of prevalence of one hemisphere on the other, is one of the most replicated behavioral and neuroimaging findings in psychosis, being also present in FEP and in subjects at genetic risk to develop psychosis [47–50]. In this context, we might hypothesize that cerebral asymmetry changes may possibly explain the deterioration of syntactic abilities that we observed in our group of FEP subjects. However, further studies are necessary to confirm these alterations over time.

Moreover, our findings showed that both FEP-NA and FEP-A patients committed more grammatical and active negative errors compared to HCs, ultimately suggesting a shared syntactic deficit between the two diagnostic groups. These common syntactic impairments may be understood within the psychosis continuum theoretical framework [51]. The adoption of categorical system alone to classify psychotic disorders has been, indeed, widely questioned in light of evidence showing shared cognitive and brain deficits between non-affective and affective psychosis [52–54]. Notably, a recent study carried out by our group also reported similar deficits in linguistic and emotional prosodic [55] as well as

in comprehension of figurative language [56] deficits between affective and non-affective FEP patients. Therefore, in line with these evidence, the syntactic deficits observed in both FEP-NA and FEP-A patients may represent a common clinical feature consistent with a possible nosological overlap. However, it is worth noticing that FEP-NA patients showed unique syntactic impairments, with worse performance in non-grammatical, locative, passive-affirmative, passive-negative and relative sentences compared to HCs as well as in passive-affirmative constructions compared to FEP-A patients, ultimately suggesting a more extensive language dysfunction in these patients. This result is also in line with our previous study [55] showing more prominent prosodic deficits in FEP-NA patients compared to FEP-A, as well as with previous research showing more severe neuropsychological deficits in SKZ as compared to BD [57,58], even when matched for clinical and demographic characteristics [57]. Furthermore, the more extensive language deficits found in our group of FEP-NA patients could be anatomically sustained by a more remarkable disruption of leftward functional hemispheric lateralization for language observed in SKZ compared to BD, independently of task performance, severity of symptoms, age and gender, as suggested by previous studies [59-61].

Therefore, based on these evidence, language disturbances seem to have a central role in the presentation of psychotic disorders and it should be considered as a potential target of intervention in FEP patients, as also suggested by a previous study [5].

# 4.1. Correlations between TCGB measures and clinical variables

Our results showed the presence of significant correlations between clinical symptoms and syntactic abilities only in the whole group of FEP and FEP-A patients. Specifically, we found that PANSS-Negative, for the whole group of FEP patients, and GAF scores, for only FEP-A patients, positively correlated with TCGB grammatical errors, ultimately suggesting that illness severity played a key role in influencing the performance in this test. Interestingly, these results seemed to partially align with the evidence reported by our previous study investigating prosody abilities in a partially overlapping sample, which showed that

emotional prosody impairments were significantly correlated with illness severity [55]. Moreover, our results are also in agreement with evidence reporting significant correlations between illness severity and cognitive impairments in BD [62] and SKZ [63]. Indeed, it has been found that in BD the performance in executive functions was negatively correlated with the number of manic or depressive episodes [62]. Similarly, Heydebrand et al. [63] also observed that negative symptoms were associated with deficits in memory, verbal fluency and executive functions in first episode SKZ.

Therefore, our study further suggests that clinical symptomatology might play a key role on language deficits in FEP, ultimately proposing the need of a clear clinical stratification of FEP patients for a better understanding of language deficits in these patients. However, it is important to point out that the significant correlations found in our study were characterized by small effect sizes and therefore further studies are warranted to confirm our results.

#### 4.2. Limitations

Although this study investigated language abilities in a large sample of FEP patients, some limitations might have reduced the generalizability of the results and therefore should be taken into account. First, all participating patients were on medication, which may have a potential confounding role. Therefore, future studies on medication-free FEP patients are warranted for ruling out the possible medication effects on language abilities. Second, the specific cognitive abilities were not assessed and they should be considered in future studies, especially because executive functions and working memory have an important role in language abilities, as suggested by previous investigations [64–66]. Nevertheless, in this study we controlled for an estimated measure of the IQ in all the statistical analyses.

# 5. Conclusion

This study shows that the syntactic comprehension impairments are already present in both FEP-NA and FEP-A patients, confirming that reduced access to syntactic structures is a core impairment of psychoses, in particular in FEP-NA patients. Therefore, given the centrality of language domain for functional outcome, the assessment of different aspects of language and the remediation of linguistic comprehension alterations should be included in routine clinical practice in the early phases of psychosis. Finally, further neuroimaging studies should be warranted in order to explore the relationship between syntactic comprehension impairment and cerebral asymmetry and connectivity at different illness stages.

#### **Declaration of interest**

None.

# Acknowledgements

This study was supported by grants from the Italian Ministry of Health (H61J0800020000 to MR, RF-2016-02364582 to PB) and the Fondazione Cariverona (Promoting research to improve quality of care; Sotto-obiettivo A9 'Disabilità cognitiva e comportamentale nelle demenze e nelle psicosi' to PB and MR).

# Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.eurpsy.2019.08.001.

#### References

- [1] Stain HJ, Hodne S, Joa I, ten Velden Hegelstad W, Douglas KM, Langveld J, et al. The relationship of verbal learning and verbal fluency with written story production: implications for social functioning in first episode psychosis. Schizophr Res 2012;138(2–3):212–7.
- [2] Reser MP, Allott KA, Killackey E, Farhall J, Cotton SM. Exploring cognitive heterogeneity in first-episode psychosis: what cluster analysis can reveal. Psychiatry Res 2015;229(3):819–27.
- [3] Underwood R, Kumari V, Peters E. Cognitive and neural models of threat appraisal in psychosis: a theoretical integration. Psychiatry Res 2016;239:131–8.
- [4] Wilcox J, Winokur G, Tsuang M. Predictive value of thought disorder in newonset psychosis. Compr Psychiatry 2012;53(6):674–8.
- [5] Roche E, Segurado R, Renwick L, McClenaghan A, Sexton S, Frawley T, et al. Language disturbance and functioning in first episode psychosis. Psychiatry Res 2016;235:29–37.
- [6] Crow TJ. Is schizophrenia the price that Homo sapiens pays for language? Schizophr Res 1997;28(2–3):127–41.
- [7] Crow TJ. Schizophrenia as the price that Homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Res Rev 2000;31(2-3):118-29.
- [8] Condray R, Steinhauer SR, Goldstein G. Language comprehension in schizophrenics and their brothers. Biol Psychiatry 1992;32(9):790-802.
- [9] Klosterkötter J, Hellmich M, Steinmeyer EM, Schultze-Lutter F. Diagnosing schizophrenia in the initial prodromal phase. Arch Gen Psychiatry 2001;58 (2):158–64.
- [10] Cannon M, Caspi A, Moffitt TE, Harrington H, Taylor A, Murray RM, et al. Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch Gen Psychiatry 2002;59(5):449–56.
- [11] Fuller R, Nopoulos P, Arndt S, O'Leary D, Ho BC, Andreasen NC. Longitudinal assessment of premorbid cognitive functioning in patients with schizophrenia through examination of standardized scholastic test performance. Am J Psychiatry 2002;159(7):1183–9.
- [12] Thomas P, Leudar I, Newby D, Johnston M. Syntactic processing and written language output in first onset psychosis. J Commun Disord 1993;26(4):209– 30.
- [13] Solomon M, Olsen E, Niendam T, Ragland JD, Yoon J, Minzenberg M, et al. From lumping to splitting and back again: atypical social and language development in individuals with clinical-high-risk for psychosis, first episode schizophrenia, and autism spectrum disorders. Schizophr Res 2011;131(1– 3):146–51.
- [14] Lott PR, Guggenbühl S, Schneeberger A, Pulver AE, Stassen HH. Linguistic analysis of the speech output of schizophrenic, bipolar, and depressive patients. Psychopathology 2002;35(4):220–7.
- [15] Kravariti E, Reichenberg A, Morgan K, Dazzan P, Morgan C, Zanelli JW, et al. Selective deficits in semantic verbal fluency in patients with a first affective episode with psychotic symptoms and a positive history of mania. Bipolar Disord 2009;11(3):323–9.
- [16] Xu JQ, Hui CLM, Longenecker J, Lee EHM, Chang WC, Chan SKW, et al. Executive function as predictors of persistent thought disorder in first-episode schizophrenia: a one-year follow-up study. Schizophr Res 2014;159(2):465– 70.
- [17] Bellani M, Brambilla P. Social cognition, schizophrenia and brain imaging. Enidemiol Psychiatry Soc 2008;17(2):117–9
- [18] Tavano A, Sponda S, Fabbro F, Perlini C, Rambaldelli G, Ferro A, et al. Specific linguistic and pragmatic deficits in Italian patients with schizophrenia. Schizophr Res 2008;102(1–3):53–62.
- [19] Perlini C, Marini A, Garzitto M, Isola M, Cerruti S, Marinelli V, et al. Linguistic production and syntactic comprehension in schizophrenia and bipolar disorder. Acta Psychiatr Scand 2012;126(5):363–76.
- [20] Bambini V, Arcara G, Bechi M, Buonocorec M, Cavallaro R, Bosia M. The communicative impairment as a core feature of schizophrenia: frequency of pragmatic deficit, cognitive substrates, and relation with quality of life. Compr Psychiatry 2016;71:106–20.
- [21] Moro A, Bambini V, Bosia M, Anselmetti S, Riccaboni R, Cappa SF, et al. Detecting syntactic and semantic anomalies in schizophrenia. Neuropsychologia 2015;79:147–57.
- [22] DeLisi LE. Speech disorder in schizophrenia: review of the literature and exploration of its relation to the uniquely human capacity for language. Schizophr Bull 2001;27(3):481–96.
- [23] David AS. The cognitive neuropsychiatry of auditory verbal hallucinations: an overview. Cogn Neuropsychiatry 2004;9(1–2):107–23.
- [24] McKenna PJ, Oh TM. Schizophrenic speech. Making sense of bathroots and ponds that fall in doorways. Cambridge, New York: Cambridge University Press: 2015.
- [25] Strik W, Dierks T, Hubl D, Horn H. Hallucinations, thought disorders, and the language domain in schizophrenia. Clin EEG Neurosci 2008;39(2):91–4.
- [26] Spalletta G, Tomaiuolo F, Marino V, Bonaviri G, Trequattrini A, Caltagirone C. Chronic schizophrenia as a brain misconnection syndrome: a white matter voxel-based morphometry study. Schizophr Res 2003;64(1):15–23.
- [27] Iwashiro N, Koike S, Satomura Y, Suga M, Nagai T, Natsubori T, et al. Association between impaired brain activity and volume at the sub-region of Broca's area in ultra-high risk and first-episode schizophrenia: a multi-modal neuroimaging study. Schizophr Res 2016;172(1–3):9–15.

- [28] Marini A, Spoletini I, Rubino IA, Ciuffa M, Bria P, Martinotti G, et al. The language of schizophrenia: an analysis of micro and macrolinguistic abilities and their neuropsychological correlates. Schizophr Res 2008;105(1–3):144–55.
- [29] Ruggeri M, Bonetto C, Lasalvia A, De Girolamo G, Fioritti A, Rucci P, et al. A multi-element psychosocial intervention for early psychosis (GET UP PIANO TRIAL) conducted in a catchment area of 10 million inhabitants: study protocol for a pragmatic cluster randomized controlled trial. Trials 2012;3(1):73.
- [30] Ruggeri M, Bonetto C, Lasalvia A, Fioritti A, De Girolamo G, Santonastaso P, et al. Feasibility and effectiveness of a multi-element psychosocial intervention for first-episode psychosis: results from the cluster-randomized controlled GET UP PIANO trial in a catchment area of 10 million inhabitants. Schizophr Bull 2015;41(5):1192–203.
- [31] World Health Organization. Schedules for clinical assessment in neuropsychiatry. Geneva: WHO; 1992.
- [32] Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987;13(2):261–76.
- [33] Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23:56-62.
- [34] Bech P, Rafaelsen OJ, Kramp P, Bolwig TG. The mania rating scale: scale construction and inter-observer agreement. Neuropharmacology 1978;17 (6):430–1.
- [35] American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 3rd edn, revised Washington, DC: APA; 1987 (DSM-III-R).
- [36] Colombo L, Sartori G, Brivio C. Stima del quoziente intellettivo tramite l'applicazione del TIB (test breve di Intelligenza). Giornale Italiano di Psicologia. 2002;29(3):613–38.
- [37] Chilosi AM, Cipriani P. Test di Comprensione Grammaticale per Bambini. Italy: Del Cerro, Tirrenia; 1995.
- [38] Team RC. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.
- [39] Goeman JJ, Finos L. The inheritance procedure: multiple testing of tree structured hypotheses. Stat Appl Genet Mol Biol 2012;11(1):21.
- [40] Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers; 1988.
- [41] Sullivan GM, Feinn R. Using effect size—or why the P value is not enough. J Grad Med Educ 2012;4(3):279–82.
- [42] Grodzinsky Y. The neurology of syntax: language use without Broca's area. Behav Brain Sci 2000;23(1):1–21.
- [43] Rodd JM, Vitello S, Woollams AM, Adank P. Localising semantic and syntactic processing in spoken and written language comprehension: an activation likelihood estimation meta-analysis. Brain Lang 2015;141:89–102.
- [44] Zaccarella E, Friederici AD. Merge in the human brain: a sub-region based functional investigation in the left pars opercularis. Front Psychol 2015;6:1818.
- [45] Xiao Y, Friederici AD, Margulies DS, Brauer J. Development of a selective lefthemispheric fronto-temporal network for processing syntactic complexity in language comprehension. Neuropsychologia 2016;3:274–82.
- [46] Blank I, Balewski Z, Mahowald K, Fedorenko E. Syntactic processing is distributed across the language system. Neuroimage 2016;127:307–23.
- [47] Francis AN, Seidman LJ, Jabbar GA, Mesholam-Gately R, Thermenos HW, Juelich R, et al. Alterations in brain structures underlying language function in young adults at high familial risk for schizophrenia. Schizophr Res 2012;141 (1):65-71.
- [48] Li X, Alapati V, Jackson C, Xia S, Bertisch HC, Branch CA, et al. Structural abnormalities in language circuits in genetic high-risk subjects and schizophrenia patients. Psychiatry Res 2012;201(3):182–9.

- [49] Park HY, Hwang JY, Jung WH, Shin NY, Shim G, Jang JH, et al. Altered asymmetry of the anterior cingulate cortex in subjects at genetic high risk for psychosis. Schizophr Res 2013;150(2–3):512–8.
- [50] Crow TJ, Chance SA, Priddle TH, Radua J, James AC. Laterality interacts with sex across the schizophrenia/bipolarity continuum: an interpretation of metaanalyses of structural MRI. Psychiatry Res 2013;210(3):1232–44.
- [51] Craddock N, O'Donovan MC, Owen MJ. Psychosis genetics: modeling the relationship between schizophrenia, bipolar disorder, and mixed (or "schizoaffective") psychoses. Schizophr Bull 2009;35(3):482–90.
- [52] Calvo A, Delvecchio G, Altamura AC, Soares JC, Brambilla P. Gray matter volume differences between affective and non-affective first episode psychosis: a review of magnetic resonance Imaging studies. J Affect Disord 2018;243:564–74.
- [53] De Peri L, Crescini A, Deste G, Fusar-Poli P, Sacchetti E, Vita A. Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: a metaanalysis of controlled magnetic resonance imaging studies. Curr Pharm Des 2012;18(4):486–94.
- [54] Lewandowski KE, Cohen BM, Keshavan MS, Öngür D. Relationship of neurocognitive deficits to diagnosis and symptoms across affective and non-affective psychoses. Schizophr Res 2011;133(1–3):212–7.
- [55] Caletti E, Delvecchio G, Andreella A, Finos L, Perlini C, Tavano A, et al. Prosody abilities in a large sample of affective and non-affective first episode psychosis patients. Compr Psychiatry 2018;86:31–8.
- [56] Perlini C, Bellani M, Finos L, Lasalvia A, Bonetto C, Scocco P, et al. Non literal language comprehension in a large sample of first episode psychosis patients in adulthood. Psychiatry Res 2018;260:78–89.
- [57] Krabbendam L, Arts B, van Os J, Aleman A. Cognitive functioning in patients with schizophrenia and bipolar disorder: a quantitative review. Schizophr Res 2005;80(2–3):137–49.
- [58] Caletti E, Paoli RA, Fiorentini A, Cigliobianco M, Zugno E, Serati M, et al. Neuropsychology, social cognition and global functioning among bipolar, schizophrenic patients and healthy controls: preliminary data. Front Hum Neurosci 2013;7:661.
- [59] Rao NP, Arasappa R, Reddy NN, Venkatasubramanian G, Gangadhar BN. Antithetical asymmetry in schizophrenia and bipolar affective disorder: a line bisection study. Bipolar Disord 2010;12(3):221–9.
- [60] Alary M, Razafimandimby A, Delcroix N, Leroux E, Delamillieure P, Brazo P, et al. Reduced functional cerebral lateralization: a biomarker of schizophrenia? Bipolar Disord 2013;15(4):449–51.
- [61] Royer C, Delcroix N, Leroux E, Alary M, Razafimandimby A, Brazo P, et al. Functional and structural brain asymmetries in patients with schizophrenia and bipolar disorders. Schizophr Res 2015;161(2–3):210–4.
- [62] Zubieta JK, Huguelet P, Lajiness-O'Neill R, Giordani BJ. Cognitive function in euthymic bipolar I disorder. Psychiatry Res 2001;102(1):9–20.
- [63] Heydebrand G, Weiser M, Rabinowitz J, Hoff AL, DeLisi LE, Csernansky JG. Correlates of cognitive deficits in first episode schizophrenia. Schizophr Res 2004;68:1–9.
- [64] Bora E, Yucel M, Pantelis C. Cognitive functioning in schizophrenia, schizoaffective disorder and affective psychoses: meta-analytic study. Br J Psychiatry 2009;195(6):475–82.
- [65] Swets B, Desmet T, Hambrick DZ, Ferreira F. The role of working memory in syntactic ambiguity resolution: a psychometric approach. J Exp Psychol Gen 2007:136(1):64.
- [66] Wilson SM, Galantucci S, Tartaglia MC, Rising K, Patterson DK, Henry ML, et al. Syntactic processing depends on dorsal language tracts. Neuron 2011;2 (2):397–403.