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Abstract. Several empirical investigations have emphasized that the Black and
Scholes option pricing formula shows systematic biases when compared to the mar-
ket prices. In order to face the determination of option pricing models alternative
to the Black and Scholes one, in this paper we propose two approaches. In the first
one we take into account a particular parametric stochastic model for volatility: a
regime switching model for the dynamics of the logarithmic returns of the under-
lying. In the second approach we assume that the biases observed for the Black
and Scholes prices depend on the violation of more than one of the hypotheses of
the related model; in particular, as it is often difficult to a priori determine the
violated assumptions, we consider a non-parametric tool: the multilayer perceptron
artificial neural networks. Both the approaches we developed has been carefully
tested on call options written on the UK stock index FTSE-100. The results we
obtained show that the considered models allow improvements with respect to the
Black and Scholes pricing (that we consider as benchmark). In short details: the
regime switching models are able to explain the smile effects empirically observed,
and the multilayer perceptron models show good capabilities in miming the market
option pricing mechanism.

KEYWORDS: option pricing, Black and Scholes formula, regime switching model,
multilayer perceptron artificial neural network, UK ‘stock index FTSE-100 .

JEL cLassIFIcATION: G13, C51, G45.
AMS CLASSIFICATION: 91B28, 62P05, 82C32.

1 Introduction and motivations

Financial options are primary example of derivative securities which
entitles the owner the ability - but not the obligation - to trade in the
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future the underlying securities at a given price, called strike or ezercise
price. In the last 30 years, options have known an exponential growth
since they are used by operators for hedging versus various forms of
risks, and for speculation purposes (see, for example, [Sartore, 1999]).

Much of the initial success, and of the following propagation of
these financial instruments may be also explained by the existence
of a valuation model which is easy to implement: the closed form op-
tion pricing formula proposed in [Black et al., 1973] (on following: BS)
for European call options, formula extended in various directions in
[Merton, 1973]). However, the assumptions underlying the BS formula
are rarely met. In fact, many empirical investigations have shown that
the logarithmic returns of many financial time series are characterized
by probability distributions which differ substantially from the normal
one supposed by BS. In particular, among the other features, the em-
pirical distributions are leptokurtic, asymmetric, and show fat tails;
moreover, various forms of frictions (like, for instance, the transaction
costs) exist in the markets, and a continuous trading is - of course -
not possible.

The violation of some of the assumptions underlying the BS model
necessarily involves that the model valuations show systematic bi-
ases when compared to the market prices. Several empirical analyzes
realized to verify the accuracy of the BS formula (see, for example,
[Rubinstein, 1994]) agree in evidencing two kinds of errors: the one
with respect to the time to maturity, and the one with respect to the
moneyness’.

In spite of the mentioned biases, the BS valuation model is widely
used for pricing standard European options because of its simplicity;
in fact, it needs the estimation of only a parameter, the one concerning
the market volatility. However, the operators adjust the BS prices in
order to correct both the time to maturity and the moneyness biases;
in this way they replicate the so called smile effect empirically observ-
able. By utilizing such an adjusted valuation formula, the operators
“approximate” an (unknown) option pricing model which differs form
the BS one; in fact, by so doing, they operate as if the dynamics of the
price of the underlying follows a stochastic process different from the
geometric Brownian motion assumed in the BS valuation models. In
other words, the operators continuously deal with the determination

! The moneyness is given by the ratio between the current price of the underlying
asset and the exercise price.
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of models, alternative to the BS one, able to properly incorporates the
features characterizing the option markets.

In order to face the determination of option pricing models al-
ternative to the BS one, in this paper we propose the following two
approaches:

— a first one in which we take into account a particular parametric
stochastic model for volatility: a regime switching model (on fol-
lowing: RSM) for the dynamics of the logarithmic return of the
underlying;

— asecond one in which we assume that the biases observed for the BS
prices depend on the violation of more than one of the hypotheses
of the related model; in particular, as it is often difficult to a priori
determine the violated assumptions, we consider a non-parametric
tool: the multilayer perceptron (on following: MLP) artificial neural
networks.

Both the approaches we developed has been carefully tested on the
call options written on the United Kingdom (on following: UK) stock
index FTSE-100. The results we obtained show that the considered
models allow improvements with respect to the BS pricing (that we
consider as benchmark). In short details:

— the RSMs are particularly able to explain the smile effects empir-
ically observed?;

— the MLP models show good capabilities in miming the market
option pricing mechanism.

The remainder of the paper is organized as follows: in section 2
we shortly recall some basics on the option pricing; in sections 3 and
4 we, respectively, introduce the RSMs and MLP models, we describe
the related pricing procedures, and we present the results; finally, in
section 5 we give some final remarks.

2 Stock index written option pricing: a short recall

As well known, financial options are derivative securities that give the
right to buy (call options), or to sell (put options), at (European-like
options), or within (American-like options), a certain ezpiry date T a

2 Notice that, in some cases, even the use of “standard” mixture of Gaussian prob-
ability distribution results restrictive.
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given underlying asset for an agreed amount X (ezercise price) (see,
for details, [Hull, 2003]).

The standard pricing approach for Furopean-like call options is
founded on the seminal valuation model proposed in [Black et al., 1973];
in particular, in this model one assumes that the price of the under-
lying asset S(t) is driven by the following continuous-time stochastic
dynamics: ‘

dS(t) = uS(t)dt + oS(t)dz,

where

1 is the instantaneous expected return rate;

o is the standard deviation of the instantaneous expected return rate;
z is a random variable following a Wiener process.

A stock index is a suitable weighted average of the prices of single
stocks; because of it, the related option pricing formula is not particu-
larly different from the one originally proposed in [Black et al., 1973].
The main difference consists in the fact that the stocks composing an
index usually pay dividends, and that the value of such an index is
not always adjusted for considering the related dividend effect. In de-
tails, the pricing formula for European-like call options characterized
by continuous distribution of dividends at a known and constant rate
q is the following one, given in [Merton, 1973]:

Cps(t) = S(t)e™ 7 d(dy) — Xe 7" P(ds) (1)

where
Cps(t) is the BS-like price at time t;
7 =T —t is the time to maturity, in which T is the ezpiration date;

&(d) = -\/-}2: /d e~ gu;
4y — log (S(¢)/X) + (r—q+02/2)7

oVT
terest rate;
dg = d]_ — g \/’—7'- .

The “inputs” of this BS-like pricing formula are: the underlying
asset price S(t) (in our case the UK stock index FTSE-100); the ezer-
cise price X; the time to maturity 7; the free risk interest rate r; the
dividend yield rate g; the volatility o.

, in which r is the free risk in-
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The first three “inputs” can be easily obtained by consulting fin-
ancial journals®.

With regard to the assessment of the free risk interest rate, in the
BS approach r is assumed known and constant during the lifetime of
the option. But, in practice, the free risk interest rate varies over time.
So, in order to estimate a proper r, at first we took into account the
interbank interest rates® at one week, at one month, at three months,
at six months, and at twelve months; then we determined a free risk
interest rate for each option time to maturity by linearly interpolating
the neighbouring interbank interest rates.

As far as it is concerned the dividend yield rate, we obtained its
time series by consulting the web site of the London Stock Exchange®.
In particular, a preliminary investigation of the data pointed out that
the dividend yield rate is nearly constant for the lifetime of all the
options we took into account; because of that, we can consider g con-
stant.

With regard to the volatility, its estimation was obtained by aver-
aging suitable implicit standard deviations achieved from the market
option prices. In particular, for a given time to maturity, we calculated
the volatility by a weighted average of the implicit standard deviations
determined from the market price time series of the two options whose
ezercise prices are closest to the price of the underlying of the investig-
ated option; by so doing, we conjecture to be able to mitigate the “im-
pact” of the noise present in the data on the option pricing. Moreover,
if options with different times to maturity were traded in the same day,
then the volatility estimate was obtained by a further weighted aver-
age of the volatilities calculated in correspondence of each of the time
to maturity. By the use of the latest weighted average, we conjecture
to be able to provide meaningful estimations of the volatility whatever
is the time to maturity. In any case, notice that

— at-the-money call options® are usually the most traded; therefore,
their implicit standard deviation incorporates highly reliable in-
formation;

% Notice that the stock market and the option one close at the same time; so, it is
assured the simultaneous determination of both the daily closing prices.

* In details, the London InterBank Offer Rate (LIBOR) on sterling.

5 The address is “http://www.londonstockexchange.com”.

€ A call option is said to be out-of-the-money if S(t) < X it is said to be at-the-
money if S(t) & X; it is said to be in-the-money if S(t) > X.
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— at-the-money call option prices are highly sensitive to change in
volatility; therefore, poor estimation of the volatility itself involves
significative error in pricing this category of option.

Finally, as far as it is concerned the “output” of the BS-like pricing
formula (1), we consider the daily closing prices of the European-like
call options written on the UK stock index FTSE-100, traded at the
London International Financial Futures and Options Exchange (also
known as LIFFE) from January 1, 1999 to December 27, 1999 (source:
Bloomberg).

3 Option pricing via RSMs

Simply speaking, when RSMs are utilized in order to model the sto-
chastic behaviour of a given financial asset (in our case the UK stock
index FTSE-100), generally one assumes that the returns of this as-
set are characterized by a suitable mixture of Gaussian probability
distributions with different means and different standard deviations,
whose transition probabilities from each to other depend on a non
observable process describable by a Markov chain (see, for details,
[Hamilton, 1994] and [Krolzig, 1997]). Therefore, an option valuation
model based on a switching regime approach is necessarily a stochastic
volatility pricing model’.

3.1 RSMs: some basics

Suppose that the returns of a given financial asset are distributed as

Yt =N(us(t),as(t)) , with s(t) =1,...,4,..., N,

where
s(t) is the outcome of an unobservable N— state Markov chain charac-
terized by the transition probability matrix which follows

/Pn oo Pil ---le\

P=1{py...pj ... 0on5 |,

\PLN - P - DN

7 See, for a review of the stochastic volatility pricing models, [Billio et al., 2003].
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in which p;; is the probability that the i— th state is followed by the
j— th one.

In order to price the European-like call options written on the UK
stock index FTSE-100, we proceed as follows: at first, we model via,
RSMs the stochastic behaviours of the daily returns of the considered
stock index; then, we utilize this modeling for developing a suitable
numerical approach for pricing the considered options (see the next
subsection).

With regard to the modeling of the behaviour of the daily returns of
the investigated stock index, we take into account RSMs characterized
by two regimes® (N = 2); in both regimes the stock index returns are
distributed in Gaussian way with constant mean ug;) and constant
standard deviation oy, with s(t) = 1, 2. In particular, the first model
we consider (that we call RSM2-M-SD) is

N(py1,01) if s(t) =1
“”{N&Léﬁdw=z @)

with transition probability matrix:

P=( D11 P21=1*p11>_
P12 =1—p2 D22 ’

the relative parameters to estimate are: u1, p2, 01, 02, P11, and pa2. The
second - and last - model we take into account (that we call RSM2-SD)
is a simplified version of the RSM (2),

N(u,01) if s(t) =1
%N{NmJgﬁdﬂ=2’
with transition probability matrix analogous to the previous one; now,
the relative parameters to estimate are: y, o1, o2, p11, and pag.

The results relative to the models RSM2-M-SD and RSM2-SD are
reported in Tables 1 and 2, respectively. Notice that in both the mod-
els, mainly the standard deviation allows to discriminate the two re-
gimes, that is allows to distinguishes between normal market phases
(characterized by “low” volatility) and turbulent market phases (char-
acterized by “high” volatility)®.

& During the empirical analyses we also tested RSMs characterized by three re-
gimes, but without any meaningful improvement in the experimental outcomes.
Moreover, notice that the number of parameters to estimate increases as the
number of the regimes grows up.

® Our results are similar to the ones presented in [Shaller et al., 1997].
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Table 1. Estimates of the parameters of model RSM2-M-SD

| Parameter |

p |

g2 |

o1 |

a2

] P11

| pa2 |

Estimate
Standard error
t-value

0.0000822
0.0016793
0.0489891

0.0005973
0.0005997
0.9959378

0.0173909
0.0013850
12.556619

0.01050513
0.00046825
22.43481700

0.9860428
0.0143420
68.7521150

0.9960097
0.0046330
214.979110

Table 2. Estimates of the parameters of model RSM2-SD

| Parameter |

b

o1 l

g2 |

P11

P22 ]

Estimate
Standard error

t-value

0.00052840
0.00054660
0.96670556

0.01737708
0.00133744
12.99277100

0.01050302
0.00045973
22.84623400

0.98650976
0.01322692
74.58347200

0.99614086
0.00437072
227.91225000

3.2 Option evaluation phase

Starting from the parameters whose estimates are reported in the pre-
vious subsection, here we implement a numerical approach - method-
ologically based on the multinomial one proposed in [Cox et al., 1979]
(on following: CRR) - in order to price the investigated options.

As known, in the CRR model one assumes that the price of the
underlying asset is driven by a discrete-time multiplicative binomial

process, t.e.

where

u € (1,+00) and d € (0,1) are the usual multiplicative factors;

p and 1 — p are, respectively, the probabilities the price S(t) increases

and decreases in the next time instant ¢ 4 1.
Given this model for the price dynamics of the underlying asset,

the CRR numerical approach for option valuation can be itemized as

follows:

step 1: by using the current underlying asset price Sp, the multiplicat-
ive factors v and d, and the probabilities p and 1 —p, one generates
the tree of the asset prices from ¢ to maturity;
step 2: for each underlying asset price at maturity, one calculates the
relative option payoff at the ezpiration date;
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step 3: by suitably folding back all the option payofis calculated at the
ezpiration date, one determines the current option value.

In order to implement our discrete-time numerical approach for
option pricing when the dynamics of the returns of the underlying
asset are describable by a RSM, notice that

— at the ezpiration date, the underlying asset returns are not dis-
tributed in Gaussian way but as a mixture of Gaussian probability
distributions;

— in folding back the option payoffs from the ezpiration date to the
current time, the transition probabilities of switching between the
two considered regimes have to be take into account;

— the transition probabilities are relative to a source of uncertainty
which is new with respect to the ones considered in the usual mod-
els for option pricing: the determination of the probability distri-
bution characterizing the current and the future dynamics of the
underlying asset returns. Because of it, in the RSM environment
it is not possible to determine an hedging portfolio; moreover, all
the “simplifications” coming from the use of standard risk neutrals
arguments are not more reasonable.

In our option evaluating approach we operate in a risk neutral
framework!®, assuming that the risks additionally coming from the
source of uncertainty reported in the latest point are not priced in the
market. Thus, the discrete-time processes related to the returns are
determined by setting the means of each regime distribution equal to
T — g, and the discount phase occurs at the interest rate r. In order to
assure the convergence of the implied discrete-time processes, and in
order to obtain a good approximation of the probability distribution
of the underlying asset returns, we take into account a pentanomial
treell,

In correspondence of each intermediate node of the considered tree,
the value of the option is determined by following the usual CRR
approach. In particular, in our option pricing model we have also to
take into account the probabilities to transit from a regime to another;
because of that, at each intermediate node we determine two different
prices of the option, both conditional to the regime generating the
data (i.e. the “low” variance regime, or the “high” variance regime).

10 Notice that this assumption is usual in such approaches.
'! See, for related models, [Bollen, 1999] and [Billio et al., 1997).
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Formally, in correspondence of the generic intermediate node, one has:

Clst)=1)=

P11 -C(t+1str1=1)+ (1 —p1) - C(t+ 1|se41 = 2)] e,
C(HS() = 2) =

(1 =p22) - C(t+1lse41 =1) + pao- C (¢t + 1sp1 = 2)] 7.

Of course, also at the starting node we determine two different condi-
tional option values, C (0|sp = 1) and C (0|sp = 2); in order to obtain
the (unique) price of the option in ¢t = 0, Crsas (0), we utilized the
pricing approach proposed in ([Bollen, 1999]), following which

Crsm (0) =p1-C(0lsg =1) +pa - C (O]so = 2),

where
Crsn(t) is the RSM price at time t;
p1 and pso are the unconditional probabilities.

Notice that the choice to use p; and ps as weights in the pre-
vious pricing formula is criticizable because the unconditional prob-
abilities can significantly vary over time; an alternative possibility
consists in using as weights the filtered probabilities (see, for details,
[Billio et al., 2003]).

3.3 Results

In order to compare the RSM performances with the BS ones and with
the market happenings, we consider the relative implied volatilities.
In particular, here we present some applications representative of the
whole data set relative to the out-of-sample options priced.

Generally speaking, the results we obtained are not particularly
satisfying. In fact, from Figures 1 and 2 one notices that the RSM im-
plied volatilities are not always close enough to the market ones, and
that their deviations are - on the average - similar to the deviations
shown by the BS implied volatilities; moreover, the RSM pricing mod-
els only partially are able to replicate the market smile effect. We con-
jecture that such results strongly depend on the assumptions relative
to the modeling of the underlying asset price dynamics; in particu-
lar, we deem necessary to relax at least the assumption relative the
constant transition probabilities.

Another remarkable feature characterizing the RSM implied volat-
ilities consists in the fact that they underestimate - on the average
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Fig. 1. Market implied volatility: solid line; BS implied volatility: horizontal line;
RSM implied volatility: dashed line.

- the market ones; therefore, the market option prices are - on the
average - greater than the ones coming from our RSMs. Some explan-
ations about this topic are given in the literature (see, for example,
([Bates, 1996]). In particular, we recall that we developed our RSM in
a risk neutral framework, assuming that the risks additionally coming
from the determination of the probability distribution characterizing
the dynamics of the underlying asset returns are not priced in the
market; because of that, the investors could require an additional risk
premium in order to compensate the risks associated to the RSM ap-
proach. Therefore, such differences in volatility risk premiums could
explicate the smaller option prices determined by our RSMs with re-
spect to the market ones.

4 Option pricing via MLP models

Generally speaking, the MLP models are quantitative tools originally
inspired to the biological neural networks and to their learning cap-
abilities. In particular, starting from a data set of input-output pat-
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Fig. 2. Market implied volatility: solid line; BS implied volatility: horizontal line;
RSM implied volatility: dashed line.

terns generated by an unknown process, the MLP models are able to
represent, in a non-parametric way, such a process (see, for details,
[Hornik et al., 1989]).

More in details, these artificial neural networks have the same
structure of direct arch weighted graphs whose nodes are arranged
in one input layer, one or more hidden layers'?, and one output layer.
Each layer is then fully connected with the subsequent one (the in-
put layer with the first hidden layer, the first hidden layer with the
second hidden layer, ..., and the last hidden layer with the output
layer) without any intra-layer connection. Because of that, the input
signal is feed-forwardly propagated from the input layer through the
hidden ones to the output layer.

Each single node, except the input ones, is able to perform data
calculation and transformation. In particular, each “computing” node
is characterized by two functions: the first one determines the node

12 In general, the number of nodes of each hidden layer can not be a priori determ-
ined.
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input by calculating a suitable aggregation of the signals incoming
in the node itself'3; the second function determines the node out-
put by suitably transforming the node input!* (see, for more details,
[Hertz et al., 1991]).

Thanks to such a parallel and distributed structure, the MLP mod-
els show generalization capabilities after the “learning”, and robust-
ness to the noise in the data; because of that, these models seem to be
particularly able in performing financial input-output patterns.

With regard to our option pricing problem, the MPL approach
presents some advantages with respect to several parametric models
(see, for example, [Hutchinson et al., 1994]):

— the MLP approach does not need a priori detailed assumptions rel-
ative to the variables of the investigated input-output relationship;

— the MLP models are robust to specification errors;

— the MLP approach provides an approximate closed form option
pricing formula (see subsection 4.2).

On the other hand, the MLP models require large data set of his-
torical input-output patterns in order to achieve successful results;
moreover, as the MLP models are black-box tools, the interpretation
of the approximate closed form formulas provided by these models are
generally not easy to give.

As far as it is concerned the set-up of a MLP model, several aspects
have to be taken into account. In particular, among the other topics
(see, for more details, [Belcaro et al., 1996]):

— the preprocessing of the data set of the input-output patterns gen-
erated by the unknown process;

— the determination of the optimal MLP model architecture;

— the selection of the training and testing procedures (like, for in-
stance, the choice of the learning algorithm, the minimization of

the generalization error'®, ...).

13 The most common used aggregation function is the summation one.

4 One of the most commonly used transformation function is the logistic one.

15 The generalization error is the error an MLP model should ideally commit in
representing the input-output relationship if it were “learning” from the data
set of all the possible input-output patterns, i.e. from the universe data set.
Of course, as the available data set is always a subset of the universe one, the
generalization error is always unknown. In order to avoid any biasing possibility
coming from such an “ignorance”, we utilize a learning criterion based on the so
called concurrent descent methodology: first, the input-output data set is suitably
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4.1 Preprocessing and modeling phases

MLP models are data-driven tools; because of it, in order to determ-
ine their optimal architecture is essential to perform a “good” prepro-
cessing phase. In particular, in developing the MLP pricing model, we
devote our attention to the selection of a suitable subset D from the
available data set of the historical input-output patterns. By so doing,
we can exclude from the processing phase the uninformative input-
output patterns; moreover, as positive consequence, the reduction of
the size of the data set to process implies the reduction of the related
computational costs.

In details, the criteria we utilized to exclude the uninformative
patterns are similar to the ones proposed in [Anders et al., 1998]:

— exclusion of the deep-out-of-the-money and the deep-in-the-money
options because they are usually poorly traded:;

— exclusion of the options characterized by less than 15 days to ma-
turity because they are usually traded at their intrinsic value;

— exclusion of the options traded at prices smaller than 100 basis
points because there are several, and quite different, options traded
at a same low price.

Finally, starting from the “reduced” input-output data set, we split
it - as usual in the MLP applications - in the following subsets:

— a training one, containing 2,000 input-output patterns selected in
a random way from the “reduced” data set D;

— a validation one, containing 500 input-output patterns selected in
a random way from the “reduced” data set D;

— an out-of-sample testing one, containing 530 input-output patterns
relative to the options traded in the last time period considered in
our investigation (November 1, 1999 to December 24, 1999)16,

In general terms, with respect to the non-parametric representation
of the unknown process generating the input-output patterns, it can
be simply formalized as follows:

split in two not-overlapping subsets (the training and the validation ones); then,
the training algorithm is iterated on the training subset as long as the (absolute)
minimum of a pre-establish cost function on the testing subset is reached (see,
for more details, subsection 4.2).

16 Usually, the performances of a MLP model are evaluated by using the patterns
belonging to this subset.
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CANN(t) = f (S(t)’X:T =T —1t, OImp, T, Q) (3)

where
Cann(t) is the ANN price at time ¢;
OImp is the implied volatility.

Now, in order to make as easy as possible the computational task
of the learning algorithm, we proceed by dropping the number of in-
puts (and, consequently, by reducing the number of the MLP model
parameters to estimate) on the basis of the following remarks:

— in our MLP option pricing approach we operate in a risk neutral
framework; thus, we can incorporate the dividend effect in the free
risk interest rate by setting this interest rate equal to r — g;

— in our modeling it is reasonable to assume the independence between
the prices and the return probability distribution of the underly-
ing stock index; because of that, the hypotheses of the Theorem
9 presented in [Merton, 1973] hold, and the related closed form op-
tion pricing formulas results homogeneous of degree 1 both in the
asset price, and in the ezercise one (with respect to the ezercise
price itself).

So, the non-parametric representation (3) can be sinthetically re-
formulated as follows:
Cann(t) _ f (S(t)

X TaLT"'taO’ImpaT—an):

S(t
=g (-")(Z_)'vT—7.7o.Imp7T-'q) .

4.2 Learning phase in short

In general, the optimal values of the weights of a MLP model are de-
termined by using an iterative estimation procedure. The most com-
mon learning algorithms are based on the error back-propagation me-
thod; in such algorithms, after a starting random initialization of
the weights, the input-output patterns belonging to the training set
are iteratively presented to the MLP model as long as, by a proper
weight updating, the (absolute) minimum of a pre-established cost
function is reached!?. The weight updating is obtained by suitably

17 Usually, the cost function defines a distance measure between the MLP model
output and the desired one.
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back-propagating the cost function value, i.e. the output error level,
from the output layer through the hidden ones to the input layer (see,
for more details, [Hertz et al., 1991] and [Belcaro et al., 1996]).

In these learning algorithms a crucial role is played by the stop-
learning criterion. The classical version of this criterion is satisfied
at the training algorithm iteration in which the calculated error level
is not higher than a pre-established threshold. An unfavorable phe-
nomenon associated to this version of the stop-learning criterion is the
so called over-training (or over-fitting) problem, i.e. the possibility that
the learning algorithm detect unexisting relationships between the in-
puts and the outputs; in such a case, the generalization error function
does not result minimized'®. In order to avoid this possibility, several
Authors suggest to use a stop-learning criterion based on the cross
validation technique known as concurrent descent methodology.

In implementing our MLP pricing model, we considered an only
hidden layer; the numerical optimization algorithm we used at each
step of the error back-propagation iterative procedure is the Levenberg-
Marquardt one; as cost function we utilized the standard root mean
square error (on following: RMSE) one; in order to avoid the over-
training problem, we took into account the concurrent descent meth-
odology.

4.3 Results

In order to determine the optimal MLP model architecture, we de-
veloped several one-hidden-layer MLP models, each of them charac-
terized by a different number of hidden artificial neurons. From Table
3 it results that the smallest value reached by the RMSE function
on the validation set is in correspondence of the MLP model with 8
hidden nodes (on following: MLP8). Then, in order to compare the
performances of the best MLP model, MLP8, with the BS ones, we
calculated for both these pricing approaches the value reached by the
RMSE function on the out-of-sample testing set: 1.155-1073 for MLPS,
and 4.242 - 1073 for the BS formula.

Such satisfying results we obtained from the out-of-sample analysis
can be partially explicated, beyond the effectiveness of the learning
capabilities of the MLP models, also by the feature that the out-of-
sample options priced are “similar” among them; in fact, they are all

18 Recall that such a minimization is the goal of the learning phase.
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traded in the last time period considered in our investigation (Novem-
ber 1, 1999 to December 24, 1999). So, in order to deepen the com-
parison between the MLP8 performances and the BS one, we extend
our analysis to all the options traded in the first period taken into
account in our investigation (January 1, 1999 to October 31, 1999),
included the input-output patterns which had been excluded from the
processing phase as uninformative (see subsection 4.1). In particular,
we detail this new analysis both with respect to the moneyness (see

Table 4) and with respect to the time to maturity (see Table 5).

As far as it is concerned the results coming from this new analysis:

— the MLPS8 performances are always better than the BS ones, both
with respect to the moneyness and with respect to the time to

maturity;

— the behaviour of the RSME function is similar for both the con-
sidered pricing approaches: its values raises as time to maturity

increases, and as moneyness moves away from 1.

Table 3. Value of the RMSE function on the training and the validation sets

|# hidden nodes|On the training set|On the validation set]

2 3.796 - 1073 3.680 - 1073
3 1.818-1073 1.909 - 1073
4 1.597-1073 1.736- 1073
5 1.459-1073 1.604-1073
6 1.440-1073 1.604 - 1073
7 1.376 - 1073 1.514-1073
8 1.341-1073 1.451-1073
9 1.331-1073 1.466 - 1073

Table 4. Value of the RMSE function with respect to the moneyness S(t)/X

[ Moneyness | S(t)/X |# observations] MLP8 | BS model |
Deep-out-of-the-money|0.80-0.90 1,221 1.531-107°19.169-10~°
Out-of-the-money  [0.90-0.97 1,815 1.445-107%|4.595 - 1073
Near-the-money ~ [0.97-1.03 1,417 1.241-1072|3.263 - 1078
In-the-money 1.03-1.10 1,650 1.404-1072|6.460 - 1072
Deep-in-the-money |1.10-1.20 1,128 1.543 -1073|7.603 - 1073
All the sample 0.80-1.20 7,231 1.429 -107°|6.402 - 1073
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Table 5. Value of the RMSE function with respect to the time to maturity 7

| Time to maturity|Months|# observations|

MLP8 | BS model |

Short-term 0-4 2,071 1.311-107%[3.764 - 10~°
Medium-term 4-8 2,535 1.415-1073/6.560 - 1073
Long-term 8-12 2,625 1.529-107%|7.759 - 1073
All the sample | 0-12 7,231 1.429 - 107°|6.402 - 1073
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Fig. 3. Market implied volatility: solid line; BS implied volatility: horizontal line;
RSM implied volatility: dashed line.

Finally, with regard to the comparison of the MLPS8 implied volat-
ility with the market one, notice that:

— in general, the MLP model is able to quite well replicate the dy-
namics of the market implied volatility (see Figures 3 and 4); by
so doing, it shows its ability in correctly “learning” the features
characterizing the market input-output relationships;

— the main errors the MLP model commits in replicating the mazr-
ket implied volatility are all in correspondence of poorly traded
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Fig. 4. Market implied volatility: solid line; BS implied volatility: horizontal line;
RSM implied volatility: dashed line.

options, like the out-of-the-money and the in-the-money ones (see
Figure 4); in such a case, the noise present in the data plays a
crucial role.

5 Concluding remarks

In this work we face the determination of option pricing models al-
ternative to the BS one. In particular, we propose two approaches: a
parametric one based on the RSMs, and a non-parametric one based
on the MLP models.

In general, a finished comparison between these two pricing ap-
proaches is not easy; moreover, it could be significantly affected by the
available data set. In any case, notice that

— as far as it is concerned the RSM-based approach, results better
than the one we obtained could be reached by detecting - and
assuming - an appropriate model for the stochastic dynamics of
the volatility, and by introducing a risk premium for the additional
risks associated to the RSM approach itself;
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— with regard to the MLP models, although the relative results are
satisfying, they are black-box tools; therefore, the interpretation
of the approximate close form formula provided by this approach
is not easy to give; moreover, performances better than the one
we obtained could be reached by using some of the so called hybrid
approach, in which a MLP model and an efficient parametric pricing
formula are jointly utilized.
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