A.M.A.S.E.S. ASSOCIAZIONE PER LA MATEMATICA APPLICATA ALLE SCIENZE ECONOMICHE E SOCIALI

ATTI DEL VENTESIMO CONVEGNO ANNUALE A.M.A.S.E.S.

Urbino, 5-7 settembre 1996

Università degli Studi di Urbino Con il Contributo del Consiglio Nazionale delle Ricerche

UNA GENERALIZZAZIONE DELLO SVILUPPO IN SERIE DI TAYLOR MEDIANTE IL CALCOLO FRAZIONARIO SECONDO WEYL

Marco CORAZZA e Carla NARDELLI Dipartimento di Matematica Applicata ed Informatica Università "Ca' Foscari" di Venezia

1. INTRODUZIONE

Il calcolo frazionario è una generalizzazione del calcolo "classico" (quello di Leibnitz, di Newton, ...) in cui l'ordine di integro-derivazione è un arbitrario valore reale. Una tale estensione risulta in ideale continuità con quelle che, fra le altre, hanno condotto alle operazioni di esponenziazione e di fattoriale per un arbitrario numero complesso e, più in generale, al calcolo ed all'analisi nel campo complesso [2]. Nonostante la possibilità di interessanti applicazioni (fra le quali quelle nella teoria dei processi stocastici, nelle teorie fisiche del calore, dell'elettromagnetismo e dell'elasticità, nella teoria delle decisioni [3], [4] ed in matematica finanziaria [1]) la generalizzazione "frazionaria" del calcolo "classico" non risulta particolarmente diffusa come, invece, sue altre estensioni quali, ad esempio, il calcolo nel campo complesso e quello stocastico.

In questo lavoro proponiamo lo sviluppo in serie di Taylor di una funzione reale di n variabili reali mediante l'utilizzo di una nostra generalizzazione del calcolo frazionario secondo Weyl. Tale sviluppo in serie "frazionario" (passibile di applicazione in tutte quelle modellistiche economico-finanziarie in cui si utilizza lo sviluppo in serie "classico") differisce da quello proposto da Osler [9] poiché quest'ultimo è relativo ad una funzione reale di 1 variabile reale ed è realizzato mediante l'utilizzo del calcolo frazionario secondo Riemann-Liouville. In particolare, nella sezione 2. illustriamo sinteticamente i principali aspetti teorici del calcolo integro-differenziale frazionario secondo Weyl; nella sezione 3. proponiamo la nostra estensione di quegli aspetti del calcolo frazionario necessari per questo lavoro; infine, nella sezione 4. determiniamo lo sviluppo in serie di Taylor di una funzione reale di n variabili reali mediante l'utilizzo delle generalizzazioni ricavate nella sezione 3..

2. ASPETTI TEORICI DEL CALCOLO INTEGRO-DIFFERENZIALE FRAZIONARIO

Nella letteratura sono presenti almeno cinque diverse definizioni di derivata frazionaria, definizioni proposte fin dal 1695, anno in cui Leibnitz scrive sulle derivate di ordine reale e di ordine complesso. Successivamente, Lacroix (1819), Liouville (1832), Riemann (1847) e Weyl (1917) sono i matematici che, più di altri, si sono impegnati per definire l'integrale e la derivata frazionari, per individuare le proprietà di tali operatori e per determinare la classe delle funzioni integro-derivabili frazionalmente. E' da notare come l'assunzione da parte di ognuna di queste definizioni di una particolare classe di funzioni integro-derivabili frazionalmente comporti, in generale, il conseguimento di risultati diversi. Ad esempio, le funzioni costanti ammettono integrali frazionari sia secondo Riemann che Riemann-Liouville, ma né secondo Liouville che Weyl. Comunque, aldilà delle differenze presenti tra le varie estensioni del calcolo frazionario, ognuna di queste deve soddisfare alcuni principi di coerenza (per maggiori dettagli si veda [8] e [5]).

Nel seguito di questa sezione presentiamo sinteticamente i concetti di base del calcolo frazionario secondo Weyl, con particolare riferimento sia alla classe (sufficiente) S di opportune funzioni che risulta chiusa rispetto alla integro-derivazione frazionaria sia agli operatori stessi di integrazione e di derivazione frazionaria.

Proprietà 2.1. Sia data una funzione $f: \mathbb{R} \to \mathbb{R}$, integrabile su ogni sottointervallo di \mathbb{R}^+ , tale che sia $O(t^{-N})$ per ogni $N \in \mathbb{N}_0$, quando $t \to +\infty$. Allora f è integrabile secondo Weyl.

Definizione 2.1. La classe (sufficiente) S delle funzioni integrabili secondo Weyl è composta dalle funzioni $f: \mathbf{R} \to \mathbf{R}$ (good functions) che sono derivabili in \mathbf{R}^+ un qualsiasi numero $N \in \mathbb{N}_0$ di volte e che, con tutte le loro derivate, sono di ordine $O(t^{-N})$ per ogni N, quando $t \to +\infty$.

Definizione 2.2. Sia data una funzione $f: \mathbb{R}^+ \to \mathbb{R}$, con $f \in S$ e sia dato un numero $v \in \mathbb{R}^+$. Si definisce integrale frazionario secondo Weyl di ordine v della funzione f la seguente espressione

(2.1)
$${}_{0}W_{+\infty}^{-\nu}[f(t)] \stackrel{\text{def}}{=} \frac{1}{\Gamma(\nu)} \int_{0}^{+\infty} x^{\nu-1} f(t+x) dx$$

dove $\Gamma(\cdot)$ è la funzione gamma, detta anche integrale Euleriano.

Una volta che è stato definito l'integrale frazionario secondo Weyl, è possibile definire come segue la derivata frazionaria secondo Weyl.

Definizione 2.3. Sia data una funzione $f: \mathbb{R}^+ \to \mathbb{R}$, con $f \in S$ e sia dato un numero $d \in \mathbb{R}^+$. Si definisce derivata frazionaria secondo Weyl di ordine d della funzione f la seguente espressione

(2.4)
$${}_{0}W_{+\infty}^{d}[f(t)] \stackrel{\text{def}}{=} W_{+\infty}^{m}[{}_{0}W_{+\infty}^{-\nu}[f(t)]] \stackrel{\text{def}}{=} \frac{1}{\Gamma(\nu)} \int_{0}^{+\infty} x^{\nu-1} \frac{d^{m}f}{dt^{m}}(t+x) dx$$

dove d = m - v, con $m \in \mathbb{N}$ il più piccolo intero maggiore di de con $0 < v \le 1$.

In termini qualitativi, la derivata frazionaria secondo Weyl si determina operando una derivazione ordinaria di ordine m su di un integrale frazionario di Weyl di ordine v.

3. GENERALIZZAZIONE DEL CALCOLO FRAZIONARIO SECONDO WEYL

In questa sezione proponiamo le nostre estensioni dei concetti di integrazione e di derivazione frazionarie secondo Weyl per una funzione reale di *n* variabili reali.

Definizione 3.1. Sia data una funzione $f: \mathbb{R}^n \to \mathbb{R}$, con $f(t) = f(t_1, ..., t_n) \in \mathbb{R}$, parzialmente derivabile nel suo dominio un qualsiasi numero (intero) di volte, tale che essa ed ognuna delle sue derivate parziali di ogni ordine siano $O(\prod_{i=1}^n |t_i|^{\nu_i})$ per ogni $\nu_i \in \mathbb{R}_0^+$, i=1,...,n, quando $t_i \to +\infty$. Si definisce integrale frazionario secondo Weyl di ordine $\nu=(\nu_1,...,\nu_n)$ della funzione f la seguente espressione:

E' da porre in evidenza come la richiesta che la funzione f ed ognuna delle sue derivate parziali di ogni ordine siano $O(\prod_{i=1}^n |t_i|^{-\nu_i})$ per ogni $\nu_i \in \mathbb{R}_0^+$, $i=1,\ldots,n$, quando $t_i \to +\infty$, sia una condizione sufficiente per la convergenza degli n integrali che compaiono nella (3.1) (per maggiori dettagli si veda [8], [5] e [7]).

Diamo ora due definizioni, la prima relativa al concetto di derivata frazionaria secondo Weyl rispetto ad una variabile per una funzione reale di *n* variabili reali e la seconda relativa al concetto di derivata frazionaria secondo Weyl rispetto a più variabili per una funzione reale di *n* variabili reali.

Definizione 3.2. Sia data una funzione $f: \mathbb{R}^n \to \mathbb{R}$, con $f(t) = f(t_1,...,t_n) \in \mathbb{R}$, appartenente alla classe descritta nella **Definizione** 3.1. Si definisce derivata parziale frazionaria secondo Weyl di ordine $d_i \in \mathbb{R}^+$, i = 1,...n, rispetto alla i -esima variabile, la seguente espressione:

(3.2)
$$W^{0,...,0,d_{i},0,...,0}[f(\mathbf{t})] = \frac{1}{\Gamma(\nu_{i})} \int_{0}^{+\infty} x_{i}^{\nu_{i}-1} \frac{\partial^{m_{i}}}{\partial t_{i}^{m_{i}}} f(\mathbf{t} + \mathbf{x}) dx_{i}$$

dove $d_i = m_i - v_i$, con $m_i \in \mathbb{N}$ il più piccolo intero maggiore di d_i e con $0 < v_i \le 1$.

Definizione 3.3. Sia data una funzione $f: \mathbb{R}^n \to \mathbb{R}$, con $f(\mathbf{t}) = f(t_1, ..., t_n) \in \mathbb{R}$, appartenente alla classe descritta nella **Definizione 3.1.** Si definisce derivata parziale mista frazionaria secondo Weyl di ordine $\mathbf{d} = (d_1, ..., d_n)$ rispetto a più variabili la seguente espressione:

$$(3.3) \quad \overline{W}^{d_1,\dots,d_n}[f(t)] \stackrel{\text{def}}{=} \frac{1}{\prod_{i=1}^n \Gamma(v_i)} \underbrace{\int_{0}^{+\infty} \dots \int_{0}^{+\infty} \prod_{j=1}^n x_j^{v_j-1}}_{n \text{ yolte}} \frac{\partial^{m_1+\dots+m_n}}{\partial \ell_n^{m_1}} f(t+x) dx_1 \dots dx_n$$

dove $d_i = m_i - v_i \in \mathbb{R}^+$, per ogni i = 1,...,n, con $m_i \in \mathbb{N}$ il più piccolo intero maggiore di d_i e con $0 < v_i \le 1$.

4. SVILUPPO IN SERIE DI TAYLOR DI UNA FUNZIONE REALE DI n VARIABILI REALI

In questa sezione si presenta lo sviluppo in serie di Taylor ottenuto per una funzione reale di *n* variabili reali mediante l'utilizzo delle generalizzazioni ricavate nella precedente sezione 3.

Proposizione 4.1. Sia data una funzione $f: \mathbb{R}^n \to \mathbb{R}$, con $f(\mathbf{t}) = f(t_1, ..., t_n) \in \mathbb{R}$, appartenente alla classe descritta nella **Definizione** 3.1. e sia dato un punto $\mathbf{t}^* = (t_1^*, ..., t_n^*) \in \mathbb{R}^n$. Allora, lo sviluppo in serie di Taylor frazionario di f in un intorno di \mathbf{t}^* è dato da

$$(4.1) f(\mathbf{t}) = \sum_{n=-\infty}^{+\infty} \frac{\sum_{k=0}^{+\infty} \frac{\Gamma(k-n-\gamma)}{\Gamma(-n-\gamma)\Gamma(k+1)} \left(W^{0} - \sum_{i=1}^{n} W^{e_{i}} \Delta t_{i}\right)^{k} \left[f(\mathbf{t}^{*})\right]}{\Gamma(n+\gamma+1)}$$

dove $\gamma \in \mathbb{R}^+$, $W^0[\cdot]$ è l'operatore identità, $0 \in \mathbb{R}^n$ è il vettore nullo, \mathbf{e}_i , con i = 1, ..., n, sono i vettori della base canonica di \mathbb{R}^n e $\Delta t_i = t_i - t_i^*$.

7. BIBLIOGRAFIA

[1] CORAZZA, M. e NARDELLI, C. (1995) Una Versione Frazionaria delle Leggi Finanziarie in Regime dell'Interesse Composto, Atti del XIX Convegno A.M.A.S.E.S., Pugnochiuso di Vieste (FG), pp. 244-257.

[2] DATTOLI, G., RICHETTA, M. e TORRE, A. (1990) Cosa è e a Cosa serve

il Calcolo Frazionario, Il Nuovo Saggiatore, 5/6, pp. 19-28.

[3] FISHBURN, P. C. (1976) Continua of Stochastic Dominance Relations for Bounded Probability Distributions, *Journal of Mathematical Economics*, 3, pp. 295-311.

[4] FISHBURN, P. C. (1980) Continua of Stochastic Dominance Relations for Unbounded Probability Distributions, Journal of Mathematical

Economics, 7, pp. 271-285.

[5] ROSS, B. (Ed.) (1975) Fractional Calculus and Its Applications.

Springer-Verlag, Berlin.

- [6] MANDELBROT, B. B. e VAN NESS, J. W. (1968) Fractional Brownian Motions, Fractional Noises and Applications, SIAM Review, 10, 4, pp. 422-437.
- [7] MILLER, K. S. e ROSS, B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York.
- [8] OLDHAM, K. B. e SPANIER, J. (1974) The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York.

[9] OSLER, T. J. (1971) Taylor's Series Generalized for Fractional Derivatives

and Applications, SIAM J. Math. Anal., 2, 1, pp. 37-48.

[10] SAXENA, R. K., GUPTA, O. P. e KUMBHAT, R. K. (1989) On Twodimensional Weyl Fractional Calculus, Comptes Rendus de l'Académie Bulgare des Sciences, 42, 7, pp. 11-14. Finito di stampare nel mese di LUGLIO 1996 presso le Industrie Grafiche ERREBI srl - Falconara/AN